Package ‘Pareto’

April 3, 2020

Type Package
Title The Pareto and the Piecewise Pareto Distribution
Version 1.1.5
Description Utilities for the Pareto and piecewise Pareto distribution that are useful for reinsurance pricing. In particular, the package provides a non-trivial algorithm that can be used to match the expected losses of a tower of reinsurance layers with a layer-independent collective risk model. The theoretical background of the matching algorithm and most other methods are described in Ulrich Riegel (2018) <doi:10.1007/s13385-018-0177-3>.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
VignetteBuilder knitr
Depends R (>= 2.10)
Suggests testthat, knitr, rmarkdown
URL https://github.com/ulrichriegel/Pareto
Language en-US
NeedsCompilation no
Author Ulrich Riegel [aut, cre]
Maintainer Ulrich Riegel <ulrich.riegel@gmx.de>
Repository CRAN
Date/Publication 2020-04-03 09:30:02 UTC

R topics documented:

dPareto ... 2
dPiecewisePareto ... 3
Example1_AP .. 4
Example1_EL .. 4
Density of the Pareto Distribution

Description

Calculates the density function of the Pareto distribution

Usage

dPareto(x, t, alpha, truncation = NULL)

Arguments

x
Numeric. The function evaluates the density at x.

t
Numeric. Threshold of the Pareto distribution.

alpha
Numeric. Pareto alpha.

truncation
Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
dPiecewisePareto

Value

Density function of the Pareto distribution with parameters \(t\) and \(\alpha\) evaluated at \(x\).

Examples

```r
x <- 0:10 * 1000
dPareto(x, 1000, 2)
dPareto(x, 1000, 2, truncation = 5000)
```

dPiecewisePareto
Density of the Piecewise Pareto Distribution

Description

Calculates the density function of the piecewise Pareto distribution.

Usage

```r
dPiecewisePareto(x, t, alpha, truncation = NULL, truncation_type = "lp")
```

Arguments

- **x**: Numeric. The function evaluates the density at \(x\).
- **t**: Numeric vector. Thresholds of the piecewise Pareto distribution.
- **alpha**: Numeric vector. \(\alpha[i]\) is the Pareto alpha in excess of \(t[i]\).
- **truncation**: Numeric. If truncation is not NULL and truncation > \(t\), then the Pareto distribution is truncated at truncation.
- **truncation_type**: Character. If \(\text{truncation_type} = \"wd\"\) then the whole distribution is truncated. If \(\text{truncation_type} = \"lp\"\) then a truncated Pareto is used for the last piece.

Value

Density function of the piecewise Pareto distribution with parameter vectors \(t\) and \(\alpha\) evaluated at \(x\).

Examples

```r
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
x <- 0:10 * 1000
dPiecewisePareto(x, t, alpha)
dPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "lp")
dPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "wd")
```
Example 1: Attachment Points

Description
Example data: Attachment Points

Usage
Example 1 AP

Format
An object of class numeric of length 5.

Example 1: Expected Losses

Description
Example data: Expected Losses

Usage
Example 1 EL

Format
An object of class numeric of length 5.

Local Pareto Alpha

Description
Calculates the local Pareto alpha of the normal, lognormal and gamma distribution

Usage
Local_Pareto_Alpha(x, distribution, ...)

Arguments

- `x` Numeric. Vector of thresholds at which the local Pareto alpha is calculated.
- `distribution` Character. Arguments for the selected distribution
 - 'lnorm' for lognormal distribution (arguments: meanlog, sdlog)
 - 'norm' for normal distribution (arguments: mean, sd)
 - 'gamma' for gamma distribution (arguments: shape, rate, scale)

Value

Local Pareto alpha of the selected distribution at `x`

References

Examples

```r
x <- 1:10
Local_Pareto_Alpha(x, "norm", mean = 1, sd = 5)

x <- 1:10 * 1000000
Local_Pareto_Alpha(x, "lnorm", meanlog = 1, sdlog = 5)
```

Pareto_CDF
Distribution Function of the Pareto Distribution

Description

Calculates the cumulative distribution function of a Pareto distribution. This function is deprecated. Use `pPareto` instead.

