Package ‘Peaks’

February 19, 2015

Version 0.2
Date 2008-04-04
Title Peaks
Author Miroslav Morhac
Maintainer M.Kondrin <mkondrin@hppi.troitsk.ru>
Depends R (>= 2.5)
Description Spectrum manipulation: background estimation, Markov smoothing, deconvolution and peaks search functions. Ported from ROOT/Tspectrum class.
License LGPL
Repository CRAN
Date/Publication 2012-10-29 08:57:26
NeedsCompilation yes

R topics documented:

SpectrumBackground 1
SpectrumDeconvolution 3
SpectrumSearch 4
SpectrumSmoothMarkov 6

Index

8

Description

This function calculates background spectrum from source spectrum and separates useful information (peaks) from useless information (background).
Usage

SpectrumBackground(y, iterations=100, decreasing=FALSE, order=c("2", "4", "6", "8"),
 smoothing=FALSE, window=c("3", "5", "7", "9", "11", "13", "15"), compton=FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>the vector of source spectrum</td>
</tr>
<tr>
<td>iterations</td>
<td>maximal width of clipping window</td>
</tr>
<tr>
<td>decreasing</td>
<td>direction of change of clipping window. If TRUE the window is decreasing,</td>
</tr>
<tr>
<td></td>
<td>otherwise the window is increasing.</td>
</tr>
<tr>
<td>order</td>
<td>order of clipping filter</td>
</tr>
<tr>
<td>smoothing</td>
<td>logical variable whether the smoothing operation in the estimation of</td>
</tr>
<tr>
<td></td>
<td>background will be included</td>
</tr>
<tr>
<td>window</td>
<td>width of smoothing window</td>
</tr>
<tr>
<td>compton</td>
<td>logical variable whether the estimation of Compton edge (step-like feature</td>
</tr>
<tr>
<td></td>
<td>at the peaks positions) will be included</td>
</tr>
</tbody>
</table>

Details

Method is based on Sensitive Nonlinear Iterative Peak (SNIP) clipping algorithm.
New value in the channel i is calculated (in the case of second-order clipping filter) with formula:

$$v_p(i) = \min\{v_{p-1}(i), (v_{p-1}(i + p) + v_{p-1}(i - p))/2\}$$

Value

Numeric vector with background profile.

Author(s)

Miroslav Morhác

References

C. G Ryan et al.: SNIP, a statistics-sensitive background treatment for the quantitative analysis of
PIXE spectra in geoscience applications. NIM, B34 (1988), 396-402.

M. Morhác, J. Kliman, V. Matoucek, M. Veselský, I. Turzo.: Background elimination methods for

431-434.
Description

This function is used to strip-off known instrumental function from source spectrum. It is achieved by deconvolution of source spectrum according to response spectrum using Gold or Richardson-Lucy algorithms. Both methods provides less oscillating solutions than Fourier or VanCittert algorithms.

Usage

\[
\text{SpectrumDeconvolution}(y, \text{response}, \text{iterations}=10, \text{repetitions}=1, \\
\quad \text{boost}=1.0, \text{method}=c(\text{"Gold"}, \text{"RL"}))
\]

Arguments

- **y**: numeric vector of source spectrum
- **response**: vector of response spectrum. Its length should be less or equal the length of y
- **iterations**: number of iterations (parameter L in the Gold deconvolution algorithm) between boosting operations
- **repetitions**: number of repetitions of boosting operations. It must be greater or equal to one. So the total number of iterations is repetitions*iterations
- **boost**: boosting coefficient/exponent. Applies only if repetitions is greater than one. Recommended range [1..2].
- **method**: method selected for deconvolution. Either Gold or Richardson-Lucy

Details

Both methods search iteratively for solution of deconvolution problem

\[
y(i) = \sum_{j=1}^{n} h(i-j)x(j) + e(i)
\]

in the form

\[
x^{(k)}(i) = M^{(k)}(i)x^{(k-1)}(i)
\]

For Gold method:

\[
M^{(k)}(i) = \frac{x^{(k-1)}(i)}{\sum_{j=1}^{n} h(i-j)x^{(k-1)}(j)}
\]

For Richardson-Lucy:
\[M^{(k)}(i) = \sum_{l=0}^{n} h(i - l) \frac{x^{(k-1)}(l)}{\sum_{j=1}^{n} h(l - j) x^{(k-1)}(j)} \]

Boosting is the exponentiation of iterated value with boosting coefficient/exponent. It is generally improve stability.

