Package ‘PanCanVarSel’

September 20, 2019

Title Pan-Cancer Variable Selection

Version 0.0.3

Description Provides function for performing Bayesian survival regression using Horseshoe prior in the accelerated failure time model with log normal assumption in order to achieve high dimensional pan-cancer variable selection as developed in Maity et. al. (2019) [<doi:10.1111/biom.13132>].

Depends R (>= 2.0.0)

Imports mvtnorm, Matrix, smoothmest, msm

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Author Arnab Maity [aut, cre], Antik Chakraborty [aut], Anirban Bhattacharya [aut], Bani K. Mallick [aut], Veerabhadran Baladandayuthapani [aut]

Maintainer Arnab Maity <arnab.maity@pfizer.com>

Repository CRAN

Date/Publication 2019-09-20 10:10:05 UTC

R topics documented:

hsaft ... 2
hsaftallcorr .. 4
hsaftcovariatetcorr 6
hsaftgroupcorr 9

Index 12
hsaft

Function to implement the horseshoe shrinkage prior in Bayesian survival regression

Description

This function employs the algorithm provided by van der Pas et al. (2016) for log normal Accelerated Failure Rate (AFT) model to fit survival regression. The censored observations are updated according to the data augmentation of approach of Tanner and Wong (1984).

Usage

hsaft(ct, X, method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
 tau = 1, method.sigma = c("fixed", "Jeffreys"), Sigma2 = 1,
 burn = 1000, nmc = 5000, thin = 1, alpha = 0.05)

Arguments

ct Response, a n * 2 matrix with first column as response and second column as right censored indicator, 1 is event time and 0 is right censored.
X Matrix of covariates, dimension n * p.
method.tau Method for handling τ. Select "truncatedCauchy" for full Bayes with the Cauchy prior truncated to [1/p, 1], "halfCauchy" for full Bayes with the half-Cauchy prior, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).
tau Use this argument to pass the (estimated) value of τ in case "fixed" is selected for method.tau. Not necessary when method.tau is equal to "halfCauchy" or "truncatedCauchy". The default (tau = 1) is not suitable for most purposes and should be replaced.
method.sigma Select "Jeffreys" for full Bayes with Jeffrey’s prior on the error variance σ^2, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).
Sigma2 A fixed value for the error variance σ^2. Not necessary when method.sigma is equal to "Jeffreys". Use this argument to pass the (estimated) value of Sigma2 in case "fixed" is selected for method.sigma. The default (Sigma2 = 1) is not suitable for most purposes and should be replaced.
burn Number of burn-in MCMC samples. Default is 1000.
nmc Number of posterior draws to be saved. Default is 5000.
thin Thinning parameter of the chain. Default is 1 (no thinning).
alpha Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals.

Details

The model is: \(t_i \) is response, \(c_i \) is censored time, \(t_i^* = \min(t_i, c_i) \) is observed time, \(w_i \) is censored data, so \(w_i = \log t_i^* \) if \(t_i \) is event time and \(w_i = \log t_i \) if \(t_i \) is right censored. \(\log t_i = Xβ + ε, ε \sim N(0, σ^2) \)
Value

SurvivalHat Predictive survival probability.
LogTimeHat Predictive log time.
BetaHat Posterior mean of Beta, a p by 1 vector.
LeftCI The left bounds of the credible intervals.
RightCI The right bounds of the credible intervals.
BetaMedian Posterior median of Beta, a p by 1 vector.
Sigma2Hat Posterior mean of error variance σ^2. If method.sigma = "fixed" is used, this value will be equal to the user-selected value of Sigma2 passed to the function.
TauHat Posterior mean of global scale parameter tau, a positive scalar. If method.tau = "fixed" is used, this value will be equal to the user-selected value of tau passed to the function.
BetaSamples Posterior samples of Beta.
TauSamples Posterior samples of tau.
Sigma2Samples Posterior samples of Sigma2.
LikelihoodSamples Posterior Samples of likelihood.

