Package ‘PoisBinNonNor’

May 16, 2019

Type Package
Title Data Generation with Poisson, Binary and Continuous Components
Version 1.3.1
Date 2019-05-16
Author Gul Inan, Hakan Demirtas, Ran Gao
Maintainer Ran Gao <rgao8@uic.edu>
Description Generation of multiple count, binary and continuous variables simultaneously
given the marginal characteristics and association structure. Throughout the package,
the word ‘Poisson’ is used to imply count data under the assumption of Poisson distribution.
License GPL-2 | GPL-3
Depends BB, corpcor, Matrix, mvtnorm
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-16 20:00:04 UTC

R topics documented:

PoisBinNonNor-package .. 2
correlation.bound.check ... 3
correlation.limits ... 4
fleishman.coef .. 6
gen.PoisBinNonNor ... 7
intermediate.corr.BB .. 9
intermediate.corr.BC ... 10
intermediate.corr.CC ... 12
intermediate.corr.PB ... 13
intermediate.corr.PC ... 14
intermediate.corr.PP ... 16
overall.corr.mat ... 17
validation.bin .. 18
validation.corr .. 19
validation.skewness.kurtosis ... 20
Description

Provides R functions for generation of multiple count, binary and continuous variables simultaneously given the marginal characteristics and association structure. Continuous variables can be of any nonnormal shape allowed by the Fleishman polynomials, taking the normal distribution as a special case.

Details

Package: PoisBinNonNor
Type: Package
Version: 1.3.1
Date: 2019-05-16
License: GPL-2 | GPL-3

The package consists of fourteen functions. The functions validation_bin, validation_corr, and validation.skewness.kurtosis validate the specified quantities. correlation_limits returns the lower and upper bounds of pairwise correlations of Poisson, binary and continuous variables. correlation_bound.check validates pairwise correlation values. intermediate_corr_PP, intermediate_corr_BB, intermediate_corr_CC, intermediate_corr_PB, intermediate_corr_PC, and intermediate_corr_BC compute intermediate correlation matrix for Poisson-Poisson combinations, binary-binary, continuous-continuous, Poisson-binary, Poisson-continuous, binary-continuous combinations, respectively. The function overall_corr_mat assembles the final correlation matrix. The engine function gen_PoisBinNonNor generates mixed data in accordance with the specified marginal and correlational quantities. Throughout the package, variables are supposed to be inputted in a certain order, namely, first count variables, next binary variables, and then continuous variables should be placed.

Author(s)

Gul Inan, Hakan Demirtas, Ran Gao

Maintainer: Ran Gao <rgao8@uic.edu>

References

correlation.bound.check

Checks if the pairwise correlation among variables are within the feasible range.

Description

This function checks if there are range violations among correlation of Poisson-Poisson, Poisson-binary, Poisson-continuous, binary-binary, binary-continuous, and continuous-continuous combinations.

Usage

\[
\text{coef.mat = NULL, corr.vec = NULL, corr.mat = NULL})
\]

Arguments

- `n.P`: Number of Poisson variables.
- `n.B`: Number of binary variables.
- `n.C`: Number of continuous variables.
- `lambda.vec`: Rate vector for Poisson variables.
- `prop.vec`: Proportion vector for binary variables.
- `coef.mat`: Matrix of coefficients produced from `fleishman.coef`.
- `corr.vec`: Vector of elements below the diagonal of correlation matrix ordered column-wise.
- `corr.mat`: Specified correlation matrix.

Value

The function returns TRUE if no specification problem is encountered. Otherwise, it returns an error message.

