Package ‘Phase123’

April 25, 2019

Type Package
Title Simulating and Conducting Phase 123 Trials
Version 2.1
Date 2019-4-25
Author Andrew G Chapple
Maintainer Andrew G Chapple <achapp@lsuhsc.edu>
Description Contains three simulation functions for implementing the entire Phase 123 trial and the separate Eff-Tox and Phase 3 portions of the trial, which may be beneficial for use on clusters. The functions AssignEffTox() and RandomizeEffTox() assign doses to patient cohorts during phase 12 and Reoptimize() determines the optimal dose to continue with during Phase 3. The functions ReturnMeansAgent() and ReturnMeanControl() gives the true mean survival for the agent doses and control and ReturnOCS() gives the operating characteristics of the design.

License GPL-2
Encoding UTF-8
LazyData true
Imports Rcpp (>= 0.12.9), survival, stats
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.1.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-04-25 17:50:04 UTC

R topics documented:

AssignEffTox ... 2
EFFTOX ... 3
PieceMCMC .. 4
RandomEffTox ... 5
Reoptimize ... 6
Reoptimize1 ... 8
AssignEffTox

Determines the optimal dose to assign the next patient cohort.

Description

This function returns the optimal acceptable dose number to assign the next patient cohort or stops the trial if no dose is deemed acceptable.

Usage

AssignEffTox(YE, YT, Doses, Dose, DosesTrialed, Hypermeans, Hypervars, Contour, PiLim, ProbLim, B)

Arguments

YE Vector containing observed efficacy indicators.
YT Vector containing observed toxicity indicators.
Doses Vector containing numbered Doses of patients in trial.
Dose Vector containing the standardized doses considered.
DosesTrialed Binary vector corresponding to which doses have been tried.
Hypermeans Vector containing prior hypermeans of length 6 for Eff-Tox parameters.
Hypervars Vector containing prior hypervariances of length 6 for Eff-Tox parameters.
Contour Vector containing 4 entries used to make the desireability function. Contour[1] contains a desired toxicity probability given efficacy, Countour[2] contains a desired efficacy probability given toxicity, and (Contour[3],Contour[4]) is an equally desireable pair of efficacy and toxicity probabilities that are non-zero or one.
PiLim Vector of length two with PiLim[1] containing the acceptable lower limit on efficacy probability and PiLim[2] containing the acceptable upper limit on toxicity probability.
B Number of iterations to perform in the MCMC.
Value

The optimal dose level to administer the next patient cohort.

Examples

```r
## Doses, YE, YT
Doses = c(1,1,1,2,2,2,1,1,1,3,3,3,1,1,1,2,2,2)
YE = c(0,0,1,1,1,0,0,0,0,1,1,1,0,0,1,1,1,0)
YT = c(0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0)
## Vector of Numerical Doses
Dose = c(1,2,3,3.5,5)
Dose=(Dose-mean(Dose))/sd(Dose)
## Five doses, but only 3 tried so we have
Doses Tried = c(1,1,1,0,0)
## Contour Vector
Contour = c(.35, .75, 7, 4)
## Hypermeans
Hypermeans = c(.022, 3.45, 0, -4.23, 3.1, 0)
Hypervars = c(2.6761, 2.6852, .2, 3.1384, 3.1165, 1)
Hypervars = Hypervars**2
## Acceptability Criteria
P1Lim = c(.3, .4)
ProbLim = c(.1, .1)
## Number of iterations
B = 2000
AssignEffTox(YE, YT, Doses, Dose, Doses Tried, Hypermeans, Hypervars, Contour, P1Lim, ProbLim, B)
```

EFFTOX

Obtains estimated posterior probabilities of the four outcomes of (YE,YT) for each dose.

Description

This function is used in Reoptimize, SimPhase123 and SimPhase3, here we estimate the mixture probabilities over the four outcomes for efficacy and toxicity.