Usage

`Pareto_CDF(x, t, alpha, truncation = NULL)`

Arguments

- `x` Numeric. The function evaluates the CDF at `x`.
- `t` Numeric. Threshold of the Pareto distribution.
- `alpha` Numeric. Pareto alpha.
- `truncation` Numeric. If truncation is not `NULL` and `truncation > t`, then the Pareto distribution is truncated at `truncation`.
Value

Distribution function of the Pareto distribution with parameters \(t \) and \(\alpha \) evaluated at \(x \)

Examples

```r
x <- 0:10 * 1000
pPareto(x, 1000, 2)
pPareto(x, 1000, 2, truncation = 5000)
```

Description

Uses a Pareto distribution to derive the expected loss of a layer from the expected loss of another layer.

Usage

```r
Pareto_Extrapolation(
  Cover_1,
  AttachmentPoint_1,
  Cover_2,
  AttachmentPoint_2,
  alpha,
  ExpLoss_1 = NULL,
  truncation = NULL
)
```

Arguments

- **Cover_1**: Numeric. Cover of the layer from which we extrapolate. Use \(\text{Inf} \) for unlimited layers.
- **AttachmentPoint_1**: Numeric. Attachment point of the layer from which we extrapolate.
- **Cover_2**: Numeric. Cover of the layer to which we extrapolate. Use \(\text{Inf} \) for unlimited layers.
- **AttachmentPoint_2**: Numeric. Attachment point of the layer to which we extrapolate.
- **alpha**: Numeric. Pareto alpha used for the extrapolation.
- **ExpLoss_1**: Numeric. Expected loss of the layer from which we extrapolate. If NULL (default) then the function provides only the ratio between the expected losses of the layers.
- **truncation**: Numeric. If truncation is not NULL and \(\text{truncation} > \text{AttachmentPoint}_1 \), then the Pareto distribution is truncated at \(\text{truncation} \).
Value

The expected loss of the layer \(\text{Cover}_2 \times \text{AttachmentPoint}_2 \) given that \(\text{Cover}_1 \times \text{AttachmentPoint}_1 \) has expected loss \(\text{ExpLoss}_1 \) and assuming a (truncated) Pareto distribution with parameters \(t \) and \(\alpha \). If missing then \(\text{ExpLoss}_1 = 1 \) is assumed.

References

Examples

- `Pareto_Extrapolation(1000, 1000, 2000, 2000, 2, ExpLoss_1 = 100)`
- `Pareto_Extrapolation(1000, 1000, 2000, 2000, 2) * 100`
- `Pareto_Extrapolation(1000, 1000, 2000, 2000, 2, truncation = 5000, ExpLoss_1 = 100)`
- `Pareto_Extrapolation(1000, 1000, 2000, 2000, 2, truncation = 5000) * 100`

Pareto_Find_Alpha_btw_FQs

Pareto Alpha Between Two Frequencies

Description

Finds the Pareto alpha between two excess frequencies

Usage

```r
Pareto_Find_Alpha_btw_FQs(
  Threshold_1,
  Frequency_1,
  Threshold_2,
  Frequency_2,
  max_alpha = 100,
  tolerance = 1e-10,
  truncation = NULL
)
```

Arguments

- **Threshold_1** Numeric. Threshold 1
- **Frequency_1** Numeric. Expected frequency in excess of **Threshold_1**
- **Threshold_2** Numeric. Threshold 2
- **Frequency_2** Numeric. Expected frequency in excess of **Threshold_2**
- **max_alpha** Numeric. Upper limit for the alpha that is returned.
- **tolerance** Numeric. Accuracy of the result.
- **truncation** Numeric. If **truncation** is not **NULL** then the Pareto distribution is truncated at **truncation**.
Pareto_Find_Alpha_btw_FQ_Layer

Value
The Pareto alpha between the expected number of claims Frequency_1 excess Threshold_1 and the expected number of claims Frequency_2 excess Threshold_2.

References

Examples
Pareto_Find_Alpha_btw_FQs(1000, 1, 2000, 0.5)
Pareto_Find_Alpha_btw_FQs(1000, 1, 2000, 0.5, truncation = 5000)

Description
Finds the Pareto alpha between an excess frequency and the expected loss of a layer.