References

Arnab Kumar Maity, Anirban Bhattacharya, Bani K. Mallick, and Veerabhadran Baladandayuthapani (2017). Joint Bayesian Estimation and Variable Selection for TCPA Protein Expression Data

Examples

```r
burnin <- 500 # number of burnin
nmc <- 1000 # number of Markov Chain samples
y.sd <- 1 # standard deviation of the data
p <- 80 # number of covariates
n <- 40 # number of samples
beta <- as.vector(smoothmest::rdoublex(p)) # from double exponential distribution
x <- mvtnorm::rmvnorm(n, mean = rep(0, p)) # from multivariate normal distribution
y.mu <- x %>%*% beta # mean of the data
y <- as.numeric(stats::rnorm(n, mean = y.mu, sd = y.sd)) # from normal distribution
T <- exp(y) # AFT model
C <- rgamma(n, shape = 1.75, scale = 3) # censoring time
time <- pmin(T, C) # observed time is min of censored and true
status <- time == T # set to 1 if event is observed
ct <- as.matrix(cbind(time = time, status = status)) # censored time

posterior.fit <- hsaft(ct, x, method.tau = "truncatedCauchy", method.sigma = "Jeffreys",
                      burn = burnin, nmc = nmc)

summary(posterior.fit$BetaHat)
```
hsaftallcorr

This function extends the main function `hsaft` to create correlation among covariates.

Description

This function extends the main function `hsaft` to create correlation among covariates.

Usage

```r
hsaftallcorr(ct, X, method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
             tau = 1, method.sigma = c("fixed", "Jeffreys"),
             Sigma2 = 1, burn = 1000, nmc = 5000, thin = 1, alpha = 0.05, r,
             n.seq, pk)
```

Arguments

- `ct`
 Response, a $n \times 2$ matrix with first column as response and second column as right censored indicator, 1 is event time and 0 is right censored.

- `X`
 Matrix of covariates, dimension $n \times p$.

- `method.tau`
 Method for handling τ. Select "truncatedCauchy" for full Bayes with the Cauchy prior truncated to $[1/p, 1]$, "halfCauchy" for full Bayes with the half-Cauchy prior, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).

- `tau`
 Use this argument to pass the (estimated) value of τ in case "fixed" is selected for `method.tau`. Not necessary when `method.tau` is equal to "halfCauchy" or "truncatedCauchy". The default (tau = 1) is not suitable for most purposes and should be replaced.

- `method.sigma`
 Select "Jeffreys" for full Bayes with Jeffreys’s prior on the error variance σ^2, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).

- `Sigma2`
 A fixed value for the error variance σ^2. Not necessary when `method.sigma` is equal to "Jeffreys". Use this argument to pass the (estimated) value of Sigma2 in case "fixed" is selected for `method.sigma`. The default (Sigma2 = 1) is not suitable for most purposes and should be replaced.

- `burn`
 Number of burn-in MCMC samples. Default is 1000.

- `nmc`
 Number of posterior draws to be saved. Default is 5000.

- `thin`
 Thinning parameter of the chain. Default is 1 (no thinning).

- `alpha`
 Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals.

- `r`
 number of groups.

- `n.seq`
 a vector of sample sizes for all groups.

- `pk`
 number of covariates in each group.
Value

SurvivalHat Predictive survival probability.

LogTimeHat Predictive log time.

BetaHat Posterior mean of Beta, a \(p \) by 1 vector.

LeftCI The left bounds of the credible intervals.

RightCI The right bounds of the credible intervals.

BetaMedian Posterior median of Beta, a \(p \) by 1 vector.

Sigma2Hat Posterior mean of error variance \(\sigma^2 \). If method.sigma = "fixed" is used, this value will be equal to the user-selected value of Sigma2 passed to the function.

TauHat Posterior mean of global scale parameter tau, a positive scalar. If method.tau = "fixed" is used, this value will be equal to the user-selected value of tau passed to the function.

BetaSamples Posterior samples of Beta.

TauSamples Posterior samples of tau.

Sigma2Samples Posterior samples of Sigma2.

BGHat Posterior samples of b which is a part of the mean of \(\beta \).

BPHat Posterior samples of b which is the other part of the mean of \(\beta \).

LikelihoodSamples Posterior Samples of likelihood.