Usage

```r
EFFTOX(YE, YT, Doses, Dose, Hypermeans, Hypervars, B)
```

Arguments

- **YE** Vector containing observed efficacy indicators.
- **YT** Vector containing observed toxicity indicators.
- **Doses** Vector containing Standardized doses of patients in trial.
- **Dose** Vector containing the standardized doses considered.
- **Hypermeans** Vector containing prior hypermeans of length 6 for Eff-Tox parameters.
- **Hypervars** Vector containing prior hypervariances of length 6 for Eff-Tox parameters.
- **B** Number of iterations to perform in the MCMC.
Value

The posterior probability matrix for the events (YE, YT) in each row corresponding to a dose level.

Examples

```r
# Vector of Numerical Doses
Dose = c(1,2,3,5)
Doses=Dose[1:5]

# Hypermeans
Hypermeans = c(0.0,0.1,0.2,0.3)

# Hypervars
Hypervars = c(1.0,1.1,1.2,1.3)

EFTOX(YE, YT, Doses, Hypermeans, Hypervars)
```

Description

This function performs MCMC with Metropolis-Hastings-Green steps for the baseline hazard function and is used in the functions Reoptimize, SimPhase123 and SimPhase3.

Usage

```r
PieceMCMC(Y, I, YE, YT, Doses, Dose, B, prob, MaxObs)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Patient survival or followup times.</td>
</tr>
<tr>
<td>I</td>
<td>Patient event indicators.</td>
</tr>
<tr>
<td>YE</td>
<td>Vector of indicators for patient efficacy.</td>
</tr>
<tr>
<td>YT</td>
<td>Vector of indicators for patient toxicity.</td>
</tr>
<tr>
<td>Doses</td>
<td>Vector of standardized doses given to patients.</td>
</tr>
<tr>
<td>Dose</td>
<td>Vector of standardized doses considered in trial.</td>
</tr>
<tr>
<td>B</td>
<td>Number of iterations to perform in MCMC.</td>
</tr>
<tr>
<td>prob</td>
<td>length(Doses) X 4 matrix containing the estimated posterior probabilities for each dose and each (Efficacy, Toxicity) outcomes.</td>
</tr>
<tr>
<td>MaxObs</td>
<td>length(Doses) X 4 matrix containing the maximum observed survival time we want to evaluate the means to.</td>
</tr>
</tbody>
</table>
Value

Returns a list containing a matrix of posterior means for each dose, regression coefficients in the cox models, locations of the split points, log hazard heights on each interval, and the number of intervals in the baseline hazard.

Examples

```r
n=100
Y=rep(1,1)
I = rbinom(n,1,9)
YE = rbinom(n,1,5)
YT = rbinom(n,1,5)
Dose = c(1,2,3,4,5)
Dose=(Dose-mean(Dose))/sd(Dose)
Doses = sample(1:5,n,replace=TRUE)
Doses=Dose[Doses]
B=2000
MaxObs = matrix(rep(0,length(Dose)*4),nrow=4)
prob=matrix(rep(0,length(Dose)*4),ncol=4)
prob=prob+1/4
MaxObs=MaxObs+max(Y)
G=PieceMCMC(Y,I,YE,YT,Doses,Dose,B,prob,MaxObs)
```

RandomEffTox

Randomizes Eff-Tox dose proportional to posterior desireability scores.

Description

This function returns a random acceptable dose number to assign the next patient cohort or stops the trial if no dose is deemed acceptable.

Usage

