Package ‘PointFore’

February 22, 2019

Type Package
Title Interpretation of Point Forecasts as State-Dependent Quantiles and Expectiles
Version 0.2.0
Description Estimate specification models for the state-dependent level of an optimal quantile/expectile forecast. Wald Tests and the test of overidentifying restrictions are implemented. Plotting of the estimated specification model is possible. The package contains two data sets with forecasts and realizations: the daily accumulated precipitation at London, UK from the high-resolution model of the European Centre for Medium-Range Weather Forecasts (ECMWF, [https://www.ecmwf.int/]) and GDP growth Greenbook data by the US Federal Reserve. See Schmidt, Katzfuss and Gneiting (2015) [arXiv:1506.01917] for more details on the identification and estimation of a directive behind a point forecast.
License CC0
Imports gmm, boot, car, ggplot2, MASS, stats, lubridate, sandwich
Depends R (>= 3.2.0)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat, spelling
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Patrick Schmidt [aut, cre]
Maintainer Patrick Schmidt <pschmidte@gmail.com>
Repository CRAN
Date/Publication 2019-02-22 11:10:03 UTC
R topics documented:

- constant ... 2
- estimate.functional 3
- expectiles .. 4
- GDP .. 5
- lag .. 6
- logistic_linear 6
- plot.pointfore 7
- PointFore .. 8
- precipitation 8
- probit_break 9
- probit_linear 10
- probit_spline2 10
- probit_spline3 11
- quantiles .. 12
- summary.pointfore 13

Index 14

<table>
<thead>
<tr>
<th>constant</th>
<th>Constant specification model</th>
</tr>
</thead>
</table>

Description

All specification models can be used as parameter in `estimate.functional`. Specification models are used to denote the quantile or expectile level (depending on the identification function). The constant specification model returns the parameter theta irrespective of the state variable. If theta is not in the unit interval, the constant specification model returns 0 or 1 (depending on which is closer).

Usage

`constant(stateVariable, theta, ...)`

Arguments

- `stateVariable` state variable
- `theta` parameter
- `...` ...

Value

numeric level

See Also

Other specification models: `logistic_linear`, `probit_break`, `probit_linear`, `probit_spline2`, `probit_spline3`
estimate.functional

Examples

the returned level does not depend on the state variable
constant(0.5)
constant(1.5)

if theta is not in the unit interval, the constant specification model forces it to be so
constant(0, 2)
constant(0, -1)

estimate.functional Estimate Functional

Description

Estimates the parameter in a specification model for state-dependent quantile or expectile forecasts. For additional detail see the vignettes of the PointFore package.

Usage

estimate.functional(iden.fct = quantiles, model = constant,
theta0 = NULL, Y, X, stateVariable = NULL, other_data = NULL,
instruments = c("X", "lag(Y)"), prewhite = F, kernel = "Bartlett",
bw = bwNeweyWest1987, ...)

Arguments

iden.fct identification function. Standard choice is quantiles. The alternative is expectiles.
model specification model. See constant for the simplest example and further suggestions.
theta0 starting value for optimization
Y realized values
X forecasts
stateVariable state variable(s) as vector or matrix of column vectors.
other_data optional for construction of instruments
instruments instruments (list of character describing instruments or matrix of actual instruments). Use "const" for just the constant as instrument. Standard ist c("X","lag(Y)"), which uses the constant, the forecast and the lagged value of the outcome.
prewhite logical or integer. Should the estimating functions be prewhitened? Standard is FALSE. If TRUE or greater than 0 a VAR model of order as.integer(prewhite) is fitted. (see ?gmm)
kernel choose kernel for HAC-covariance estimation (see ?gmm). Standard is "Bartlett" Kernel as proposed in Newey and West (1987).
bw function describing bandwidth selection (see ?gmm for alternatives). Standard is that the bandwidth depends on the sample length \(T \) by \(m(T) = T^{1/5} \).
... other parameters for gmm function (see ?gmm)
Value

Object of type pointfore. Use summary and plot methods to illustrate results.

Examples

```r
# estimate constant quantile level of GDP forecast
res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
model=constant)
summary(res)
plot(res)

# estimate constant quantile level with only the constant as instrument
res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
model=constant, instruments="const")
summary(res)

## not run:
# estimate constant expectile level
res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
model=constant, instruments="const", iden.fct = expectiles)
summary(res)
plot(res)

# estimate state-dependent quantile level with linear probit specification model
res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
stateVariable = GDP$forecast, model = probit_linear)
summary(res)
plot(res)

## end(not run)
```

```r
expectiles
```

Identification function for state-dependent expectiles

Description

Identification function for state-dependent expectiles

Usage

```r
expectiles(x, y, stateVariable, theta, model, ...)
```

Arguments

- `x` forecast
- `y` realization
- `stateVariable` state variable
- `theta` model parameter to be estimated
model function

