Package ‘PoSI’

January 15, 2017

Type Package
Title Valid Post-Selection Inference for Linear LS Regression
Version 1.0
Date 2016-11-11
Author Andreas Buja, Kai Zhang
Maintainer Kai Zhang <zhangk@email.unc.edu>
Description In linear LS regression, calculate for a given design matrix
the multiplier K of coefficient standard errors such that the
confidence intervals [b - K*SE(b), b + K*SE(b)] have a
guaranteed coverage probability for all coefficient estimates
b in any submodels after performing arbitrary model selection.
Suggests MASS
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2017-01-15 17:27:53

R topics documented:

PoSI-package ... 1
PoSI ... 2

Index 8

PoSI-package Valid Post-Selection Inference for Linear LS Regression

Description
In linear LS regression, calculate for a given regressor matrix the multiplier K of coefficient standard errors such that the confidence intervals [b - K*SE(b), b + K*SE(b)] have a guaranteed coverage probability for all coefficient estimates b in any submodels after performing arbitrary model selection.
Details

Package: PoSI
Type: Package
Version: 1.0
Date: 2015-04-15
License: GPL-3

Author(s)

Andreas Buja and Kai Zhang

Maintainers: Andreas Buja <buja.at.wharton@gmail.com> and Kai Zhang <zhangk@email.unc.edu>

References

See Also

lm, link{model.matrix}

Examples

```r
data(Boston, package="MASS")
summary(PoSI(Boston[, -14]))
```

Description

Used in calculating multipliers K of standard errors in linear LS regression such that the confidence intervals

$$[b - K\times SE(b), b + K\times SE(b)]$$

have guaranteed coverage probabilities for all coefficient estimates b in any submodel arrived at after performing arbitrary model selection. The actual multipliers K are calculated by `summary`; `PoSI` returns an object of class "PoSI".
PoSI

Usage

PoSI(X, modelSZ = 1:ncol(X), center = T, scale = T, verbose = 1,
 Nsim = 1000, bundleSZ = 100000, eps = 1e-08)

S3 method for class 'PoSI'
summary(object, confidence = c(0.95, 0.99), alpha = NULL,
 df.err = NULL, eps.PoSI = 1e-06, digits = 3, ...)

Arguments

X a regressor matrix as returned, for example, by the function model.matrix when applied to a linear model object from the function lm; data frames are coerced to matrices
modelSZ the model sizes to be included (default: 1:ncol(X)). This argument permits 'sparse PoSI' with, e.g., modelSZ=1:5 when only models up to size 5 have been searched, or 'rich PoSI' with, e.g., modelSZ=(ncol(X)-2):ncol(X) when only the removal of up to two regressors has been tried.
center whether to center the columns of X (boolean, default: TRUE, in which case the intercept will be removed)
scale whether to standardize the columns of X (boolean, default: TRUE; prevents problems from columns with vastly differing scales)
verbose 0: no printed reports during computations; 1: report bundle completion (default); 2: report each processed submodel (for debugging with small ncol(X)).
Nsim the number of tests being simulated (default: 1000). PoSI is partly simulation-based; increase Nsim for greater precision at the cost of increased run time.
bundleSZ number of tests to be processed simultaneously (default: 100000). Larger bundles are computationally more efficient but require more memory.
eps threshold below which singular values of X will be considered to be zero (default: 1E-8). In cases of highly collinear columns in X this threshold determines the effective dimension of the column space of X.
object an object of class "PoSI" as returned by the function PoSI
confidence a numeric vector of values between 0 and 1 containing the confidence levels for which multipliers of standard error should be provided (default: c(0.95, 0.99))
alpha if specified, sets confidence = 1-alpha. (This argument is redundant with confidence; only one should be specified.)
df.err error degrees of freedom for t-tests (default: NULL, performs z-tests)
eps.PoSI precision to which standard error multipliers are computed (default: 1e-06)
digits number of significant digits to which standard error multipliers are rounded (default: 3)
... (other arguments)
Details

Example of use of PoSI multipliers: In the Boston Housing data shown below, the 0.95 multiplier is 3.593. If after arbitrary variable selection we decide, for example, in favor of the submodel

\[\text{summary(lm(medv ~ rm + nox + dis + ptratio + lstat, data=Boston))} \]

the regressor rm (e.g.) has a coefficient estimate of 4.16 with a standard error of 0.41; hence the 0.95 PoSI confidence interval is found by

\[4.16 + c(-1,+1) \times 3.593 \times 0.41 \]

which is (2.69, 5.63) after rounding. Similar intervals can be formed for any regressor in any submodel. The resulting confidence procedure has a 0.95 family-wise guarantee of containing the true coefficient even after arbitrary variable selection in any submodel one might arrive at.