```r
RandomEffTox(YE, YT, Doses, Dose, DosesTried, Hypermeans, Hypervars, Contour, PiLim, ProbLim, B)
```

Arguments

- `YE` Vector containing observed efficacy indicators.
- `YT` Vector containing observed toxicity indicators.
- `Doses` Vector containing numbered Doses of patients in trial.
- `Dose` Vector containing the standardized doses considered.
- `DosesTried` Binary vector corresponding to which doses have been tried.
- `Hypermeans` Vector containing prior hypermeans of length 6 for Eff-Tox parameters.
- `Hypervars` Vector containing prior hypervariances of length 6 for Eff-Tox parameters.
Reoptimize

Contour Vector containing 4 entries used to make the desireability function. Contour[1] contains a desired toxicity probability given efficacy, Contour[2] contains a desired efficacy probability given toxicity, and (Contour[3],Contour[4]) is an equally desireable pair of efficacy and toxicity probabilities that are non-zero or one.

PiLim Vector of length two with PiLim[1] containing the acceptable lower limit on efficacy probability and PiLim[2] containing the acceptable upper limit on toxicity probability.

B Number of iterations to perform in the MCMC.

Value A random dose level to administer the next patient cohort.

Examples

```r
# Doses, YE,YT
Doses= c(1,1,1,2,2,2,1,1,1,3,3,1,1,1,2,2,2)
YE = c(0,0,1,1,1,0,0,0,0,1,1,1,0,0,1,1,1)
YT=c(0,0,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0)
# Vector of Numerical Doses
Dose = c(1,2,3,3,5,5)
Dose=(Dose-mean(Dose))/sd(Dose)
## Five doses, but only 3 tried so we have
DosesTried=c(1,1,1,0,0)
## Contour Vector
Contour = c(.35, .75,.7,.4)
## Hypermeans
Hypermans = c(.022, 3.45,0,-4.23,3.1,0)
Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)
Hypervars=Hypervars^2
## Acceptability Criteria
PiLim = c(.3,.4)
ProbLim=c(.1,.1)
## Number of iterations
B=2000
RandomEffTox(YE,YT, Doses, Dose, DosesTried, Hypermans, Hypervars, Contour, PiLim, ProbLim, B )
```

Reoptimize Gives the Optimal Dose for enrolling next patient cohort.

Description This function returns the optimal dose number to assign the next patient cohort or stops the trial if no dose is deemed acceptable.
Reoptimize

Usage

Reoptimize(Y, I, YE, YT, Doses, Dose, Hypermeans, Hypervars, B)

Arguments

Y Vector containing observed patient survival or follow up times.
I Vector indicating whether each patient experienced an event.
YE Vector containing observed efficacy indicators.
YT Vector containing observed toxicity indicators.
Doses Vector containing standardized doses of patients in trial.
Dose Vector containing the standardized doses considered.
Hypermeans Vector containing prior hypermeans of length 6 for Eff-Tox parameters.
Hypervars Vector containing prior hypervariances of length 6 for Eff-Tox parameters.
B Number of iterations to perform in the MCMC.

References

Examples

```r
##Doses, YE, YT
Doses= c(1,1,1,2,2,2,1,1,3,3,3,1,1,2,2,2)
YE = c(0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,1,0)
YT=c(0,0,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0)
Y=rexp(length(YE))
I=rbinom(length(YE),1,.9)
##Vector of Numerical Doses
Dose = c(1,2,3,3.5,5)
Dose=(Dose-mean(Dose))/sd(Dose)
##Hypermeans for Eff-Tox
Hypermeans = c(.022,3.45,0,-4.23,3.1,0)
Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)
Hypervars=Hypervars^2
###Number of iterations
B=20000
Reoptimize(Y,I, YE, YT, Doses, Dose, Hypermeans, Hypervars, B)
```
Reoptimize1

Gives the Optimal Dose for enrolling next patient cohort. Used in the SimPhase123 function.

Description

This function returns the optimal dose number to assign the next patient cohort or stops the trial if no dose is deemed acceptable.

Usage

Reoptimize1(Y, I, YE, YT, Doses, Dose, Hypermeans, Hypervars, B)

Arguments

- **Y** Vector containing observed patient survival or follow up times.
- **I** Vector indicating whether each patient experienced an event.
- **YE** Vector containing observed efficacy indicators.
- **YT** Vector containing observed toxicity indicators.
- **Doses** Vector containing standardized doses of patients in trial.
- **Dose** Vector containing the standardized doses considered.
- **Hypermeans** Vector containing prior hypermeans of length 6 for Eff-Tox parameters.
- **Hypervars** Vector containing prior hypervariances of length 6 for Eff-Tox parameters.
- **B** Number of iterations to perform in the MCMC.

References

Examples