References

See Also

validation.corr.correlation.limits
Examples

```r
## Not run:
n.P<-1
n.B<-1
n.C<-1
lambda.vec<-c(1)
prop.vec<-c(0.3)
coef.mat<-matrix(c(-0.3137491, 0.8263239, 0.3137491, 0.0227066),4,1,byrow=F)
corr.mat=matrix(c(1,0.2,0.1,0.2,1,0.5,0.1,0.4,1,3,3)
correlation.bound.check(n.P,n.B,n.C,lambda.vec,prop.vec,coef.mat,corr.vec=NULL,
corr.mat)

n.P<2
n.B<2
n.C<2
lambda.vec<-c(1,2)
prop.vec<-c(0.3,0.5)
coef.mat<-matrix(c(-0.3137491, 0.0000000, 0.3137491, 0.0000000, 0.0227066, -0.029495),4,2,byrow=F)
corr.mat=matrix(0.8,6,6)
diag(corr.mat)=1
correlation.bound.check(n.P,n.B,n.C,lambda.vec,prop.vec,coef.mat,corr.vec=NULL,
corr.mat)

## End(Not run)
```

correlation.limits

Computes lower and upper correlation bounds for each pair of variables

Description

This function computes lower and upper limits for pairwise correlations of Poisson-Poisson, Poisson-binary, Poisson-continuous, binary-binary, binary-continuous, and continuous-continuous combinations.

Usage

```r
correlation.limits(n.P, n.B, n.C, lambda.vec = NULL, prop.vec = NULL, 
coef.mat = NULL)
```

Arguments

- **n.P** Number of Poisson variables.
- **n.B** Number of binary variables.
correlation.limits

n.C Number of continuous variables.
lambda.vec Rate vector for Poisson variables.
prop.vec Proportion vector for binary variables.
coef.mat Matrix of coefficients produced from fleishman.coef.

Details

While the function computes the exact lower and upper bounds for pairwise correlations among binary-binary variables as formulated in Demirtas et al. (2012), it computes approximate lower and upper bounds for pairwise correlations among Poisson-Poisson, Poisson-binary, Poisson-continuous, binary-continuous, and continuous-continuous variables through the method suggested by Demirtas and Hedeker (2011).

Value

The function returns a matrix of size \((n.P + n.B + n.C) \times (n.P + n.B + n.C)\), where the lower triangular part of the matrix contains the lower bounds and the upper triangular part of the matrix contains the upper bounds of the feasible correlations.

References

See Also

validation.cor, correlation.bound.check

Examples

```r
# Not run:
n.P<-3
n.B<2	n.C<3
lambda.vec<-c(1,2,3)
prop.vec<-c(0.3,0.5)
coef.mat<-matrix(c(-0.3137491, 0.0000000, 0.1004464,
                   0.8263239, 1.0857433, 1.1050196,
                   0.3137491, 0.0000000, -0.1004464,
                   0.0227066, -0.0294495, -0.0400078),4,3,byrow=F)

#Correlation limits among Poisson variables
correlation.limits(n.P,n.B=0,n.C=0,lambda.vec,prop.vec=NULL,coef.mat=NULL)

#See also Cor.PP.Limit in R package PoisNor

#Correlation limits among binary variables
```
correlation.limits(n.P=0,n.B,n.C=0,lambda.vec=NULL,prop.vec,coef.mat=NULL)

See also correlation.limits in R package BinNonNor

Correlation limits among continuous variables
correlation.limits(n.P=0,n.B=0,n.C=0,lambda.vec=NULL,prop.vec=NULL,coef.mat=NULL)

Correlation limits among Poisson and binary variables and within themselves.
correlation.limits(n.P,n.B,n.C=0,lambda.vec,prop.vec=NULL,coef.mat=NULL)

Correlation limits among Poisson and continuous variables and within themselves.
correlation.limits(n.P,n.B,n.C=0,lambda.vec,prop.vec=NULL,coef.mat=NULL)

Correlation limits among binary and continuous variables and within themselves.
correlation.limits(n.P=0,n.B,n.C,lambda.vec=NULL,prop.vec,coef.mat=NULL)

Correlation limits among Poisson, binary, and continuous variables and within themselves.

n.P<2
lambda.vec=c(-1,1)
correlation.limits(n.P,n.B=0,n.C=0,lambda.vec,prop.vec=NULL,coef.mat=NULL)

End(Not run)

fleishman.coef

Computes the coefficients of Fleishman third order polynomials

Description

Computes the coefficients of Fleishman third order polynomials given the marginal skewness and kurtosis parameters of continuous variables.