The computational limitations of the PoSI method are in the exponential growth of the number of t/z-tests that are being computed:

1. If \(p=\text{ncol}(X) \) and all submodels are being searched (\(\text{mode1SZ}=1:p \)), the number of tests is \(p \times 2^{(p-1)} \). Example: \(p=20 \); \(\text{mode1SZ}=1:20 \) ==> # tests = 10,485,760

2. If only models of sizes \(\text{mode1SZ}=m \) are being searched, the number of tests is \(\sum(m \times \text{choose}(p,m)) \). Example: \(p=50 \); \(m=1:5 \) ==> # tests = 11,576,300

Thus limiting PoSI to small submodel sizes such as \(\text{mode1SZ}=1:5 \) ("sparse PoSI") puts larger \(p=\text{ncol}(X) \) within reach.

PoSI computations are partly simulation-based and require specification of a number \(\text{nsim} \) of random unit vectors to be sampled in the column space of \(X \). Large \(\text{nsim} \) yields greater precision but requires more memory. The memory demands can be lowered by decreasing \(\text{bundleSZ} \) at the cost of some efficiency. \(\text{bundleSZ} \) determines how many tests are simultaneously processed.

Value

PoSI returns an object of class "PoSI" whose only use is to be the first argument to the function summary.

summary returns a matrix containing in its first column the two-sided PoSI standard error multipliers \(K \) for the specified confidence levels or Type-I error probabilities. Additionally, in the second and third column, it returns standard error multipliers based on the Bonferroni and Scheffe methods which are more conservative than the PoSI method: PoSI < Bonferroni < Scheffe (sometimes Bonferroni > Scheffe).

Author(s)