```r
## Doses, YE, YT
Doses= c(1,1,1,2,2,2,1,1,1,3,3,3,1,1,1,2,2,2)
YE = c(0,0,1,1,1,0,0,0,0,1,1,1,0,0,1,1,1,0)
YT=c(0,0,0,1,1,0,1,0,0,1,1,1,0,0,1,1,1,0)
Y=rexp(length(YE))
I=rbinom(length(YE),1,.9)
## Vector of Numerical Doses
Dose = c(1,2,3,3.5,5)
Dose=(Dose-mean(Dose))/sd(Dose)
## Hypermeans for Eff-Tox
Hypermeans = c(.022,3.45,0,-.23,3.1,0)
Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)
Hypervars=Hypervars^2
## Number of iterations
B=20000
Reoptimize1(Y,I,YE,YT, Doses, Dose, Hypermeans, Hypervars,B)
```
ReturnMeanControl

Gives true mean survival times for the control therapy.

Description

Returns the mean survival times for the control given efficacy and toxicity dose probability vector, distribution family and linear relationship, efficacy, toxicity and survival.

Usage

\[
\text{ReturnMeanControl(ProbC, betaC, Family, alpha)}
\]

Arguments

- \(\text{ProbC}\): Probability of efficacy and toxicity for the control therapy.
- \(\text{betaC}\): Linear term for efficacy, toxicity and \(\beta_0\) for the control group.
- \(\text{Family}\): Time to event distribution. Options include: Exponential, Gamma, Weibull, Lognormal.
- \(\text{alpha}\): Shape parameter or standard deviation of a lognormal distribution.

References

Examples

```r
## Family of Distributions
Family="Gamma"

## Shape parameter
alpha=2

## True beta vector for efficacy, toxicity and intercept of the control treatment
betaC=c(0.3, -0.25, 2.389)

## True efficacy and toxicity probability for control group
ProbC = c(0.4, 0.15)

ReturnMeanControl(ProbC, betaC, Family, alpha)
```
ReturnMeansAgent

Gives true mean survival times for doses considered of the experimental agent.

Description

Returns the dose specific mean survival times for given efficacy and toxicity dose probability vector, distribution family and linear relationship between dose, efficacy, toxicity and survival.

Usage

\texttt{ReturnMeansAgent(PE, PT, beta, Dose, Family, alpha)}

Arguments

- \texttt{PE}: True efficacy dose-toxicity vector.
- \texttt{PT}: True toxicity dose-toxicity vector.
- \texttt{beta}: True linear term for the rate or mean parameter.
- \texttt{Dose}: Vector of standardized doses considered in the trial.
- \texttt{Family}: Time to event distribution. Options include: Exponential, Gamma, Weibull, Lognormal.
- \texttt{alpha}: Shape parameter or standard deviation of a lognormal distribution.

References

Examples

```r
##True Efficacy and Toxicity Probabilities
PT = c(1,.15,.25,.35,.5)
PE=c(.2,.4,.6,.65,.7)
##Dose Levels considered
Dose = c(1,2,3,3.5,5)
Dose=(Dose-mean(Dose))/sd(Dose)
##Family of Distributions
Family="Gamma"
##Shape parameter ## Doesn't matter for exponential distribution
alpha=2
##True Beta vector
beta = c(.75,-.5,.3,-.25,2.143)
ReturnMeansAgent(PE,PT,beta,Dose,Family,alpha)
```
ReturnOCS

Gives operating characteristics of phase 123 and conventional design.

Description

Returns the probability of selecting the optimal dose, type I error, generalized power, probability of making the best decision, average number of patients treated and average trial duration.

Usage

ReturnOCS(Results, Means, CMu, Delta, Hyp)

Arguments

Results List containing phase 123 and conventional design results.
Means True mean survival times for experimental agents at each dose.
CMu Mean survival time for the control therapy.
Delta Desired improvement in survival.
Hyp Null=0 or alternative=1 hypothesis

References

Examples

