Package ‘PeakSegDP’

October 12, 2022

Maintainer Toby Dylan Hocking <toby.hocking@r-project.org>

Author Toby Dylan Hocking, Guillem Rigaill

Version 2017.08.15

License GPL-3

Title Dynamic Programming Algorithm for Peak Detection in ChIP-Seq Data

Description A quadratic time dynamic programming algorithm can be used to compute an approximate solution to the problem of finding the most likely changepoints with respect to the Poisson likelihood, subject to a constraint on the number of segments, and the changes which must alternate: up, down, up, down, etc. For more info read <http://proceedings.mlr.press/v37/hocking15.html>

``PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data” by TD Hocking et al, proceedings of ICML2015.

Suggests ggplot2 (>= 2.0), testthat, penaltyLearning

Depends R (>= 2.10)

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-08-15 21:39:42 UTC

R topics documented:

calc.grad.list ... 2
calc.loss.from.lp.list .. 2
calc.loss.list ... 2
cDPA .. 3
chr11ChIPseq .. 3
chr11first .. 4
derivs ... 6
GeomTallRect ... 6
calc.grad.list

Description

List of calc.grad functions: x, features, limits -> gradient.

Usage

"calc.grad.list"

calc.loss.from.lp.list

Description

if we have already calculated the linear predictor using fit$predict, this function can be useful.

Usage

"calc.loss.from.lp.list"

calc.loss.list

Description

List of interval regression loss functions: x, feat, lim => numeric.

Usage

"calc.loss.list"
Description

A constrained dynamic programming algorithm (cDPA) can be used to compute the best segmentation with respect to the Poisson likelihood, subject to a constraint on the number of segments, and the changes which must alternate: up, down, up, down, ...

Usage

```r
cDPA(count, weight = rep(1, length(count)), maxSegments)
```

Arguments

- `count`: Integer vector of count data to segment.
- `weight`: Data weights (normally this is the number of base pairs).
- `maxSegments`: Maximum number of segments to consider.

Author(s)

Toby Dylan Hocking, Guillem Rigaill

Examples

```r
fit <- cDPA(c(0, 10, 11, 1), maxSegments=3)
stopifnot(fit$ends[3,4] == 3)
stopifnot(fit$ends[2,3] == 1)
```

chr11ChIPseq

ChIP-seq aligned read coverage for 4 samples on a subset of chr11

Description

A ChIP-seq experiment was performed to locate the genomic positions of a histone (H3K4me3) in 2 B cell samples (McGill0091, McGill0322) and 2 T cell samples (McGill0002, McGill0004). The short sequence reads (about 100 base pairs each) were aligned to the hg19 reference genome, and the "coverage" in this data set contains the total count of aligned reads at each base pair. It also contains annotated regions determined by an expert who examined scatterplots of the coverage profiles.

Usage

```r
data("chr11ChIPseq")```
Format

A named list of 2 data.frames: regions contains annotations about which regions contain or do not contain peaks, and coverage contains the noisy signal.

Source

H3K4me3_TDH_immune chunk 5 in http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ which in turn comes from http://epigenomesportal.ca/

Examples

data(chr11ChIPseq)
library(ggplot2)
ann.colors <-
c(noPeaks="#f6f4bf",
 peakStart="#ffafaf",
 peakEnd="#ff4c4c",
 peaks="#a445ee")

if(interactive() && require(ggplot2)){

  ggplot()+
  scale_fill_manual("annotation", values=ann.colors,
                    breaks=names(ann.colors))+
  penaltyLearning::geom_tallrect(aes(xmin=chromStart/1e3, xmax=chromEnd/1e3,
                                   fill=annotation),
                                 data=chr11ChIPseq$regions, alpha=1/2)+
  theme_bw()+
  theme(panel.margin=grid::unit(0, "cm")+
        facet_grid(sample.id ~ ., scales="free")+
        geom_step(aes(chromStart/1e3, count), data=chr11ChIPseq$coverage)+
        xlab("position on chr11 (kilo base pairs)"))
}

chr11first

Counts of first base of aligned reads

Description

For 4 samples on chr11 (hg19), this data set counts the first base pair of aligned reads at each genomic position. In contrast, chr11ChIPseq counts every base pair in each read (and each read is about 100bp, so that means there is some auto-correlation in chr11ChIPseq, but not in chr11first).

Usage

data("chr11first")
**chr11first**

**Format**

A data frame with 23252 observations on the following 4 variables.

- **sample.id**: a factor with levels for each of 4 samples
- **chromStart**: integer vector: base before, on chr11
- **chromEnd**: integer vector: last base on chr11
- **count**: integer: aligned first base read counts

**Source**

H3K4me3_TDH_immune chunk 5 in http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ which in turn comes from http://epigenomesportal.ca/

**Examples**

