Package ‘PesticideLoadIndicator’

October 24, 2022

Title Computes Danish Pesticide Load Indicator

Version 1.3.1

Description Computes the Danish Pesticide Load Indicator as described in Kudsk et al. (2018) [doi:10.1016/j.landusepol.2017.11.010] and Moehring et al. (2019) [doi:10.1016/j.scitotenv.2018.07.287] for pesticide use data. Additionally offers the possibility to directly link pesticide use data to pesticide properties given access to the Pesticide properties database (Lewis et al., 2016) [doi:10.1080/10807039.2015.1133242].

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown

Imports readxl, stringr, magrittr, rlang, dplyr

VignetteBuilder knitr

NeedsCompilation no

Author Niklas Moehring [aut, cre] (<https://orcid.org/0000-0003-0292-4402>),
 Leonie Vidensky [aut],
 Robert Finger [aut],
 Per Kudsk [aut],
 Lise Nistrup Jørgensen [aut],
 Jens Erik Ørum [aut],
 Uwe Schmitt [ctb]

Maintainer Niklas Moehring <niklas.moehring@mtec.ethz.ch>

Repository CRAN

Date/Publication 2022-10-24 16:27:57 UTC

R topics documented:

- check_products_column_names .. 2
- check_substance_column_names 2
- compute_pesticide_load_indicator 3
- compute_risk_score .. 5
check_substance_column_names

Check if column names of applied pesticide products dataframe are valid

Description
checks for valid column names and stops execution if problems are detected

Usage
check_substance_column_names(substances)

Arguments
substances Dataframe describing active ingredients of the applied pesticide products.

Value
No return value

check_products_column_names

Check if column names of applied pesticide products dataframe are valid

Description
checks for valid column names and stops execution if problems are detected

Usage
check_products_column_names(products)

Arguments
products Dataframe with raw pesticide application data.

Value
No return value
compute_pesticide_load_indicator

Description

Compute Pesticide Load Indicator with user supplied information on pesticide properties

Usage

compute_pesticide_load_indicator(substances, products)

Arguments

substances Dataframe describing active ingredients of the applied pesticide products, including their ecotoxicity, fate and human health properties.
products Dataframe with raw pesticide application data.

Value

Dataframe with pesticide indicators for each pesticide application indicated in the products dataframe. Computes Pesticide Load Indicator (L) and its subindicators: The Human Health Load (HL), Eco-toxicity Load (TL) and Fate Load (FL). If standard dosages are provided the Standard Treatment Index (STI) and the Pesticide Load Index (LI=STI*L) are also computed.

Examples

Not run:
A) Compute Pesticide Load indicator for a complete database
load the data frame containing the pesticide use data.
products_user <- products.load()
load the (user-supplied) data frame with detailed information on used pesticides.
substances_user <- substances.load()

Compute the Pesticide Load Indicator and its sub-indicators using the user supplied data.
indicators_user <- compute_pesticide_load_indicator(substances = substances_user,
products= products_user)

B) Compute Pesticide Load Indicator starting from basic data on products used
Add properties of pesticides with match_ppdb()

Step1: load the data frame containing the basic pesticide use data.
products_basic <- products.load()[,c("product","crop","standard.dosage","formula")]

Step 2: Add information on the year in which the product is used.
(not necessary if all data is before 2013 – then just insert a dummy year > 2013)

Step 3: Load the (user-supplied) dataframe with basic information on used pesticides
substances_basic <- substances.load()[,c("substance","product","concentration")]

Step 4: Add the CAS number of each active ingredient to link to the Pesticide Properties database.
substances_basic$CAS.number <- c("94361-06-5","141517-21-7","111988-49-9","467-69-6",
 "1918-00-9","94-74-6","21087-64-9","142459-58-3")

Step 5: Add the Load factors as defined in the Danish Pesticide Load indicator.
These values are supplied in the package.
Alternatively supply own values for the Load factor.
for (i in 1:length(Load.factors)){
 substances_basic[,Load.factors[i]] <- rep(times=dim(substances_basic)[[1]],
 substances.load()[1,Load.factors[i]])
}

Step 6: Add pesticide properties from the PPDB using the match_ppdb() function
Indicate the folder containing the "General", "Fate", "Human" and "Ecotox" tables of the PPDB.
Excel files (under the exact same name, e.g. Human.xlsx) are required.
Attention, a licensed access to the PPDB (Lewis et al., 2016) is required.
Note that the "Fate" table should include a column indicating the "SCI.GROW" values.
folder <- "path"
matched_data <- match.ppdb (substances=substances_basic, products=products_basic,
 folder=folder, healthrisk_off=TRUE)
products_complete<- matched_data[[1]]
substances_complete<- matched_data[[2]]

Step 7 (optional): change reference values in the substances_complete data_frame if required.