```R
##True Mean Control
CMu=24
##True Means Agent
Means = c(27,32,38,42,28)
##Desired improvement in mean survival
Delta=12
##Random Trial results
Results=as.list(c(0,0))
nSims=5
X=matrix(rep(NA,nSims*4),nrow=nSims)
##DoseSelected
X[,1]=c(2,3,4,4,3)
X[,2]=c(0,1,1,1,1)
X[,3]=c(270,500,500,420,400)
X[,4]=c(70,85,88,70,88)
Results[[1]]=X
X[,1]=c(2,3,5,4,2)
X[,2]=c(0,1,0,1,0)
X[,3]=c(270,500,450,420,415)
X[,4]=c(70,82,80,70,79)
Results[[2]]=X
```
RunAdaptiveEffToxTrial

Simulates repetitions of an Adaptive Eff-Tox Trial.

Description

This function simulates repetitions of an adaptive Eff-Tox Trial and returns a list containing the optimal dose chosen.

Usage

RunAdaptiveEffToxTrial(DoseStart, Dose, Hypermeans, Hypervars, Contour, PiLim, ProbLim, cohort, NET, NF, B, nSims, PETrue, PTTrue)

Arguments

- **DoseStart**: Dose to start enrolling cohorts of patients at.
- **Dose**: Vector containing the standardized doses considered.
- **Hypermeans**: Vector containing prior hypermeans of length 6 for Eff-Tox parameters.
- **Hypervars**: Vector containing prior hypervariances of length 6 for Eff-Tox parameters.
- **Contour**: Vector containing 4 entries used to make the desireability function. Contour[1] contains a desired toxicity probability given efficacy, Contour[2] contains a desired efficacy probability given toxicity, and (Contour[3], Contour[4]) is an equally desireable pair of efficacy and toxicity probabilities that are non-zero or one.
- **PiLim**: Vector of length two with PiLim[1] containing the acceptable lower limit on efficacy probability and PiLim[2] containing the acceptable upper limit on toxicity probability.
- **ProbLim**: Vector of length two with ProbLim[1] containing the probability cutoff for acceptable efficacy probability and ProbLim[2] containing the probability cutoff for acceptable toxicity probability.
- **cohort**: Size of each patient cohort.
- **NET**: Maximum sample size for phase I/II.
- **NF**: Number of patients to assign optimal doses prior to adaptive randomization.
- **B**: Number of iterations to perform in the MCMC.
- **nSims**: Number of simulated trials to run.
- **PETrue**: True vector of efficacy probabilities for each dose.
- **PTTrue**: True vector of toxicity probabilities for each dose.
Value

List containing the vector of optimal doses chosen, a matrix of posterior desireability scores for each trial, and a matrix consisting of patient dose assignments and Toxicity and Efficacy indicators, with each Nmax rows corresponding to a separate trial. Trials that are stopped due to excessive toxicity probability or small efficacy probabilities are not included in the final results.

Examples