Usage
Pareto_Find_Alpha_btw_FQ_Layer(
 Threshold,
 Frequency,
 Cover,
 AttachmentPoint,
 ExpLoss,
 max_alpha = 100,
 tolerance = 1e-10,
 truncation = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Numeric. Threshold</td>
</tr>
<tr>
<td>Frequency</td>
<td>Numeric. Expected frequency in excess of Threshold</td>
</tr>
<tr>
<td>Cover</td>
<td>Numeric. Cover of the second layer.</td>
</tr>
<tr>
<td>AttachmentPoint</td>
<td>Numeric. Attachment point of the layer.</td>
</tr>
<tr>
<td>ExpLoss</td>
<td>Numeric. Expected loss of the layer.</td>
</tr>
<tr>
<td>max_alpha</td>
<td>Numeric. Upper limit for the alpha that is returned.</td>
</tr>
<tr>
<td>tolerance</td>
<td>Numeric. Accuracy of the result.</td>
</tr>
<tr>
<td>truncation</td>
<td>Numeric. If truncation is not NULL then the Pareto distribution is truncated at truncation.</td>
</tr>
</tbody>
</table>
Value

The Pareto alpha between the expected number of claims Frequency excess Threshold and the layer Cover xs AttachmentPoint with expected loss ExpLoss

References

Examples

Pareto_Find_Alpha_btw_FQ_Layer(1000, 1, 1000, 1000, 500)
Pareto_Find_Alpha_btw_FQ_Layer(1000, 1, 1000, 1000, 500, truncation = 5000)

Pareto_Alpha_Between_Two_Layers

Pareto Alpha Between Two Layers

Description

Finds the Pareto alpha between two layers

Usage

Pareto_Find_Alpha_btw_Layers(
 Cover_1,
 AttachmentPoint_1,
 ExpLoss_1,
 Cover_2,
 AttachmentPoint_2,
 ExpLoss_2,
 max_alpha = 100,
 tolerance = 1e-10,
 truncation = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover_1</td>
<td>Numeric. Cover of the first layer.</td>
</tr>
<tr>
<td>AttachmentPoint_1</td>
<td>Numeric. Attachment point of the first layer.</td>
</tr>
<tr>
<td>ExpLoss_1</td>
<td>Numeric. Expected loss of the first layer.</td>
</tr>
<tr>
<td>Cover_2</td>
<td>Numeric. Cover of the second layer.</td>
</tr>
<tr>
<td>AttachmentPoint_2</td>
<td>Numeric. Attachment point of the second layer.</td>
</tr>
</tbody>
</table>
Pareto_Layer_Mean

ExpLoss_2 Numeric. Expected loss of the second layer.
max_alpha Numeric. Upper limit for the alpha that is returned.
tolerance Numeric. Accuracy of the result.
truncation Numeric. If truncation is not NULL then the Pareto distribution is truncated at truncation.

Value

The Pareto alpha between the layer Cover_1 xs AttachmentPoint_1 with expected loss ExpLoss_1 and the layer Cover_2 xs AttachmentPoint_2 with expected loss ExpLoss_2

References

Examples

Pareto_Find_Alpha_btw_Layers(100, 100, 100, 200, 200, 50)
Pareto_Find_Alpha_btw_Layers(100, 100, 100, 200, 200, 50, truncation = 500)

Pareto_Layer_Mean

Layer Mean of the Pareto Distribution

Description

Calculates the expected loss of a Pareto distribution in a reinsurance layer

Usage

Pareto_Layer_Mean(Cover, AttachmentPoint, alpha, t = NULL, truncation = NULL)

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.
AttachmentPoint Numeric. Attachment point of the reinsurance layer.
alpha Numeric. Pareto alpha.
t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <= Attachment Point is used.
truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
Value

The expected loss of the (truncated) Pareto distribution with parameters \(t \) and \(\alpha \) in the layer \(\text{Cover} \times \text{AttachmentPoint} \)

Examples

```
Pareto_Layer_Mean(4000, 1000, 2)
Pareto_Layer_Mean(4000, 1000, alpha = 2, t = 1000)
Pareto_Layer_Mean(4000, 1000, alpha = 2, t = 5000)
Pareto_Layer_Mean(4000, 1000, alpha = 2, t = 1000, truncation = 5000)
Pareto_Layer_Mean(9000, 1000, alpha = 2, t = 1000, truncation = 5000)
```

Pareto_Layer_SM
Second Layer Moment of the Pareto Distribution

Description

Calculates the second moment of a Pareto distribution in a reinsurance layer

Usage

```r
Pareto_Layer_SM(Cover, AttachmentPoint, alpha, t = NULL, truncation = NULL)
```

Arguments

- **Cover**: Numeric. Cover of the reinsurance layer. Use `Inf` for unlimited layers.
- **AttachmentPoint**: Numeric. Attachment point of the reinsurance layer.
- **alpha**: Numeric. Pareto alpha.
- **t**: Numeric. Threshold of the Pareto distribution. If \(t \) is `NULL` (default) then \(t \) <-Attachment Point is used
- **truncation**: Numeric. If truncation is not `NULL` and truncation > \(t \), then the Pareto distribution is truncated at truncation.