Usage

`fleishman.coef(n.C, skewness.vec = NULL, kurtosis.vec = NULL)`

Arguments

- `n.C` Number of continuous variables.
- `skewness.vec` Skewness vector for continuous variables.
- `kurtosis.vec` Kurtosis vector for continuous variables.

Details

The execution of the function may take some time since it uses multiple starting points to solve the system of nonlinear equations based on the third order Fleishman polynomials. However, since users need to run it only once for a given set of specifications, it does not constitute a problem.
Value

A matrix of coefficients. The columns represent the variables and rows represent the corresponding a, b, c, and d coefficients.

References

See Also

`validation.skewness.kurtosis`

Examples

```r
## Not run:
# Consider four continuous variables, which come from Exp(1), Beta(4,4), Beta(4,2) and Gamma(10,10), respectively. # Skewness and kurtosis values of these variables are as follows:
set.seed(123)
skewness.vec=c(2,0,-0.4677,0.6325)
kurtosis.vec=c(6,-0.5455,-0.3750,0.6)
coef.mat=fleishman.coef(n.C=4,skewness.vec,kurtosis.vec)

## not run
skewness.vec=c(0)
kurtosis.vec=c(-1.2)
coef.mat=fleishman.coef(n.C=1,skewness.vec,kurtosis.vec)

## not run
skewness.vec1=c(3)
kurtosis.vec1=c(5)
coef.mat=fleishman.coef(n.C=1,skewness.vec1,kurtosis.vec1)

## End(Not run)
```

Description

This function simulates a sample of size n from a set of multivariate Poisson, binary, and continuous data with pre-specified marginals and a correlation matrix.
Usage

```r
gen.PoisBinNonNor(n, n.P, n.B, n.C, lambda.vec = NULL, prop.vec = NULL,
mean.vec=NULL, variance.vec=NULL, coef.mat = NULL, final.corr.mat)
```

Arguments

- `n`: Number of variates.
- `n.P`: Number of Poisson variables.
- `n.B`: Number of binary variables.
- `n.C`: Number of continuous variables.
- `lambda.vec`: Rate vector for Poisson variables.
- `prop.vec`: Proportion vector for binary variables.
- `mean.vec`: Mean vector of continuous variables.
- `variance.vec`: Variance vector of continuous variables.
- `coef.mat`: Matrix of coefficients produced from `fleishman.coef`.
- `final.corr.mat`: Final correlation matrix produced from `overall.corr.mat`.

Value

A matrix of size `n*(n.P + n.B + n.C)`, of which the first `n.P` columns are Poisson variables, the next `n.B` columns are binary variables, and the last `n.C` columns are continuous variables.

Examples

```r
# Not run:
# n=100000
# n.P<-2
# n.B<-2
# n.C<-2
# lambda.vec<-c(2,3)
# prop.vec<-c(0.3,0.5)
# mean.vec<-c(0,0)
# variance.vec<-c(1,1)
# coef.mat=matrix(rep(c(0,1,0,0), each=2),4,2,byrow=T)
# corr.mat=matrix(c(0,4,6,6)
# diag(corr.mat)=1
# final.corr.mat=overall.corr.mat(n.P,n.B,n.C,lambda.vec,prop.vec,
# coef.mat,corr.vec=NULL,corr.mat)

mymixdata=gen.PoisBinNonNor(n,n.P,n.B,n.C,lambda.vec,prop.vec,
mean.vec,variance.vec,coef.mat,final.corr.mat)

#Check marginals
#apply(mymixdata,2,mean)
#cor(mymixdata)

n=100000
n.P<-2
```
intermediate.corr.BB

Computes an intermediate normal correlation matrix for binary variables given the specified correlation matrix.