See Also

Other identification functions: quantiles

Examples

```r
## Estimate expectile level for constant specification model with estimate.functional

res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
                           model=constant,
                           instruments="const",
                           iden.fct = expectiles)
summary(res)
plot(res)
```

GDP | real GDP realized values and one quarter ahead Greenbook forecasts
 | (1969-2012)

Description

A dataset containing real GDP growth rate in the United States and according one quarter ahead point forecasts from Federal Reserve's Greenbook. The forecasts were selected to be closest to the middle of the respective quarter among the published Greenbook forecasts of one quarter. The forecasts issued latest in the respective quarter are also given under forecast_late.

Usage

GDP

Format

A data frame with 176 rows and 2 variables:

- observation: realized GDP growth rate in percentage measured at second vintage (-10.4 – 11.2)
- forecast: according point forecast issued one quarter before (-4.7 – 8.5)
- forecast_late: according point forecast issued latest in the quarter before (-4.7 – 7.9)

Source

lag

Lagging variables for use in estimate functional

Description

Lagging variables for use in estimate functional

Usage

lag(vector, lag = 1)

Arguments

- **vector**
 - vector to be lagged
- **lag**
 - number of lags

Value

lagged vector of same length with NAs at beginning

Examples

#lag example vector by one lag
lag(c(1, 2, 3))

#lag example vector by two lags
lag(c(1, 2, 3, 4), lag=2)

logistic_linear

Linear logistic specification model

Description

All specification models can be used as parameter in estimate.functional. Specification models are used to denote the quantile or expectile level (depending on the identification function). The linear logistic specification model depends linear on the state variable with a logistic link function.

Usage

logistic_linear(stateVariable, theta, ...)

Arguments

- **stateVariable**
 - state variable
- **theta**
 - parameter
- ...

...
plot.pointfore

Value
numeric level

See Also
Other specification models: constant, probit_break, probit_linear, probit_spline2, probit_spline3

Examples

plot linear logistic specification model with constant quantile/expectile level
plot(function(x) logistic_linear(x, theta=c(0, 0)), xlim=c(-1, 1))

plot linear logistic specification model with state-dependent quantile/expectile level
plot(function(x) logistic_linear(x, theta=c(0, 5)), xlim=c(-1, 1))

plot.pointfore

Plots object of class "pointfore"

Description
Plots object of class "pointfore"

Usage
S3 method for class 'pointfore'
plot(x, conf.levels = c(0.6, 0.9), pdf = TRUE,
 hline = TRUE, adjust.factor = 1, limits = NULL, ...)

Arguments

x object of class "pointfore"
conf.levels one or two confidence levels for pointwise confidence intervals
pdf logic if pdf estimate should be plotted
hline if TRUE plots horizontal line at 0.5. if numeric plot horizontal line at value.
adjust.factor adjust factor for estimating pdf (controls smoothness)
limits 2-dimensional vector defining range of x-axis
... other parameters

Value
plot
Examples

```r
# estimate linear probit specification model for quantiles on GDP forecast
res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
                          model=probit_linear, stateVariable = GDP$forecast)
# plot results
plot(res)
```

PointFore

PointFore: A package for estimating state-dependent quantile and expectile levels from a time series of point forecasts and observations

Description

Estimate specification models for the state-dependent level of an optimal quantile/expectile forecast. Wald Tests and the test of overidentifying restrictions are implemented. Plotting of the estimated specification model is possible. The package contains daily accumulated precipitation at London, UK from the high-resolution model of the European Centre for Medium-Range Weather Forecasts (ECMWF, https://www.ecmwf.int/). The package further contains quarterly GDP growth data with observations and forecasts from the Federal Reserve’s Greenbook. Based on "Interpretation of Point Forecasts" by Patrick Schmidt, Matthias Katzfuss, and Tilmann Gneiting.

PointFore functions

The main function is `estimate.functional`. It returns an object which can be analyzed with `plot.pointfore` and `summary.pointfore`.

precipitation

daily accumulated precipitation (in millimeter) at London, UK and 24-hours-ahead forecasts of the ECMWF (1969-2011)

Description

24-hour ahead forecasts of daily accumulated precipitation at London, UK from the high-resolution model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The data contains observations from 2012 to 2016.

Usage

```r
precipitation
```

Format

A data frame with 2192 rows and 2 variables:

- Y: daily accumulated precipitation in millimeter at London, UK (0 – 45)
- X: according point forecast in millimeter issued one day ahead (0 – 40)
probit_break

Details

We thank the ECMWF for their support. Further details can be found on https://www.ecmwf.int/.

probit_break

probit break specification model with probit link

Description

All specification models can be used as parameter in `estimate_functional`. Specification models are used to denote the quantile or expectile level (depending on the identification function). The probit break specification model depends has a break at zero and a constant level above and below. It applies the probit link function.