Value

The second moment of the (truncated) Pareto distribution with parameters \(t \) and \(\alpha \) in the layer \(\text{Cover} \times \text{AttachmentPoint} \)

Examples

```
Pareto_Layer_SM(4000, 1000, 2)
Pareto_Layer_SM(4000, 1000, alpha = 2, t = 1000)
Pareto_Layer_SM(4000, 1000, alpha = 2, t = 5000)
Pareto_Layer_SM(4000, 1000, alpha = 2, t = 1000, truncation = 5000)
Pareto_Layer_SM(9000, 1000, alpha = 2, t = 1000, truncation = 5000)
```
Pareto_Layer_Var
Layer Variance of the Pareto Distribution

Description
Calculates the variance of a Pareto distribution in a reinsurance layer

Usage
Pareto_Layer_Var(Cover, AttachmentPoint, alpha, t = NULL, truncation = NULL)

Arguments
- **Cover**: Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.
- **AttachmentPoint**: Numeric. Attachment point of the reinsurance layer.
- **alpha**: Numeric. Pareto alpha.
- **t**: Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <- Attachment Point is used.
- **truncation**: Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.

Value
The variance of the(truncated) Pareto distribution with parameters t and alpha in the layer Cover xs AttachmentPoint

Examples
Pareto_Layer_Var(4000, 1000, 2)
Pareto_Layer_Var(4000, 1000, alpha = 2, t = 1000)
Pareto_Layer_Var(4000, 1000, alpha = 2, t = 5000)
Pareto_Layer_Var(4000, 1000, alpha = 2, t = 1000, truncation = 5000)
Pareto_Layer_Var(9000, 1000, alpha = 2, t = 1000, truncation = 5000)

Pareto_ML_Estimator_Alpha
Maximum Likelihood Estimation of the Pareto Alpha

Description
Calculates the maximum likelihood estimator of the parameter alpha of a Pareto distribution
Usage

Pareto_ML_Estimator_Alpha(
 losses,
 t,
 truncation = NULL,
 tol = 1e-07,
 max_iterations = 1000,
 alpha_min = 0,
 alpha_max = Inf
)

Arguments

- **losses**: Numeric vector. Losses that are used for the ML estimation.
- **t**: Numeric or numeric vector. Threshold of the Pareto distribution. Alternatively,
t can be a vector of same length as losses. In this case
t[i] is the reporting threshold of losses[i].
- **truncation**: Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
- **tol**: Numeric. Desired accuracy (only relevant in the truncated case).
- **max_iterations**: Numeric. Maximum number of iteration in the case truncation < Inf (only relevant in the truncated case).
- **alpha_min**: Numeric. Deprecated.
- **alpha_max**: Numeric. Deprecated.

Value

Maximum likelihood estimator for the parameter alpha of a Pareto distribution with threshold t given the observations losses

Examples

```
losses <- rPareto(100, 1000, 2)
Pareto_ML_Estimator_Alpha(losses, 1000)
losses <- rPareto(100, 1000, 2, truncation = 2000)
Pareto_ML_Estimator_Alpha(losses, 1000)
Pareto_ML_Estimator_Alpha(losses, 1000, truncation = 2000)

t <- rPareto(10000, 100, 2)
alpha <- 2
losses <- rPareto(10000, t, alpha)
Pareto_ML_Estimator_Alpha(losses, t)
losses <- rPareto(10000, t, alpha, truncation = 2 * max(t))
Pareto_ML_Estimator_Alpha(losses, t, truncation = 2 * max(t))
```
Pareto_PDF

Density of the Pareto Distribution

Description

Calculates the density function of the Pareto distribution. This function is deprecated. Use `dPareto` instead.

Usage

```r
Pareto_PDF(x, t, alpha, truncation = NULL)
```

Arguments

- `x`: Numeric. The function evaluates the density at `x`
- `t`: Numeric. Threshold of the Pareto distribution.
- `truncation`: Numeric. If `truncation` is not `NULL` and `truncation > t`, then the Pareto distribution is truncated at `truncation`.

