Package ‘PRSPGx’

October 12, 2022

Type Package

Title Construct PGx PRS

Version 0.3.0

Maintainer Song Zhai <zsviolet1993@gmail.com>

Description Construct pharmacogenomics (PGx) polygenic risk score (PRS) with PRS-PGx-Unadj (unadjusted), PRS-PGx-CT (clumping and thresholding), PRS-PGx-L, -GL, -SGL (penalized regression), PRS-PGx-Bayes (Bayesian regression). Package is based on "Pharmacogenomics Polygenic Risk Score for Drug Response Prediction Using PRS-PGx Methods" by Zhai, S., Zhang, H., Mehrotra, D.V., and Shen, J., 2021 (submitted).

License GPL (>= 2)

Depends R (>= 4.0.0)

Imports gglasso (>= 1.5.0), SGL (>= 1.3.0), glmnet (>= 4.0.2), bigsnpr

(>= 1.5.2), Matrix (>= 1.2.18), GIGrvg (>= 0.5.0), MCMCpack (>= 1.4.6), bdsmatrix (>= 1.3.4), bigparser (>= 0.4.0), lmtest (>= 0.9.37), mvtnorm (>= 1.3.4), bigstatsr (>= 3.6.3), bigstatsr (>= 1.2.3), Rfast (>= 1.9.9), matrixcalc (>= 1.0-3)

Suggests knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation yes

Author Song Zhai [aut, cre]

Repository CRAN

Date/Publication 2022-07-20 15:00:02 UTC

R topics documented:

PRSPGx.example 2
PRSPGx.example

Simulated example data

Description

Simulated example data required by PRS-DIS and PRS-PGx functions.

Usage

data(PRSPGx.example)

Format

A list with 8 sublists:

PGx_GWAS PGx GWAS including SNP ID, MAF, position, β, α, 2-df p-value, and N; SD(Y), and mean(T)

DIS_GWAS disease GWAS including SNP ID, MAF, position, β, SE(β), p-value, and N

G_reference simulated individual-level genotype from the reference panel matched with the simulated sample PGx genotype

Y simulated phenotype (continuous)

T simulated treatment assignment, 1 = treatment, 0 = placebo

G simulated sample PGx genotype with 100 SNPs and 4000 subjects

beta simulated prognostic effect sizes (i.e., the underlying true prognostic effect sizes)

alpha simulated predictive effect sizes (i.e., the underlying true predictive effect sizes)
Construct disease PRS unadjusted or using clumping and thresholding

Description

Shrink prognostic effect sizes by p-value cutoff (PRS-Dis-CT turns out to be PRS-Dis-Unadj when setting p-value cutoff = 1)

Usage

PRS_Dis_CT(
 DIS_GWAS,
 G_reference,
 pcutoff = 1e-05,
 clumping = TRUE,
 p1 = 1e-04,
 d1 = 250000,
 r1 = 0.8
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS_GWAS</td>
<td>a numeric matrix containing disease GWAS summary statistics, including SNP ID, position, β, SE(β), p-value, N, and MAF</td>
</tr>
<tr>
<td>G_reference</td>
<td>a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG)</td>
</tr>
<tr>
<td>pcutoff</td>
<td>a numeric value indicating the p-value cutoff</td>
</tr>
<tr>
<td>clumping</td>
<td>a logical flag indicating should clumping be performed</td>
</tr>
<tr>
<td>p1</td>
<td>a numeric value indicating p-value threshold to decide flag SNPs in clumping</td>
</tr>
<tr>
<td>d1</td>
<td>a numeric value indicating window size in clumping</td>
</tr>
<tr>
<td>r1</td>
<td>a numeric value indicating correlation in clumping</td>
</tr>
</tbody>
</table>

Details

PRS-Dis-CT automatically sets predictive effect sizes equivalent to the prognostic effect sizes; and only need disease GWAS summary statistics

Value

A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes

Author(s)

Song Zhai
References

Examples

```r
data(PRSPGx.example); attach(PRSPGx.example)
coef_est <- PRS_Dis_CT(DIS_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE)
summary(coef_est$coef.G)
summary(coef_est$coef.TG)
```

PRS_Dis_LDpred2

Construct disease PRS using LDpred2

Description

Using snp_ldpred2_grid function from bigsnpr function

Usage

```r
PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal, h2)
```

Arguments

- **DIS_GWAS**: a numeric matrix containing disease GWAS summary statistics, including SNP ID, position, β, SE(β), p-value, N, and MAF
- **G_reference**: a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG)
- **pcausal**: a numeric value indicating the hyper-parameter as the proportion of causal variants
- **h2**: a numeric value indicating the estimated heritability

Details

PRS-Dis-LDpred2 automatically sets predictive effect sizes equivalent to the prognostic effect sizes; and only need disease GWAS summary statistics and external reference genotype

Value

A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Construct PGx PRS using Bayesian regression

Description

Flexibly shrink prognostic and predictive effect sizes simultaneously with glocal-local shrinkage parameters.