```r
data(chr11ChIPseq)
data(chr11first)
library(ggplot2)
ann.colors <-
c(noPeaks="#f6f4bf",
 peakStart="#ffafaf",
 peakEnd="#ff4c4c",
 peaks="#a445ee")
both <- list(coverage=chr11ChIPseq$coverage, first=chr11first)
representations <- NULL
one.sample <- "McGill0322"
for(data.type in names(both)){
 one <- subset(both[[data.type]], sample.id==one.sample)
 representations <- rbind(representations, data.frame(data.type, one))
}
one.sample.regions <- subset(
 chr11ChIPseq$regions, sample.id==one.sample)

if(interactive() && require(ggplot2)){
 ggplot()+
 scale_fill_manual("annotation", values=ann.colors,
 breaks=names(ann.colors))+
 penaltyLearning::geom_tallrect(aes(xmin=chromStart/1e3, xmax=chromEnd/1e3,
 fill=annotation),
 data=one.sample.regions, alpha=1/2)+
 theme_bw()+
 theme(panel.margin=grid::unit(0, "cm"))+
 facet_grid(data.type ~ ., scales="free")+
 geom_step(aes(chromStart/1e3, count), data=representations)+
 xlab("position on chr11 (kilo base pairs)")
}
```
### derivs

**Description**

List of functions, each a derivative of a phi loss.

**Usage**

"derivs"

---

### GeomTallRect

**Description**

`ggproto` object for `geom_tallrect`

**Usage**

"GeomTallRect"

---

### getPath

**Description**

Extract endpoint matrix from cDPA result.

**Usage**

`getPath(A)`

**Arguments**

- `A`

**Author(s)**

Toby Dylan Hocking, Guillem Rigail
Several ChIP-seq profiles, some of which have few data points

Description

These data are used to test the PeakSegDP algorithm, to make sure it gives sensible results, even when there are few data.

Usage

data("H3K36me3.AM.immune.19")

Format

Named list of 21 data.frames, each with columns chromStart, chromEnd, count.

Source

http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ data set H3K36me3_AM_immune, chunk id 19

8 profiles of H3K36me3 data

Description

these data caused a bug in multiSampleSegHeuristic.

Usage

data("H3K36me3.TDH.other.chunk3.cluster4")

Format

A data frame with 36914 observations on the following 4 variables.

sample.id  a factor with 8 levels
chromStart integer vector
chromEnd integer vector
count integer vector

Source

http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ data set H3K36me3_TDH_other chunk 3.
### H3K4me3.TDH.immune.chunk12.cluster4

*Histone ChIP-seq data, 26 samples, chr1 subset*

#### Description

26 samples, each with the same overlapping peak(s).

#### Usage

```r
data("H3K4me3.TDH.immune.chunk12.cluster4")
```

#### Format

A data frame.

#### Source

http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db H3K4me3_TDH_immune data set, chunk.id=12.

---

### PeakSegDP

#### Description

Compute the PeakSeg model on a data.frame of compressed sequence reads.

#### Usage

```r
PeakSegDP(compressed, maxPeaks)
```

#### Arguments

- `compressed` : data.frame with columns chromStart, chromEnd, count.
- `maxPeaks` : maximum number of peaks to consider.

#### Author(s)

Toby Dylan Hocking, Guillem Rigaill
Examples

```r
library(PeakSegDP)
data(chr11ChIPseq, envir=environment())
one <- subset(chr11ChIPseq$coverage, sample.id=="McGill0002")[10000:12000,]
fit <- PeakSegDP(one, 3L)

if(interactive() && require(ggplot2)){
 ggplot()+
 geom_step(aes(chromStart/1e3, count), data=one)+
 geom_segment(aes(chromStart/1e3, mean, xend=chromEnd/1e3, yend=mean),
 data=fit$segments, color="green")+
 geom_segment(aes(chromStart/1e3, 0, xend=chromEnd/1e3, yend=0),
 data=subset(fit$segments, status=="peak"), size=3, color="deepskyblue")+
 theme_bw()+
 theme(panel.margin=grid::unit(0, "cm"))+
 facet_grid(peaks ~ ., scales="free", labeller=function(df){
 s <- ifelse(df$peaks==1, "", "s")
 df$peaks <- paste0(df$peaks, " peak", s)
 df
 })
}
```

---

**phi.list**

**phi list**

**Description**

List of functions, each a phi loss.

**Usage**

"phi.list"

---

**PoissonLoss**

**PoissonLoss**

**Description**

Compute the weighted Poisson loss function, which is \( \text{seg.mean} - \text{count} \times \log(\text{seg.mean}) \). The edge case is when the mean is zero, in which case the probability mass function takes a value of 1 when the data is 0 (and 0 otherwise). Thus the log-likelihood of a maximum likelihood segment with mean zero must be zero.
Usage

PoissonLoss(count, seg.mean, weight = 1)

Arguments

count
seg.mean
weight

Author(s)

Toby Dylan Hocking, Guillem Rigaill

Examples

PoissonLoss(1, 1)
PoissonLoss(0, 0)
PoissonLoss(1, 0)
PoissonLoss(0, 1)

Description

List of regression functions: features, limits -> list.

Usage

"regression.funs"
Index

* datasets
  chr11ChIPseq.3
  chr11first.4
  H3K36me3.AM.immune.19.7
  H3K36me3.TDH.other.chunk3.cluster4.7
  H3K4me3.TDH.immune.chunk12.cluster4.8

calc.grad.list.2
calc.loss.from.lp.list.2
calc.loss.list.2
cDPA.3
chr11ChIPseq.3
chr11first.4
derivs.6
GeomTallRect.6
getPath.6
H3K36me3.AM.immune.19.7
H3K36me3.TDH.other.chunk3.cluster4.7
H3K4me3.TDH.immune.chunk12.cluster4.8

PeakSegDP.8
phi.list.9
PoissonLoss.9

regression.funs.10