Value

Density function of the Pareto distribution with parameters `t` and `alpha` evaluated at `x`

Examples

```r
x <- 0:10 * 1000
dPareto(x, 1000, 2)
dPareto(x, 1000, 2, truncation = 5000)
```

PiecewisePareto_CDF

Distribution Function of the Piecewise Pareto Distribution

Description

Calculates the cumulative distribution function of a Piecewise Pareto Distribution. This function is deprecated. Use `pPiecewisePareto` instead.

Usage

```r
PiecewisePareto_CDF(x, t, alpha, truncation = NULL, truncation_type = "lp")
```
Arguments

- **x**: Numeric. The function evaluates the CDF at x.
- **t**: Numeric vector. Thresholds of the piecewise Pareto distribution.
- **alpha**: Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].
- **truncation**: Numeric. If truncation is not NULL and truncation > t, then the distribution is truncated at truncation.
- **truncation_type**: Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Distribution function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at x

References

Examples

```r
# t <- c(1000, 2000, 3000)
# alpha <- c(1, 1.5, 2)
# x <- 0:10 * 1000
# pPiecewisePareto(x, t, alpha)
# pPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "lp")
# pPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "wd")
```

PiecewisePareto_Layer_Mean

Layer Mean of the Piecewise Pareto Distribution

Description

Calculates the expected loss of a piecewise Pareto distribution in a reinsurance layer

Usage

```r
PiecewisePareto_Layer_Mean(
  Cover,
  AttachmentPoint,
  t,
  alpha,
  truncation = NULL,
  truncation_type = "lp"
)
```
Arguments

Cover Numeric. Cover of the reinsurance layer.
AttachmentPoint Numeric. Attachment point of the reinsurance layer.
t Numeric vector. Thresholds of the piecewise Pareto distribution.
alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].
truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

The expected loss of the (truncated) piecewise Pareto distribution with parameter vectors t and alpha in the layer Cover xs AttachmentPoint

References

Examples

t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha)
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha, truncation = 5000)
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha, truncation = 5000, truncation_type = "lp")
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha, truncation = 5000, truncation_type = "wd")

Description

Calculates the second moment of a piecewise Pareto distribution in a reinsurance layer
Usage

PiecewisePareto_Layer_SM(
 Cover,
 AttachmentPoint,
 t,
 alpha,
 truncation = NULL,
 truncation_type = "lp"
)

Arguments

Cover Numeric. Cover of the reinsurance layer.
AttachmentPoint
 Numeric. Attachment point of the reinsurance layer.
t Numeric vector. Thresholds of the piecewise Pareto distribution.
alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].
truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

The second moment of the (truncated) piecewise Pareto distribution with parameter vectors t and alpha in the layer Cover xs AttachmentPoint

Examples

t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha, truncation = 5000)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha, truncation = 5000, truncation_type = "lp")
PiecewisePareto_Layer_SM(4000, 1000, t, alpha, truncation = 5000, truncation_type = "wd")

PiecewisePareto_Layer_Var

Layer Variance of the Piecewise Pareto Distribution

Description

Calculate the variance of a piecewise Pareto distribution in a reinsurance layer
Usage

PiecewisePareto_Layer_Var(
 Cover,
 AttachmentPoint,
 t,
 alpha,
 truncation = NULL,
 truncation_type = "lp"
)

Arguments

- **Cover**: Numeric. Cover of the reinsurance layer.
- **AttachmentPoint**: Numeric. Attachment point of the reinsurance layer.
- **t**: Numeric vector. Thresholds of the piecewise Pareto distribution.
- **alpha**: Numeric vector. *alpha[i]* is the Pareto alpha in excess of *t[i]*.
- **truncation**: Numeric. If truncation is not NULL and truncation > *t*, then the Pareto distribution is truncated at truncation.
- **truncation_type**: Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

The variance of the (truncated) piecewise Pareto distribution with parameter vectors *t* and *alpha* in the layer *Cover xs AttachmentPoint*

Examples

```r
t <- c(1000, 2000, 3000)
alPHA <- c(1, 1.5, 2)
PiecewisePareto_Layer_Var(4000, 1000, t, alpha)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha) - PiecewisePareto_Layer_Mean(4000, 1000, t, alpha)^2
PiecewisePareto_Layer_Var(4000, 1000, t, alpha, truncation = 5000)
PiecewisePareto_Layer_Var(4000, 1000, t, alpha, truncation = 5000, truncation_type = "lp")
PiecewisePareto_Layer_Var(4000, 1000, t, alpha, truncation = 5000, truncation_type = "wd")
```

