Package ‘PanJen’

November 1, 2017

Version 1.6
Date 2017-11-01
Title A Semi-Parametric Test for Specifying Functional Form
Author Toke Emil Panduro <tepp@ifro.ku.dk>, Cathrine Ulla Jensen <cuj@ifro.ku.dk>
Maintainer Cathrine Ulla Jensen <cuj@ifro.ku.dk>
Description A central decision in a parametric regression is how to specify the relation between an dependent variable and each explanatory variable. This package provides a semi-parametric tool for comparing different transformations of an explanatory variables in a parametric regression. The functions is relevant in a situation, where you would use a box-cox or Box-Tidwell transformations. In contrast to the classic power-transformations, the methods in this package allows for theoretical driven user input and the possibility to compare with a non-parametric transformation.

Depends R (>= 3.4), mgcv
License GPL (>= 2)
LazyLoad yes
LazyData yes
NeedsCompilation no
Repository CRAN
Date/Publication 2017-11-01 14:10:26 UTC

R topics documented:

choose.fform .. 2
fform ... 3
hvidovre ... 4
plotff ... 5

Index 7
choose.fform

Description

PanJen is built on the idea that the choice of a functional form can be extrapolated from model fit measures. The function provides a ranking of different transformations according to their Baysian Information Criterion (BIC). The BIC provides a relative goodness-of-fit measure while accounting for the complexity of the model. The function provides BIC for each transformation, a model without the variable in question and a socalled smoothing of the variable. The models are estimated a Generalized additive model (GAM).A GAM is a special case of the Generalized Linear Model (GLM), where it is possible to include one or more so called smoothing functions. A smoothing function is a non-parametric way to include a continuous independent variable in a parametric model and thus make it semi-parametric. Please see Wood (2006) for an elaboration. The printed output is a table with the transformations sorted according to their explanatory power measured by AIC. The table shows both AIC and BIC for each regression, where BIC penalize for the number of explanatory variables.

Usage

choose.fform(data, base_form, variable, functionList, distribution=gaussian)

Arguments

data A data.frame
variable A character-string with the name of the variable to test
base_form A formula-object with the regressions without the variable that is tested
functionList A list of transformations. Please see the example for an elaboration
distribution Assumed distribution, see mgcv-vignette for an elaboration. Default is gaussian

Value

rank.table The printed table. The transformations are ranked according to their explanatory power measured by AIC. The table shows both the AIC and BIC value, where the BIC value penalizes for the number of variables
models A list of estimated models
dataset A dataframe with the dataset
fforms The formula provided by the user

Author(s)

Toke Emil Panduro & Cathrine Ulla Jensen
fform

References

Examples

```r
## Test a linear specification (x), a log (I(log(x))) and a square (x^2)
library(PanJen)
data("hvidovre")
form <- formula(lprice ~ brick + roof_tile + roof_cemen + rebuild90 + rebuild00 + y7 + y8 + y9)
fxlist <- list(
  linear = function(x) x,
  sqr = function(x) x^2,
  log = function(x) log(x)
)
PanJenAreaC <- choose.fform(data = hvidovre, variable = "area", base_form = form, functionList = fxlist)
```

Description

PanJen is built on the idea that the choice of a functional form can be extrapolated from model fit measures. The function provides a ranking of different transformations according to their Baysian Information Criterion (BIC). The BIC provides a relative goodness-of-fit measure while accounting for the complexity of the model. The function provides BIC for a set of predefined transformations as well as a model without the variable in question and a so-called smoothing of the variable. The models are estimated a Generalized additive model (GAM). A GAM is a special case of the Generalized Linear Model (GLM), where it is possible to include one or more so-called smoothing functions. A smoothing function is a non-parametric way to include a continuous independent variable in a parametric model and thus make it semi-parametric. Please see Wood (2006) for an elaboration. The printed output is a table with the transformations sorted according to their explanatory power measured by AIC. The table shows both AIC and BIC for each regression, where BIC penalize for the number of explanatory variables.

Usage

```r
fform(data, variable, base_form, distribution = gaussian)
```

Arguments

- **data**: A data.frame
- **variable**: A character-string with the name of the variable to test
- **base_form**: A formula-object with the regressions without the variable that is tested
- **distribution**: Assumed distribution, see mgcv-vignette for an elaboration. Default is gaussian
Value

rank.table The printed table. The transformations are ranked according to their explanatory power measured by AIC. The table shows both the AIC and BIC value, where the BIC value penalizes for the number of variables

models A list of estimated models

dataset A dataframe with the dataset

Author(s)

Toke Emil Panduro & Cathrine Ulla Jensen

References

Examples

library(PanJen)
data("hvidovre")

form<-formula(lprice ~brick+roof_tile+roof_cemen+rebuild7P+rebuild8P+rebuild9P+rebuildPP+y7+y8+y9)
PanJenArea<-fform(data=hvidovre,variable="area",base_form=form)

hvidovre Houseprice data

Description

A dataset with trade price and attributes for 900 homes in a Danish municipality

Usage

data("hvidovre")

Format

A data frame with 901 observations on the following 19 variables

lprice a numeric vector, price, log price in 1000 EUR
brick a numeric vector, dummy, wall made out of brick =1
roof_tile a numeric vector, roof_tiledummy, roof made out of tiles =1
roof_cemen a numeric vector, dummy, roof made out of cement
y7 a numeric vector, home sold in 2007
y8 a numeric vector, home sold in 2008
y9 a numeric vector, home sold in 2009
rebuild70 a numeric vector, home rebuild in 1970’s
rebuild80 a numeric vector, home rebuild in 1980’s
rebuild90 a numeric vector, home rebuild in 1990’s
rebuild00 a numeric vector, home rebuild in 2000’s
area a numeric vector, living area in square meters
age a numeric vector, build year
bathrooms a numeric vector, number of bathrooms
highways a numeric vector, distance to nearest highway in meters
big_roads a numeric vector, distance to nearest large road in meters
railways a numeric vector, railway distance to nearest railway in meters
nature_SLD a numeric vector, nature_SLD distance to nearest nature area in meters
lake_SLD a numeric vector, distance to nearest lake in meters

Source
Panduro et al (in review JAERE)

References

Examples
data(hvidovre)

plotff This function plots objects generated by choose.fform or fform

Description
plots the output from fform() and choose.fform()

Usage
plotff(input)

Arguments
input A PJ-objected produced by fform or choose.fform

Author(s)
Toke Emil Panduro and Cathrine Ulla Jensen
Examples

library(PanJen)
data("hvidovre")

form<-formula(lprice ~brick+roof_tile+roof_cemen+rebuild90+rebuild00+y7+y8+y9)
PanJenArea<-fform(data=hvidovre,variable="area",base_form=form)
plotff(PanJenArea)
Index

Topic datasets
 hvidovre, 4

choose.fform, 2

fform, 3

hvidovre, 4

plotff, 5