References

Arnab Kumar Maity, Anirban Bhattacharya, Bani K. Mallick, and Veerabhadran Baladandayuthapani (2017). Joint Bayesian Estimation and Variable Selection for TCPA Protein Expression Data

Examples

```r
# Examples for hsaftallcorr function
burnin <- 50 # number of burnin
nmc <- 100 # number of Markov Chain samples
y.sd <- 1 # standard deviation of the data
p <- 80 # number of covariates
r <- 5 # number of groups
p <- 80 # number of covariate in each group
n1 <- 40 # sample size of 1st group
n2 <- 50 # sample size of 2nd group
n3 <- 70 # sample size of 3rd group
n4 <- 100 # sample size of 4th group
n5 <- 120 # sample size of 5th group
n <- sum(c(n1, n2, n3, n4, n5)) # total sample size
n.seq <- c(n1, n2, n3, n4, n5)
Beta <- matrix(smoothmest::rdoublex(p * r), nrow = r, ncol = p, byrow = TRUE) # from double exponential distribution
```
This function extends the main function `hsaft` to create correlation among covariates.

Description

This function extends the main function `hsaft` to create correlation among covariates.

Usage

```r
call <- hsaftcovariatecorr(ct, X, method.tau = c("fixed", "truncatedCauchy", "halfCauchy"), tau = 1, method.sigma = c("fixed", "Jeffreys"), Sigma2 = 1, burn = 100, nmc = 500, thin = 1, alpha = 0.05, r, n.seq, pk)
```

```r
summary(posterior.fit$BetaHat)
```
Arguments

c_t \hspace{1cm} \text{Response, a } n \times 2 \text{ matrix with first column as response and second column as right censored indicator, 1 is event time and 0 is right censored.}

\text{X} \hspace{1cm} \text{Matrix of covariates, dimension } n \times p.

method.tau \hspace{1cm} \text{Method for handling } \tau. \text{ Select "truncatedCauchy" for full Bayes with the Cauchy prior truncated to } [1/p, 1], \text{ "halfCauchy" for full Bayes with the half-Cauchy prior, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).}

tau \hspace{1cm} \text{Use this argument to pass the (estimated) value of } \tau \text{ in case "fixed" is selected for method.tau. Not necessary when method.tau is equal to "halfCauchy" or "truncatedCauchy". The default (tau = 1) is not suitable for most purposes and should be replaced.}

method.sigma \hspace{1cm} \text{Select "Jeffreys" for full Bayes with Jeffrey’s prior on the error variance } \sigma^2, \text{ or "fixed" to use a fixed value (an empirical Bayes estimate, for example).}

Sigma2 \hspace{1cm} \text{A fixed value for the error variance } \sigma^2. \text{ Not necessary when method.sigma is equal to "Jeffreys". Use this argument to pass the (estimated) value of Sigma2 in case "fixed" is selected for method.sigma. The default (Sigma2 = 1) is not suitable for most purposes and should be replaced.}

burn \hspace{1cm} \text{Number of burn-in MCMC samples. Default is 1000.}

nmc \hspace{1cm} \text{Number of posterior draws to be saved. Default is 5000.}

thin \hspace{1cm} \text{Thinning parameter of the chain. Default is 1 (no thinning).}

alpha \hspace{1cm} \text{Level for the credible intervals. For example, alpha = 0.05 results in 95\% credible intervals.}

r \hspace{1cm} \text{number of groups.}

n.seq \hspace{1cm} \text{a vector of sample sizes for all groups.}

pk \hspace{1cm} \text{number of covariates in each group.}

Value

SurvivalHat \hspace{1cm} \text{Predictive survival probability.}

LogTimeHat \hspace{1cm} \text{Predictive log time.}

BetaHat \hspace{1cm} \text{Posterior mean of Beta, a } p \text{ by 1 vector.}

LeftCI \hspace{1cm} \text{The left bounds of the credible intervals.}

RightCI \hspace{1cm} \text{The right bounds of the credible intervals.}

BetaMedian \hspace{1cm} \text{Posterior median of Beta, a } p \text{ by 1 vector.}

Sigma2Hat \hspace{1cm} \text{Posterior mean of error variance } \sigma^2. \text{ If method.sigma = "fixed" is used, this value will be equal to the user-selected value of Sigma2 passed to the function.}

TauHat \hspace{1cm} \text{Posterior mean of global scale parameter tau, a positive scalar. If method.tau = "fixed" is used, this value will be equal to the user-selected value of tau passed to the function.}

BetaSamples \hspace{1cm} \text{Posterior samples of Beta.}

TauSamples \hspace{1cm} \text{Posterior samples of tau.}
Sigma2Samples Posterior samples of Sigma2.