PiecewisePareto_Match_Layer_Losses

Match a Tower of Expected Layers Losses

Description

Matches the expected losses of a tower of reinsurance layers using a piecewise Pareto severity
Usage

PiecewisePareto_Match_Layer_Losses(
 Attachment_Points,
 Expected_Layer_Losses,
 Unlimited_Layers = FALSE,
 Frequencies = NULL,
 FQ_at_lowest_AttPt = NULL,
 FQ_at_highest_AttPt = NULL,
 TotalLoss_Frequencies = NULL,
 minimize_ratios = TRUE,
 Use_unlimited_Layer_for_FQ = TRUE,
 truncation = NULL,
 truncation_type = "lp",
 tolerance = 1e-10,
 alpha_max = 100,
 merge_tolerance = 1e-06,
 RoL_tolerance = 1e-06
)

Arguments

Attachment_Points
 Numeric vector. Vector containing the attachment points of consecutive layers
 in increasing order

Expected_Layer_Losses
 Numeric vector. Vector containing the expected losses of layers xs the attach-
 ment points.

Unlimited_Layers
 Logical. If TRUE, then Expected_Layer_Losses[i] contains the expected loss
 of Inf xs Attachment_Points[i]. If FALSE then Expected_Layer_Losses[i]
 contains the expected loss of the layer Attachment_Points[i+1] xs Attachment_Points[i]

Frequencies
 Numeric vector. Expected frequencies excess the attachment points. If NULL
 then the function calculates frequencies.

FQ_at_lowest_AttPt
 Numerical. Expected frequency excess Attachment_Points[1]

FQ_at_highest_AttPt
 Numerical. Expected frequency excess Attachment_Points[k]

TotalLoss_Frequencies
 Numeric vector. TotalLoss_Frequencies[i] is the frequency of total losses to
 layer i (i.e. Attachment_Points[i+1] - Attachment_Points[i]) xs Attachment_Points[i].
 TotalLoss_Frequencies[i] is the frequency for losses larger than or equal
 to Attachment_Points[i+1], whereas Frequencies[i] is the frequency of
 losses larger than Attachment_Points[i]. TotalLoss_Frequencies[i] > Frequencies[i+1]
 means that there is a point mass of the severity at Attachment_Points[i+1].

minimize_ratios
 Logical. If TRUE then ratios between alphas are minimized.
Use_unlimited_Layer_for_FQ
 Logical. Only relevant if no frequency is provided for the highest attachment point by the user. If TRUE then the frequency is calculated using the Pareto alpha between the last two layers.

truncation
 Numeric. If truncation is not NULL and truncation > max(Attachment_Points), then the last Pareto piece is truncated at truncation (truncation_type = "lp").

truncation_type
 Character. Currently only truncation_type = "lp" supported. A truncated Pareto is used for the last piece.

tolerance
 Numeric. Numerical tolerance.

alpha_max
 Numerical. Maximum alpha to be used for the matching.

merge_tolerance
 Numerical. Consecutive Pareto pieces are merged if the alphas deviate by less than merge_tolerance.

RoL_tolerance
 Numerical. Consecutive layers are merged if RoL decreases less than factor \(1 - \text{RoL_tolerance}\).

Value

A list containing the following objects:

- \(t\) Numeric vector. Vector containing the thresholds for the piecewise Pareto distribution
- \(\alpha\) Numeric vector. Vector containing the Pareto alphas of the piecewise Pareto distribution
- Status Character. Information on whether the fit was successful
- \(FQ\) Numerical. Frequency in excess of the lowest threshold of the piecewise Pareto distribution

References

Examples

\[
\begin{align*}
\text{AP} & \leftarrow \text{Example1_AP} \\
\text{EL} & \leftarrow \text{Example1_EL} \\
\text{PiecewisePareto_Match_Layer_Losses}(\text{AP}, \text{EL}) \\
\text{EL_unlimited} & \leftarrow \text{rev(cumsum(rev(Example1_EL)))} \\
\text{PiecewisePareto_Match_Layer_Losses}(\text{AP}, \text{EL_unlimited}, \text{Unlimited_Layers} = \text{TRUE}) \\
\text{PiecewisePareto_Match_Layer_Losses}(\text{AP}, \text{EL}, \text{FQ_at_lowest_AttPt} = 0.5) \\
\text{Example1_FQ} & \leftarrow \text{c}(0.3, 0.15, 0.08, 0.02, 0.005) \\
\text{PiecewisePareto_Match_Layer_Losses}(\text{AP}, \text{EL}, \text{Frequencies} = \text{Example1_FQ})
\end{align*}
\]
Maximum Likelihood Estimation of the Alphas of the Piecewise Pareto Distribution