```r
## Doses, YE, YT
## Starting Dose
DoseStart=1
## Vector of Numerical Doses
Dose = c(1,2,3,3.5,5)
Dose=(Dose-mean(Dose))/sd(Dose)
## Contour Vector
Contour = c(0.35, 0.75, 0.7)
## Hypermeans
Hypermeans = c(0.022, 3.45, 0, -4.23, 3.1, 0)
Hypervars = c(2.6761, 2.6852, 0.2, 3.1304, 3.1165, 1)
Hypervars=Hypervars^2
## Acceptability Criteria
PiLim = c(0.4)
Problim=c(0.1)
## Cohort Size, N*F and N_ET
cohort=3
NF=15
NET=30
PTTrue = c(0.1, 0.15, 0.25, 0.35, 0.5)
PETrue=c(0.2, 0.4, 0.65, 0.7)
## Number of iterations for MCMC
B=2000
## Number of Simulations
nSims=1
RunAdaptiveEffToxTrial(DoseStart,Dose, Hypermeans, Hypervars, Contour, PiLim, Problim, cohort, NET, NF, B, nSims, PETrue, PTTrue )
```

SimPhase123

Simulates replications of the phase123 and phase 12-3 trials.

Description

This function simulates replications of the phase123 and phase 12-3 trials and returns a list containing the doses chosen, decisions made (1=A(x) better, 0= futility, -1=C better)

Usage

```r
SimPhase123(DoseStart, Dose, PE, PT, Hypermeans, Hypervars, Contour, PiLim, Problim, NET, NF, Accrue12, Time12, cohort, betaA, ProbC, betaC, Family, alpha, Nmax, Accrue, Twait, NLookSwitch, NLook, Sup, Fut, nSims)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoseStart</td>
<td>Starting dose of the phase 12 trial.</td>
</tr>
<tr>
<td>Dose</td>
<td>Vector of standardized doses considered in the trial.</td>
</tr>
<tr>
<td>PE</td>
<td>True efficacy dose-toxicity vector.</td>
</tr>
<tr>
<td>PT</td>
<td>True toxicity dose-toxicity vector.</td>
</tr>
<tr>
<td>Hypermeans</td>
<td>Prior Means for the Eff-Tox design of length 6.</td>
</tr>
<tr>
<td>Hypervars</td>
<td>Prior Variances for the Eff-Tox design of length 6.</td>
</tr>
<tr>
<td>Contour</td>
<td>Vector containing 4 entries used to make the desireability function. Contour[1] contains a desired toxicity probability given efficacy, Contour[2] contains a desired efficacy probability given toxicity, and (Contour[3],Contour[4]) is an equally desireable pair of efficacy and toxicity probabilities that are non-zero or one.</td>
</tr>
<tr>
<td>PiLim</td>
<td>Vector of length two with PiLim[1] containing the acceptable lower limit on efficacy probability and PiLim[2] containing the acceptable upper limit on toxicity probability.</td>
</tr>
<tr>
<td>NET</td>
<td>Maximum sample size of the phase 12 trial.</td>
</tr>
<tr>
<td>NF</td>
<td>Number of patients to assign deterministic doses prior to adaptive randomization.</td>
</tr>
<tr>
<td>Accrue12</td>
<td>Accrual rate for patients in the phase 12 portion of the trial.</td>
</tr>
<tr>
<td>Time12</td>
<td>Time window for phase 12.</td>
</tr>
<tr>
<td>cohort</td>
<td>Size of each patient cohort.</td>
</tr>
<tr>
<td>betaA</td>
<td>True linear term for the rate or mean parameter (beta_1,exp(beta_E),-exp(beta_T),beta_2,beta_0) for agent A.</td>
</tr>
<tr>
<td>ProbC</td>
<td>Probability of efficacy and toxicity for the control therapy.</td>
</tr>
<tr>
<td>betaC</td>
<td>Linear term for efficacy, toxicity and beta_0 for the control groupar term for efficacy, toxicity and beta_0 for the control group.</td>
</tr>
<tr>
<td>Family</td>
<td>Time to event distribution. Options include: Exponential, Gamma, Weibull, Lognormal.</td>
</tr>
<tr>
<td>alpha</td>
<td>Shape parameter or standard deviation of a lognormal distribution.</td>
</tr>
<tr>
<td>Nmax</td>
<td>Maximum number of patients to enroll in phase 3.</td>
</tr>
<tr>
<td>Accrue</td>
<td>Accrual rate for patients in the phase 3 portion of the trial.</td>
</tr>
<tr>
<td>Twait</td>
<td>Waiting time in between phase 12 and phase 3.</td>
</tr>
<tr>
<td>NLookSwitch</td>
<td>Number of patient events to determine if we re-optimize doses for A.</td>
</tr>
<tr>
<td>NLook</td>
<td>Vector of information criteria for making interim looks.</td>
</tr>
<tr>
<td>Sup</td>
<td>Vector of superiority boundaries.</td>
</tr>
<tr>
<td>Fut</td>
<td>Vector of futility boundaries.</td>
</tr>
<tr>
<td>nSims</td>
<td>Number of simulations to run for the phase 123 and conventional design.</td>
</tr>
</tbody>
</table>
References