Value

Numeric vector of the same length as \(y \) with deconvoluted spectrum.

Author(s)

Miroslav Morháč

References

Abreu M.C. et al., A four-dimensional deconvolution method to correct NA38 experimental data, NIM A 405 (1998) 139.

SpectrumSearch

Automatical identification of the peaks in spectrum with the presence of the continuous background and statistical fluctuations - noise

Description

This function searches for peaks in source spectrum. It is based on deconvolution method. First the background is removed (if desired), then Markov spectrum is calculated (if desired), then the response function is generated according to given sigma and deconvolution is carried out.

Usage

```
SpectrumSearch(y, sigma=3.0, threshold=10.0, background=FALSE, 
iterations=13, markov=FALSE, window=3)
```
Arguments

- **y**: numeric vector of source spectrum
- **sigma**: sigma of searched peaks
- **threshold**: threshold value in % for selected peaks, peaks with amplitude less than \(\text{threshold} \times \frac{\text{highest_peak}}{100} \) are ignored
- **background**: Remove background. Logical variable, set to TRUE if the removal of background before deconvolution is desired
- **iterations**: number of iterations in deconvolution operation
- **markov**: logical variable, if it is TRUE, first the source spectrum is replaced by new spectrum calculated using Markov chains method.
- **window**: averaging window of searched peaks, applies only for Markov smoothing

Details

Algorithm is straightforward. The function removes background and smooths (if requested) source vector \(y \), then deconvolves it using Gaussian with \(\sigma \) as response vector and after that searches for peaks in deconvoluted vector which are above \(\text{threshold} \).

Value

List with two vectors:

- **y**: Deconvoluted source vector
- **pos**: Indexes of found peaks in \(y \) spectrum

Author(s)

Miroslav Morháč

References

See Also

- `spectrumSmoothMarkov`, `spectrumBackground`, `spectrumDeconvolution`
SpectrumSmoothMarkov

Suppression of statistical fluctuations with discrete Markov chain.

Description

This function calculates smoothed spectrum from source spectrum based on Markov chain method.

Usage

SpectrumSmoothMarkov(y, window=3)

Arguments

- **y**
 numeric vector of source spectrum

- **window**
 width of averaging smoothing window

Details

The algorithm is based on discrete Markov chain, which has very simple invariant distribution:

\[
U_2 = \frac{p_{1,2}}{p_{2,1}} U_1
\]

\[
U_3 = \frac{p_{2,3}}{p_{3,2}} U_2 U_1
\]

\[\vdots\]

\[
U_n = \frac{p_{n-1,n}}{p_{n,n-1}} U_{n-1} \ldots U_2 U_1
\]

and \(U_1\) being defined from the normalization condition:

\[
\sum_{i=1}^{n} U_i = 1
\]

\(n\) is the length of the smoothed spectrum.

The probability of the change of the peak position from channel \(i\) to the channel \(i+1\) is:

\[
p_{i,i\pm1} = A_i \sum_{k=1}^{m} \exp \left(\frac{y(i \pm k) - y(i)}{y(i \pm k) + y(i)} \right)
\]

where \(A_i\) is the normalization constant so that:

\[
p_{i,i-1} + p_{i,i+1} = 1
\]

and \(m\) is a width of smoothing window.
Value

Numeric vector with smoothed spectrum.

Author(s)

Miroslav Morhác

References

Index

SpectrumBackground, 1, 5
SpectrumDeconvolution, 3, 5
SpectrumSearch, 4
SpectrumSmoothMarkov, 5, 6