Description
Calculates the maximum likelihood estimator of the parameter vector alpha of a piecewise Pareto distribution

Usage
PiecewisePareto_ML_Estimator_Alpha(
 losses,
 t,
 truncation = NULL,
 truncation_type = "lp",
 tol = 1e-07,
 max_iterations = 1000
)

Arguments
losses Numeric vector. Losses that are used for the ML estimation.
t Numeric vector. Thresholds of the piecewise Pareto distribution.
truncation Numeric. If truncation is not NULL and truncation > max(t), then the distribution is truncated at truncation.
truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.
tol Numeric. Desired accuracy (only relevant in the truncated case).
max_iterations Numeric. Maximum number of iteration in the case truncation < Inf (only relevant in the truncated case).

Value
Maximum likelihood estimator for the parameter alpha of a Pareto distribution with threshold t given the observations losses

Examples
losses <- rPiecewisePareto(10000, t = c(100,200,300), alpha = c(1,2,3))
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300))
losses <- rPiecewisePareto(10000, t = c(100,200,300), alpha = c(1,2,3),
 truncation = 500, truncation_type = "lp")
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300))
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300),
```r
truncation = 500, truncation_type = "lp")
losses <- rPiecewisePareto(10000, t = c(100, 200, 300), alpha = c(1, 2, 3),
                         truncation = 500, truncation_type = "wd")
PiecewisePareto_ML_Estimator_Alpha(losses, c(100, 200, 300))
PiecewisePareto_ML_Estimator_Alpha(losses, c(100, 200, 300),
                         truncation = 500, truncation_type = "wd")
```
pPareto

Distribution Function of the Pareto Distribution

Description

Calculates the cumulative distribution function of a Pareto distribution

Usage

```r
pPareto(x, t, alpha, truncation = NULL)
```

Arguments

- `x` Numeric. The function evaluates the CDF at `x`.
- `t` Numeric. Threshold of the Pareto distribution.
- `alpha` Numeric. Pareto alpha.
- `truncation` Numeric. If `truncation` is not `NULL` and `truncation > t`, then the Pareto distribution is truncated at `truncation`.

Value

Distribution function of the Pareto distribution with parameters `t` and `alpha` evaluated at `x`.

Examples

```r
x <- 0:10 * 1000
pPareto(x, 1000, 2)
pPareto(x, 1000, 2, truncation = 5000)
```

pPiecewisePareto

Distribution Function of the Piecewise Pareto Distribution

Description

Calculates the cumulative distribution function of a Piecewise Pareto Distribution

Usage

```r
pPiecewisePareto(x, t, alpha, truncation = NULL, truncation_type = "lp")
```
Arguments

- **x**: Numeric. The function evaluates the CDF at x.
- **t**: Numeric vector. Thresholds of the piecewise Pareto distribution.
- **alpha**: Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].
- **truncation**: Numeric. If truncation is not NULL and truncation > t, then the distribution is truncated at truncation.
- **truncation_type**: Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Distribution function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at x

References

Examples

```r
t <- c(1000, 2000, 3000)
algebra <- c(1, 1.5, 2)
x <- 0:10 * 1000
pPiecewisePareto(x, t, algebra)
pPiecewisePareto(x, t, algebra, truncation = 5000, truncation_type = "lp")
pPiecewisePareto(x, t, algebra, truncation = 5000, truncation_type = "wd")
```

qPareto

Quantile Function of the Pareto Distribution

Description

Calculates the quantile function of a Pareto distribution

Usage

```r
qPareto(p, t, alpha, truncation = NULL)
```

Arguments

- **p**: Numeric. The function evaluates the inverse CDF at p.
- **t**: Numeric. Threshold of the piecewise Pareto distribution.
- **alpha**: Numeric. Pareto alpha.
- **truncation**: Numeric. If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
qPiecewisePareto

Value

Quantile function of the Pareto distribution with parameters `t` and `alpha`, evaluated at `p`

Examples

```r
p <- 0:10 * 0.1
tPareto(p, 1000, 2)
tPareto(p, 1000, 2, truncation = 5000)
```

qPiecewisePareto
Quantile Function of the Piecewise Pareto Distribution

Description

Calculates the quantile function of a piecewise Pareto distribution

Usage

```r
tPiecewisePareto(p, t, alpha, truncation = NULL, truncation_type = "lp")
```

Arguments

- `p`: Numeric. The function evaluates the quantile function at `p`.
- `t`: Numeric vector. Thresholds of the piecewise Pareto distribution.
- `alpha`: Numeric vector. `alpha[i]` is the Pareto alpha in excess of `t[i]`.
- `truncation`: Numeric. If `truncation` is not `NULL` and `truncation > t`, then the distribution is truncated at `truncation`.
- `truncation_type`: Character. If `truncation_type = "wd"` then the whole distribution is truncated. If `truncation_type = "lp"` then a truncated Pareto is used for the last piece.