Examples

```r
## We need to specify Phase 12,
## Phase 3 trial parameters,
## the additional phase 123 parameters and simulation parameters
# This is scenario 3 for the exponential case
## the additional phase 123 parameters and simulation parameters

DoseStart=1
# True Efficacy and Toxicity Probabilities
PT = c(0.05, 0.08, 0.15, 0.2)
P= c(0.25, 0.35, 0.45, 0.55)
# Raw dose levels considered
Dose = c(1, 2, 3, 3.5, 5)
# Max sample size
NET=30
# Number of patients before randomization
NF=15
# Cohort size
cohort=3
# Hyper means for Eff-Tox
Hypermeans = c(0.022, 3.45, 0, -4.23, 3, 1, 0)
Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)
Hypervars=Hypervars^2
# Contour vector
Contour = c(0.35, 0.75, 0.4)
# Acceptability Criteria
Pilim = c(0.3, 0.4)
ProbLim=c(0.1, 1)
# Phase 12 accrual rate
Accrue12=5
# How long is the time window in phase 12?
Time12=1

Nmax=500
# Number of patient events for interim looks
NLook = c(200, 300, 400)
# Superiority Boundaries
Sup = c(2.96, 2.53, 1.99)
# Futility Boundaries (0 means no futility decision)
Fut = c(0, 1.001, 0)
# Average accrual rate for phase III
Accrue = 10

NF=15
# Time in between phase 12 and phase 3
Tw=1
```
Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Family</code></td>
<td>Gamma</td>
</tr>
<tr>
<td><code>alpha</code></td>
<td>1</td>
</tr>
<tr>
<td><code>beta_a</code></td>
<td>$\mathbf{c}(1.3, -1, -1.3, 6)$</td>
</tr>
<tr>
<td><code>prob_c</code></td>
<td>$\mathbf{c}(3.1)$</td>
</tr>
<tr>
<td><code>n_sims</code></td>
<td>1</td>
</tr>
<tr>
<td><code>sim_phase</code></td>
<td>Performs one replication of phase 3 for the phase 123 design, given phase 12 data.</td>
</tr>
</tbody>
</table>

Description

This function simulates the phase 3 potion of the phase 123 trial, given phase 12 outcomes.

Usage

```r
SimPhase3(Dose, Phase12, PE, PT, Hypermeans, Hypervars, betaA, ProbC, betaC, Family, alpha, Nmax, Opt, Accrue, Time12, Twait, NLookSwitch, NLook, Sup, Fut, nSims)
```