Usage

`probit_break(stateVariable, theta, ...)`

Arguments

- `stateVariable` : state variable
- `theta` : parameter
- `...` : ...

Value

numeric level

See Also

Other specification models: `constant`, `logistic_linear`, `probit_linear`, `probit_spline2`, `probit_spline3`

Examples

```r
# plot break probit specification model with constant quantile/expectile level
plot(function(x) probit_break(x,theta=c(0,0)), xlim=c(-1,1))

# plot linear break specification model with state-dependent quantile/expectile level
plot(function(x) probit_break(x,theta=c(0,5)), xlim=c(-1,1))
```
Probit Spline

Probit Linear

Description
All specification models can be used as parameter in `estimate.functional`. Specification models are used to denote the quantile or expectile level (depending on the identification function). The linear probit specification model depends linear on the state variable with a probit link function.

Usage
`probit_linear(stateVariable, theta, ...)`

Arguments
- `stateVariable`: state variable
- `theta`: parameter
- `...`: other parameters

Value
numeric level

See Also
Other specification models: `constant`, `logistic_linear`, `probit_break`, `probit_spline2`, `probit_spline3`

Examples
plot linear probit specification model with constant quantile/expectile level
plot(function(x) probit_linear(x, theta=c(0,0)), xlim=c(-1,1))

plot linear probit specification model with state-dependent quantile/expectile level
plot(function(x) probit_linear(x, theta=c(0,5)), xlim=c(-1,1))

Probit Spline Quadratic

Description
All specification models can be used as parameter in `estimate.functional`. Specification models are used to denote the quantile or expectile level (depending on the identification function). This specification model depends through a quadratic spline on the state variable and applies a probit link function.
Usage
probit_spline3(stateVariable, theta, ...)

Arguments
stateVariable state variable
theta parameter
...

Value
numeric level

See Also
Other specification models: constant, logistic_linear, probit_break, probit_linear, probit_spline3

Examples
plot example of quadratic spline specification model with state-dependent quantile/expectile level
plot(function(x) probit_spline3(x, theta=c(0,1,-1)), xlim=c(-2,2))
See Also

Other specification models: constant, logistic_linear, probit_break, probit_linear, probit_spline2

Examples

plot example of cubic spline specification model with state-dependent quantile/expectile level
plot(function(x) probit_spline3(x, theta=c(0,2,1,-1)), xlim=c(-2,2))

quantiles identification function for state-dependent quantiles

Description

Main alternative to estimating state-dependent quantiles based on the quantile identification function are state-dependent expectiles.

Usage

quantiles(x, y, stateVariable, theta, model, ...)

Arguments

x forecast
y realization
stateVariable state variable
theta model parameter to be estimated
model model function
... ...

See Also

Other identification functions: expectiles

Examples

estimate expectation of identification function for quantile forecasts

set.seed(1)
y <- rnorm(1000)
x <- qnorm(0.6)
expectation of identification with quantile level 0.6 is zero
mean(quantiles(x,y,0.6,constant))
expectation of identification function with different quantile level
(0.5 is the median) is not zero
mean(quantiles(x,y,0.5, constant))
summary.pointfore

Method for object of class pointfore

Description

It presents results from the estimate.functional estimation as summary does for the lm or gmm class objects for example. It also computes the test of overidentifying restrictions.

Usage

S3 method for class 'pointfore'
summary(object, ...)

Arguments

object An object of class pointfore

... Other arguments when summary is applied to another class object

Value

It returns a list with the parameter estimates and their standard deviations, t-stat and p-values. It also returns the J-test and p-value for the null hypothesis that the forecast is generated by the postulated functional with an information set that contains the instruments.

Examples

estimate.functional generates a pointfore object...
res <- estimate.functional(Y=GDP$observation, X=GDP$forecast,
model=constant,
instruments="const")

... which can be summarized with the \code{summary} function.
summary(res)
Index

*Topic datasets
 GDP, 5
 precipitation, 8
constant, 2, 3, 7, 9–12
estimate.functional, 2, 3, 6, 8–11, 13
expectiles, 3, 4, 12
GDP, 5
lag, 6
logistic_linear, 2, 6, 9–12
plot.pointfore, 7, 8
PointFore, 8
PointFore-package (PointFore), 8
precipitation, 8
probit_break, 2, 7, 9, 10–12
probit_linear, 2, 7, 9, 10, 11, 12
probit_spline2, 2, 7, 9, 10, 10, 12
probit_spline3, 2, 7, 9–11, 11
quantiles, 3, 5, 12
summary.pointfore, 8, 13