Value

Quantile function of the piecewise Pareto distribution with parameter vectors `t` and `alpha` evaluated at `p`

Examples

```r
t <- c(1000, 2000, 3000)
alpaha <- c(1, 1.5, 2)
p <- 0:10 * 0.1
tPiecewisePareto(p, t, alpha)
tPiecewisePareto(p, t, alpha, truncation = 5000, truncation_type = "lp")
tPiecewisePareto(p, t, alpha, truncation = 5000, truncation_type = "wd")
```
rPareto

Simulation of the Pareto Distribution

Description

Generates random deviates of a Pareto distribution

Usage

rPareto(n, t, alpha, truncation = NULL)

Arguments

n Numeric. Number of observations.
t Numeric vector. Thresholds of the Pareto distributions
alpha Numeric vector. Pareto alphas of the Pareto distributions.
truncation If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation (resampled Pareto)

Value

A vector of n samples from the (truncated) Pareto distribution with parameters t and alpha

Examples

rPareto(100, 1000, 2)
rPareto(100, 1000, 2, truncation = 2000)
rPareto(5, t = c(1, 10, 100, 1000, 10000), alpha = c(1,2,4,8,16))

rPiecewisePareto

Simulation of the Piecewise Pareto Distribution

Description

Generates random deviates of a piecewise Pareto distribution

Usage

rPiecewisePareto(
n,
t,
alpha,
truncation = NULL,
truncation_type = "lp",
scale_pieces = NULL
)
Arguments

- **n**
 Numeric. Number of simulations

- **t**
 Numeric vector. Thresholds of the piecewise Pareto distribution.

- **alpha**
 Numeric vector. \(\alpha[i] \) is the Pareto alpha in excess of \(t[i] \).

- **truncation**
 Numeric. If truncation is not NULL and truncation > \(t \), then the distribution is truncated at truncation.

- **truncation_type**
 Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

- **scale_pieces**
 Numeric vector. If not NULL then the density of the \(i \)-th Pareto piece (on the interval \((t[i],t[i+1])\)) is scaled with the factor \(\text{const} \times \text{scale_pieces}[i] \) (where \(\text{const} \) is a normalization constant)

Value

A vector of \(n \) samples from the (truncated) piecewise Pareto distribution with parameter vectors \(t \) and \(\alpha \)

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
rPiecewisePareto(100, t, alpha)
rPiecewisePareto(100, t, alpha, truncation = 5000)
rPiecewisePareto(100, t, alpha, truncation = 5000, truncation_type = "lp")
rPiecewisePareto(100, t, alpha, truncation = 5000, truncation_type = "wd")
```
Index

*Topic datasets
 Example1_AP, 4
 Example1_EL, 4

dPareto, 2
dPiecewisePareto, 3

Example1_AP, 4
Example1_EL, 4

Local_Pareto_Alpha, 4

Pareto_CDF, 5
Pareto_Extrapolation, 6
Pareto_Find_Alpha_btw_FQ_Layer, 8
Pareto_Find_Alpha_btw_FQs, 7
Pareto_Find_Alpha_btw_Layers, 9
Pareto_Layer_Mean, 10
Pareto_Layer_SM, 11
Pareto_Layer_Var, 12
Pareto_ML_Estimator_Alpha, 12
Pareto_PDF, 14
PiecewisePareto_CDF, 14
PiecewisePareto_Layer_Mean, 15
PiecewisePareto_Layer_SM, 16
PiecewisePareto_Layer_Var, 17
PiecewisePareto_Match_Layer_Losses, 18
PiecewisePareto_ML_Estimator_Alpha, 21
PiecewisePareto_PDF, 22
pPareto, 23
pPiecewisePareto, 23

gPareto, 24
gPiecewisePareto, 25

rPareto, 26
rPiecewisePareto, 26