Step 8: Supply the sum of risk scores based on the product label to compute the Human Health Load.
Add the reference value for the Human Health Load
products_complete$sum.risk.score <- c(150,25,20,130)
products_complete$reference.sum.risk.scores <- 350

Step 9: Compute the Pesticide Load Indicator and its sub-indicators
indicators_user <- compute_pesticide_load_indicator(substances = substances_complete,
 products= products_complete)
Note that from version 1.3.1 on, the optional Pesticide Load Index
is computed by first standardizing the Pesticide Load with the standard dosage.

End (Not run)
compute_risk_score

Calculates the sum of risk scores from a list of H-phrases and expands the table

Description

Calculates the sum of risk scores from a list of H-phrases and expands the table.

Usage

```r
compute_risk_score(table, var_name)
```

Arguments

- `table`: Dataframe with H-phrases on product level.
- `var_name`: Name of the variable that contains the information (string) on H-phrases. For example "H317; H411" or "H410, H411".

Value

Adds a variable indicating the sum of risk scores needed to compute the Pesticide Load Indicator. Check national pesticide databases for information on product labels of pesticides (information on H-phrases of each product).

default.load.factors

Default load factors

Description

Default load factors.

Usage

```r
default.load.factors
```

Format

An object of class `list` of length 14.
match.ppdb

Expend tables with information on ecotoxicity, fate (and human health) properties from PPDB

Description

Expend tables with information on ecotoxicity, fate (and human health) properties from PPDB

Usage

match.ppdb(substances, products, folder, healthrisk_off = TRUE)

Arguments

- substances: Dataframe describing active ingredients of the applied pesticide products and their CAS number.
- products: Dataframe with raw pesticide application data.
- folder: Folder with exported xlsx files from PPDB containing information on active ingredient properties.
- healthrisk_off: Compute the Human Health risk sum score from the PPDb (default off).

Value

Adds Ecotoxicity and Fate properties of active substances needed to compute the Pesticide Load Indicator to user-provided substance and product data frames. Properties are based on information from the Pesticide Properties Database (PPDB), which has to be provided by the user in Excel format (license required). Note that the function can optionally also retrieve the sum of risk scores for Human Health from the PPDB, based on active ingredient-level risk phrases in the PPDB. This is not recommended. Best practice is to compute the sum of risk scores based on risk phrases of the respective pesticide product (see Kudsk et al., 2018 for weighing of respective risk phrases). Product label information cannot be retrieved from the PPDB as labels might be country-specific. Check national pesticide databases for this information. Note that you have to add the reference value for sum.risk.scores, as follows, if you select healthrisk_off=TRUE: products$reference.sum.risk.scores <- 300

products.load

load included products.xlsx file

Description

load included products.xlsx file

Usage

products.load()
products.path

Value

products.xlsx file as data.frame

products.path
path to includedexamples products.xlsx file

Description

path to includedexamples products.xlsx file

Usage

products.path()

Value

path to products.xlsx file

required_columns_products

Computing the Pesticide Load Indicator for pesticide application data

The provided functions will compute the Pesticide Load Indicator (PLI) as described in Kudsk et al. (2018) for pesticide application data provided by the user. Computing the PLI requires information on applied pesticides in a table format, as well as information on fate, ecotoxicity and human health properties of applied pesticide products, as provided in the Pesticide Properties Database (PPDB) of the University of Hertfordshire. See below for a detailed description. The PLI can either be computed using user supplied information on pesticide properties or by automatically including the information based on the PPDB. Access to the PPDb requires a license - see http://sitem.herts.ac.uk/aeru/ppdb/.

Description

Computing the Pesticide Load Indicator for pesticide application data

The provided functions will compute the Pesticide Load Indicator (PLI) as described in Kudsk et al. (2018) for pesticide application data provided by the user. Computing the PLI requires information on applied pesticides in a table format, as well as information on fate, ecotoxicity and human health properties of applied pesticide products, as provided in the Pesticide Properties Database (PPDB) of the University of Hertfordshire. See below for a detailed description. The PLI can either be computed using user supplied information on pesticide properties or by automatically including the information based on the PPDB. Access to the PPDb requires a license - see http://sitem.herts.ac.uk/aeru/ppdb/.
substances.path

Usage
required_columns_products

Format
An object of class character of length 5.

substances.load

| Load included substances.xlsx file |

Description
load included substances.xlsx file

Usage
substances.load()

Value
substances.xlsx file as data.frame

substances.path

| Path to included examples substances.xlsx file |

Description
path to included examples substances.xlsx file

Usage
substances.path()

Value
path to substances.xlsx file
Index

* datasets
 default.load.factors, 5
 required_columns_products, 7

check_products_column_names, 2
check_substance_column_names, 2
compute_pesticide_load_indicator, 3
compute_risk_score, 5

default.load.factors, 5

match.ppdb, 6

products.load, 6
products.path, 7

required_columns_products, 7

substances.load, 8
substances.path, 8