\(\hat{\beta} \) Posterior samples of \(\beta \) which is the mean of \(\beta \).

LikelihoodSamples Posterior Samples of likelihood.

References

Arnab Kumar Maity, Anirban Bhattacharya, Bani K. Mallick, and Veerabhadran Baladandayuthapani (2017). Joint Bayesian Estimation and Variable Selection for TCPA Protein Expression Data

Examples

```r
# Examples for hsaftcovariatecorr function
burnin <- 50  # number of burnin
nmc <- 100  # number of Markov Chain samples
y.sd <- 1  # standard deviation of the data
p <- 80  # number of covariates
r <- 5  # number of groups
p <- 80  # number of covariate in each group
n1 <- 40  # sample size of 1st group
n2 <- 50  # sample size of 2nd group
n3 <- 70  # sample size of 3rd group
n4 <- 100  # sample size of 4th group
n5 <- 120  # sample size of 5th group
n <- sum(c(n1, n2, n3, n4, n5))  # total sample size
n.seq <- c(n1, n2, n3, n4, n5)
Beta <- matrix(smoothmest::rdoublex(p * r), nrow = r, ncol = p, byrow = TRUE)
# from double exponential distribution
beta <- as.vector(t(Beta))  # vectorize Beta
x1 <- mvtnorm::rmvnorm(n1, mean = rep(0, p))
x2 <- mvtnorm::rmvnorm(n2, mean = rep(0, p))
x3 <- mvtnorm::rmvnorm(n3, mean = rep(0, p))
x4 <- mvtnorm::rmvnorm(n4, mean = rep(0, p))
x5 <- mvtnorm::rmvnorm(n5, mean = rep(0, p))  # from multivariate normal distribution
y.mu1 <- x1 %*% Beta[1,]
y.mu2 <- x2 %*% Beta[2,]
y.mu3 <- x3 %*% Beta[3,]
y.mu4 <- x4 %*% Beta[4,]
y.mu5 <- x5 %*% Beta[5,]
y1 <- stats::rnorm(n1, mean = y.mu1, sd = y.sd)
y2 <- stats::rnorm(n2, mean = y.mu2, sd = y.sd)
y3 <- stats::rnorm(n3, mean = y.mu3, sd = y.sd)
y4 <- stats::rnorm(n4, mean = y.mu4, sd = y.sd)
y5 <- stats::rnorm(n5, mean = y.mu5, sd = y.sd)
y <- c(y1, y2, y3, y4, y5)
x <- Matrix::bdiag(x1, x2, x3, x4, x5)
X <- as.matrix(x)
y <- as.numeric(as.matrix(y))  # from normal distribution
T <- exp(y)  # AFT model
```
hsaftgroupcorr <- rgamma(n, shape = 1.75, scale = 3) # censoring time
time <- pmin(T, C) # observed time is min of censored and true
status = time == T # set to 1 if event is observed
c = as.matrix(cbind(time = time, status = status)) # censored time

posterior.fit <- hsaftcovariatecorr(ct, X, method.tau = "truncatedCauchy",
 method.sigma = "Jeffreys",
 burn = burnin, nmc = nmc,
 r = r, n.seq = n.seq, pk = p)
summary(posterior.fit$BetaHat)

hsaftgroupcorr

This function extends the main function hsaft to create correlation among groups.

Description
This function extends the main function hsaft to create correlation among groups.

Usage
hsaftgroupcorr(ct, X, method.tau = c("fixed", "truncatedCauchy",
 "halfCauchy"), tau = 1, method.sigma = c("fixed", "Jeffreys"),
 Sigma2 = 1, burn = 1000, nmc = 5000, thin = 1, alpha = 0.05, r,
 n.seq, pk)