Andreas Buja and Kai Zhang

References

Examples

```r
# Boston Housing data from http://archive.ics.uci.edu/ml/datasets/Housing
data(Boston, package="MASS")
.Random.seed <- 1:626
UL.Boston <- PosI(Boston[, -14])
summary(UL.Boston)
  ## K.PosI K.Bonferroni K.Scheffe
  ## 95% 3.593 4.904 4.729
  ## 99% 4.072 5.211 5.262

# Just 1 predictor:
.Random.seed <- 1:626
X.1 <- as.matrix(rnorm(100))
UL.max.1 <- PosI(X.1)
summary(UL.max.1)  # Assuming sigma is known
  ## K.PosI K.Bonferroni K.Scheffe
  ## 95% 1.960 1.960 1.960
  ## 99% 2.576 2.576 2.576
summary(UL.max.1, df.err=4)  # sigma estimated with 4 dfs
  ## K.PosI K.Bonferroni K.Scheffe
  ## 95% 2.776 2.776 2.776
  ## 99% 4.604 4.604 4.604

# small N and automatic removal of intercept:
p <- 6; N <- 4
.Random.seed <- 1:626
X.small <- cbind(1, matrix(rnorm(N*p), ncol=p))
UL.max.small <- PosI(X.small, modelSZ=c(4,3,1), Nsim=1000, bundleSZ=5, verbose=2)
summary(UL.max.small, df.err=4)
  ## K.PosI K.Bonferroni K.Scheffe
  ## 95% 4.226 9.256 4.447
  ## 99% 6.731 13.988 7.077

# Orthogonal regressors:
p <- 10; N <- 10
.Random.seed <- 1:626
X.orth <- qr.Q(qr(matrix(rnorm(p*N), ncol=p)))
UL.max.orth <- PosI(X.orth, Nsim=10000)
summary(UL.max.orth)
  ## K.PosI K.Bonferroni K.Scheffe
  ## 95% 3.448 4.422 4.113
  ## 99% 3.947 4.758 4.655

## Not run:
# Large p=50, small N=20, models up to size 4:  1.3min
p <- 50; N <- 20
.Random.seed <- 1:626
```
```r
X.p50.N20 <- matrix(rnorm(p*N), ncol=p)
UL.max.p50.N20 <- PoSI(X.p50.N20, Nsim=1000, bundleSZ=100000, modelSZ=1:4) # 1.3 min (*)
summary(UL.max.p50.N20)
## K.PoSI K.Bonferroni K.Scheffe
## 95
## 99

## End(Not run)

# The following is modeled on a real data example:
p <- 84; N <- 2758
.Random.seed <- 1:626
X.84 <- matrix(rnorm(p*N), ncol=p)
# --- (1) Rich submodels: sizes m=84 and m=83 with more simulations (10,000) for precision
UL.max.84 <- PoSI(X.84, Nsim=1000, bundleSZ=100000, modelSZ=c(p-1,p)) # 2 sec (*)
summary(UL.max.84)
## K.PoSI K.Bonferroni K.Scheffe
## 95% 3.494 4.491 10.315
## 99% 3.936 4.823 10.819

## Not run:
# --- (2) Sparse submodels: p=84, model size m=4, in p=d=84 dimensions:
# WARNING: 17 minutes (*)
UL.max.84.4 <- PoSI(X.84, Nsim=1000, bundleSZ=100000, modelSZ=4)
summary(UL.max.84.4)
## K.PoSI K.Bonferroni K.Scheffe
## 95
## 99

summary(UL.max.84.4, df.err=2758-84-1)
## K.PoSI K.Bonferroni K.Scheffe
## 95
## 99

## End(Not run)

## Not run:
# Big experiment: full large PoSI for p=20
# WARNING: 13 minutes (*)
p <- 20; N <- 1000
.Random.seed <- 1:626
X.p20 <- matrix(rnorm(N*p), ncol=p)
UL.max.p20 <- PoSI(X.p20, bundleSZ=100000)
summary(UL.max.p20)
## K.PoSI K.Bonferroni K.Scheffe
## 95
## 99

summary(UL.max.p20, df.err=1000-21)
## K.PoSI K.Bonferroni K.Scheffe
## 95
## 99

## End(Not run)
```
Not run:

```r
# Big experiment: sparse large PoSI with p=50 and m=1:5:
## WARNING: 22 minutes (*)
p <- 50; N <- 1000; m <- 1:5
.Random.seed <- 1:626
X.p50 <- matrix(rnorm(N*p), ncol=p)
UL.max.p50.m5 <- PoSI(X.p50, bundleSz=100000, modelSz=m)
summary(UL.max.p50.m5)
## K.Posi K.Bonferroni K.Scheffe
## 95
## 99

## End(Not run)
```

Exchangeable Designs:

```r
# function to create exchangeable designs:
design.exch <- function(p,a) { (1-a)*diag(p) + a*matrix(1,p,p) }
# example:
p <- 12; a <- 0.5;
X.exch <- design.exch(p=p, a=a)
.Random.seed <- 1:626
UL.exch <- PoSI(X.exch, verbose=0, modelSz=1:p)
summary(UL.exch)
## K.Posi K.Bonferroni K.Scheffe
## 95% 3.635 4.750 4.436
## 99% 4.129 5.066 4.972
```

(*) Elapsed times were measured in R version 3.1.3, 32 bit,
on a processor Intel(R) Core(TM), 2.9 GHz, under Windows 7.
2015/04/16
Index

*Topic **Family-wise error**
 PoSI, 2
*Topic **LS Regression**
 PoSI, 2
*Topic **LS regression**
 PoSI-package, 1
*Topic **Model selection**
 PoSI, 2
*Topic **Post-selection inference**
 PoSI, 2
*Topic **family-wise error**
 PoSI-package, 1
*Topic **model selection**
 PoSI-package, 1
*Topic **post-selection inference**
 PoSI-package, 1

`lm`, 2

PoSI, 2
PoSI-package, 1

`summary.PoSI(PoSI)`, 2