Usage

```r
PRS_PGx_Bayes(
  PGx_GWAS,
  G_reference,
  n.itr = 1000,
  n.burnin = 500,
  n.gap = 10,
  paras,
  standardize = TRUE
)
```

Arguments

- `PGx_GWAS` a numeric list containing PGx GWAS summary statistics (with SNP ID, position, β, α, 2-df p-value, MAF and N), SD(Y), and mean(T).
- `G_reference` a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG).
- `n.itr` a numeric value indicating the total number of MCMC iteration.
n.burnin
... a numeric value indicating the number of burn in
n.gap
... a numeric value indicating the MCMC gap
paras
... a numeric vector containing hyper-parameters (v, ϕ)
standardize
... a logical flag indicating should phenotype and genotype be standardized

Details

PRS-PGx-Bayes only needs PGx summary statistics and external reference genotype

Value

A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes

Author(s)

Song Zhai

References

Examples

```r
data(PRSPGx.example); attach(PRSPGx.example)
paras = c(3, 5)
coef_est <- PRS_PGx_Bayes(PGx_GWAS, G_reference, paras = paras, n.itr = 10, n.burnin = 5, n.gap = 1)
summary(coef_est$coef.G)
summary(coef_est$coef.TG)
```

PRS_PGx_CT

Construct PGx PRS unadjusted or using clumping and thresholding

Description

Shrink prognostic and predictive effect sizes simultaneously by 2-df (main and interaction) p-value cutoff (PRS-PGx-CT turns out to be PRS-PGx-Unadj when setting p-value cutoff = 1)
Usage

PRS_PGx_CT(
 PGx_GWAS,
 G_reference,
 pcutoff = 1e-04,
 clumping = TRUE,
 p1 = 1e-04,
 d1 = 250000,
 r1 = 0.8
)

Arguments

 PGx_GWAS a numeric matrix containing PGx GWAS summary statistics, including SNP ID, MAF, position, \(\beta \), \(\alpha \), 2-df p-value, and N
 G_reference a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG)
 pcutoff a numeric value indicating the p-value cutoff
 clumping a logical flag indicating should clumping be performed
 p1 a numeric value indicating p-value threshold to decide flag SNPs in clumping
 d1 a numeric value indicating window size in clumping
 r1 a numeric value indicating correlation in clumping

Details

PRS-PGx-CT only needs PGx summary statistics

Value

A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes, the third sublist contains 2-df p-values

Author(s)

Song Zhai

References

Examples

data(PRSPGx.example); attach(PRSPGx.example)
coef_est <- PRS_PGx_CT(PGx_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE)
summary(coef_est$coef.G)
summary(coef_est$coef.TG)
Description

Shrink prognostic and predictive effect sizes simultaneously via the penalized term. With different assumptions on the relationship between the two effects, can be PRS-PGx-L (Lasso), PRS-PGx-GL (Group Lasso), and PRS-PGx-SGL (Sparse Group Lasso).

Usage

```r
PRS_PGx_Lasso(Y, Tr, G, intercept = TRUE, lambda, method, alpha = 0.5)
```

Arguments

- `Y` a numeric vector containing the quantitative trait
- `Tr` a numeric vector containing the treatment assignment
- `G` a numeric matrix containing genotype information
- `intercept` a logical flag indicating should intercept be fitted (default=TRUE) or set to be FALSE
- `lambda` a numeric value indicating the penalty
- `method` a logical flag for different penalized regression methods: 1 = PRS-PGx-L, 2 = PRS-PGx-GL, 3 = PRS-PGx-SGL
- `alpha` a numeric value indicating the mixing parameter (only used when method = 3).
 - `alpha = 1` is the lasso penalty.
 - `alpha = 0` is the group lasso penalty

Details

PRS-PGx-Lasso requires individual-level data

Value

A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes

Author(s)

Song Zhai

References

Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Fit a GLM (or cox model) with a combination of lasso and group lasso regularization. R package version, 1 (2015).

Examples

data(PRSPGx.example); attach(PRSPGx.example)
coef_est <- PRS_PGx_Lasso(Y, Tr, G, lambda = 1, method = 1)
summary(coef_est$coef.G)
summary(coef_est$coef.TG)
Index

* datasets
 - PRSPGx.example, 2
 - PRS_DiS_CT, 3
 - PRS_DiS_LDpred2, 4
 - PRS_PGx_Bayes, 5
 - PRS_PGx_CT, 6
 - PRS_PGx_Lasso, 8
 - PRSPGx.example, 2