Arguments

- **Dose**: Vector of standardized doses considered in the trial.
- **Phase12**: Matrix Consisting of patient data from a phase 12 trial. The columns are in order: Doses given, YE, YT, Accrual Times.
- **PE**: True efficacy dose-toxicity vector.
- **PT**: True toxicity dose-toxicity vector.
- **Hypermeans**: Prior Means for the Eff-Tox design of length 6.
- **Hypervars**: Prior Variances for the Eff-Tox design of length 6.
- **betaA**: True linear term for the rate or mean parameter (beta_1, exp(beta_E), -exp(beta_T), beta_2, beta_0) for agent A.
- **ProbC**: Probability of efficacy and toxicity for the control therapy.
- **betaC**: Linear term for efficacy, toxicity and beta_0 for the control group.
Family | Time to event distribution. Options include: Exponential, Gamma, Weibull, Lognormal.
---|---
alpha | Shape parameter or standard deviation of a lognormal distribution.
Nmax | Maximum number of patients to enroll in phase 3.
Opt | Dose used for A to begin randomization in phase 3.
Accrue | Accrual rate for patients in phase 3.
Time12 | Time window for phase 12.
Twait | Waiting time in between phase 12 and phase 3.
NLookSwitch | Number of patient events to determine if we re-optimize doses for A.
NLook | Vector of information criteria for making interim looks.
Sup | Vector of superiority boundaries.
Fut | Vector of futility boundaries.

References

Examples

library(survival)
##True Efficacy and Toxicity Probabilities
PT = c(.1, .15, .25, .35, .5)
PE = c(.2, .4, .6, .85, .7)
##Dose Levels considered
Dose = c(1, 2, 3, 5, 5)
Dose= (Dose-mean(Dose))/sd(Dose)
##Average accrual rate for phase III
Accrue = 10
##'## Hypermeans for Eff-Tox
Hypermeans = c(.022, 3.45, 0, -4.23, 3.1, 0)
Hypervars = c(2.6761, 2.6852, .2, 3.1304, 3.1165, 1)
Hypervars= Hypervars^2
Contour = c(.35, .75, .7, .4)
Pilim = c(.3, .4)
Problim = c(.1, .1)
###Family of Distributions
Family="Exponential"
###Shape parameter ## Doesn't matter for exponential distribution
alpha=1
###True Beta vector
betaA = c(.75, -.5, .3, -.25, 2.143)
###True beta vector for efficacy, toxicity and intercept of the control treatment
betaA = c(.3, -.25, 2.389)
###True efficacy and toxicity probability for control group
Probc = c(.4, .15)
###Waiting time in between
Twait=1
How long is the time window in phase 12?
Time12 = 1
Dose to start phase 3 with
Opt = 3
Make matrix with old phase 12 data
Doses = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
YE = c(0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0)
YT = c(0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0)
Accrual times for old data
Accrue12 = 2
Size of phase 12 cohort
cohort = 3
ACCI = cumsum(rexp(length(YT)), Accrue12)
Accrual times are the same for each cohort in phase 12
Grab = rep(NA, length(YT)/cohort)
for(m in 1:length(Grab)){Grab[m] = ACCI[m*3]}
for(m in 1:length(Grab)){ACCI[(m-1)*cohort+1:((m-1)*cohort+cohort)] = rep(Grab[m], cohort)}
Phase12 = cbind(Doses, YE, YT, ACCI)
betac = c(3, -2.5, 2.389)
True efficacy and toxicity probability for control group
Probc = c(0.15)
Max Sample Size
Nmax = 500
Number of patient events to Re-optimize doses
NLookSwitch = 50
Number of patient events for interim looks
NLook = c(200, 300, 400)
Superiority Boundaries
Sup = c(2.96, 2.53, 1.99)
Futility Boundaries (0 means no futility decision)
Fut = c(0, 1.001, 0)
Starting Dose, hat(x)_ET
Opt = 3
Number of simulations to run
nSims = 10
SimPhase3(Dose, Phase12, PE, PT, Hypermeans, Hypervars, betaA, Probc, betac, Family, alpha, Nmax, Opt, Accrue, Time12, Twait, NLookSwitch, NLook, Sup, Fut)
Index

AssignEffTox, 2
EFFTOX, 3
PieceMCMC, 4
RandomEffTox, 5
Reoptimize, 6
Reoptimize1, 8
ReturnMeanControl, 9
ReturnMeansAgent, 10
ReturnOCS, 11
RunAdaptiveEffToxTrial, 12
SimPhase123, 13
SimPhase3, 16