Arguments
ct Response, a n * 2 matrix with first column as response and second column as right censored indicator, 1 is event time and 0 is right censored.
X Matrix of covariates, dimension n * p.
method.tau Method for handling τ. Select "truncatedCauchy" for full Bayes with the Cauchy prior truncated to [1/p, 1], "halfCauchy" for full Bayes with the half-Cauchy prior, or "fixed" to use a fixed value (an empirical Bayes estimate, for example).
tau Use this argument to pass the (estimated) value of τ in case "fixed" is selected for method.tau. Not necessary when method.tau is equal to "halfCauchy" or "truncatedCauchy". The default (τ = 1) is not suitable for most purposes and should be replaced.
method.sigma Select "Jeffreys" for full Bayes with Jeffreys’s prior on the error variance σ², or "fixed" to use a fixed value (an empirical Bayes estimate, for example).
Sigma2 A fixed value for the error variance σ². Not necessary when method.sigma is equal to "Jeffreys". Use this argument to pass the (estimated) value of Sigma2 in case "fixed" is selected for method.sigma. The default (Sigma2 = 1) is not suitable for most purposes and should be replaced.
burn Number of burn-in MCMC samples. Default is 1000.
nmc Number of posterior draws to be saved. Default is 5000.
thin Thinning parameter of the chain. Default is 1 (no thinning).
alpha Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals.
r number of groups.
n.seq a vector of sample sizes for all groups.
pk number of covariates in each group.

Value

SurvivalHat Predictive survival probability.
LogTimeHat Predictive log time.
BetaHat Posterior mean of Beta, a \(p \times 1 \) vector.
LeftCI The left bounds of the credible intervals.
RightCI The right bounds of the credible intervals.
BetaMedian Posterior median of Beta, a \(p \times 1 \) vector.
Sigma2Hat Posterior mean of error variance \(\sigma^2 \). If method.sigma = "fixed" is used, this value will be equal to the user-selected value of Sigma2 passed to the function.
TauHat Posterior mean of global scale parameter tau, a positive scalar. If method.tau = "fixed" is used, this value will be equal to the user-selected value of tau passed to the function.
BetaSamples Posterior samples of Beta.
TauSamples Posterior samples of tau.
Sigma2Samples Posterior samples of Sigma2.
BHat Posterior samples of b which is the mean of \(\beta \).
LikelihoodSamples Posterior Samples of likelihood.

References

Arnab Kumar Maity, Anirban Bhattacharya, Bani K. Mallick, and Veerabhadran Baladandayuthapani (2017). Joint Bayesian Estimation and Variable Selection for TCPA Protein Expression Data

Examples

Examples for hsaftgroupcorr function
burnin <- 50 # number of burnin
nmc <- 100 # number of Markov Chain samples
y.sd <- 1 # standard deviation of the data
p <- 80 # number of covariates
r <- 5 # number of groups
```
# number of covariate in each group
p <- 80

# sample size of 1st group
n1 <- 40

# sample size of 2nd group
n2 <- 50

# sample size of 3rd group
n3 <- 70

# sample size of 4th group
n4 <- 100

# sample size of 5th group
n5 <- 120

# total sample size
n <- sum(c(n1, n2, n3, n4, n5))

# from double exponential distribution
Beta <- matrix(smoothmest::rdoublex(p * r), nrow = r, ncol = p, byrow = TRUE)

# from multivariate normal distribution
x1 <- mvtnorm::rmvnorm(n1, mean = rep(0, p))
x2 <- mvtnorm::rmvnorm(n2, mean = rep(0, p))
x3 <- mvtnorm::rmvnorm(n3, mean = rep(0, p))
x4 <- mvtnorm::rmvnorm(n4, mean = rep(0, p))
x5 <- mvtnorm::rmvnorm(n5, mean = rep(0, p))

# from normal distribution
y.mu1 <- x1 %*% Beta[1, ]
y.mu2 <- x2 %*% Beta[2, ]
y.mu3 <- x3 %*% Beta[3, ]
y.mu4 <- x4 %*% Beta[4, ]
y.mu5 <- x5 %*% Beta[5, ]

# from exponential distribution
T <- exp(y)

# from gamma distribution
C <- rgamma(n, shape = 1.75, scale = 3)

# observed time is min of censored and true
status = time == T

# posterior fit
posterior.fit <- hsaftgroupcorr(ct, X, method.tau = "truncatedCauchy", method.sigma = "Jeffreys",
  burn = burnin, nmc = nmc, r = r, n.seq = n.seq, pk = p)

summary(posterior.fit$BetaHat)
```
Index

hsaft, 2, 4, 6, 9
hsaftallcorr, 4
hsaftcovariatecorr, 6
hsaftgroupcorr, 9