Description

Computes an intermediate normal correlation matrix for binary variables before dichotomization given the specified correlation matrix.

Usage

```r
```

Arguments

- **n.P**: Number of Poisson variables.
- **n.B**: Number of binary variables.
- **n.C**: Number of continuous variables.
- **prop.vec**: Proportion vector for binary variables.
- **corr.vec**: Vector of elements below the diagonal of correlation matrix ordered column-wise.
- **corr.mat**: Specified correlation matrix.
intermediate.corr.BC

Value
A correlation matrix of size n.B*n.B.

References

See Also
intermediate.corr.PB, intermediate.corr.BC

Examples
```r
## Not run:
n.P<-2
n.B<-2
n.C<-2
prop.vec=c(0.4,0.7)
corr.vec = NULL
corr.mat=matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,
                 -0.3,1.0,-0.3,-0.3,-0.3,-0.3,
                 -0.3,-0.3,1.0,0.4,0.5,0.6,
                 -0.3,-0.3,0.4,1.0,0.7,0.8,
                 -0.3,-0.3,0.5,0.7,1.0,0.9,
                 -0.3,-0.3,0.6,0.8,0.9,1.0),6,by=TRUE)
intmatBB
```

intermediate.corr.BC
Computes intermediate correlation matrix for binary and continuous variables given the specified correlation matrix

Description
This function computes the intermediate correlation matrix for binary-continuous combinations as formulated in Demirtas et al. (2012).

Usage
```r
coef.mat = NULL, corr.vec = NULL, corr.mat = NULL)
```
Arguments

- **n.P**: Number of Poisson variables.
- **n.B**: Number of binary variables.
- **n.C**: Number of continuous variables.
- **lambda.vec**: Rate vector for Poisson variables.
- **prop.vec**: Proportion vector for binary variables.
- **coef.mat**: Matrix of coefficients produced from `fleishman.coef`.
- **corr.vec**: Vector of elements below the diagonal of correlation matrix ordered column-wise.
- **corr.mat**: Specified correlation matrix.

Value

A correlation matrix of size n.B*n.C.

References

See Also

`intermediate.corr.BB`, `intermediate.corr.CC`

Examples

```r
## Not run:
n.B<-2
n.C<-4
prop.vec=c(0.4, 0.7)
coef.mat=matrix(c(
-0.31375, 0.00000, 0.10045, -0.10448,
0.82632, 1.08574, 1.10502, 0.98085,
0.31375, 0.00000, -0.10045, 0.10448,
0.02271, -0.02945, -0.04001, 0.00272), 4, byrow=TRUE)
corr.vec = NULL
corr.mat=matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3,1.0,-0.3,-0.3,-0.3,-0.3,
-0.3,-0.3,1.0,0.4,0.5,0.6,
-0.3,-0.3,0.4,1.0,0.7,0.8,
-0.3,-0.3,0.5,0.7,1.0,0.9,
-0.3,-0.3,0.6,0.8,0.9,1.0),6, byrow=TRUE)
intmatBC=intermediate.corr.BC(n.P=0,n.B,n.C,lambda.vec=NULL,prop.vec,coef.mat,
corr.vec=NULL,corr.mat)
intmatBC
n.B<-1
n.C<-1
```
prop.vec=0.6
coeff.mat=matrix(c(-0.31375, 0.82632, 0.31375, 0.02271), 4, 1)
corr.vec=NULL
corr.mat=matrix(c(1, -0.3, 0.3, 1), 2, 2)

intmatBC

End(Not run)

intermediate.corr.CC \textit{Computes an intermediate correlation matrix for continuous variables given the specified correlation matrix}

Description

This function computes the intermediate correlation matrix for continuous-continuous combinations as formulated in Demirtas et al. (2012).

Usage

Arguments

- **n.P** \(\text{Number of Poisson variables.}\)
- **n.B** \(\text{Number of binary variables.}\)
- **n.C** \(\text{Number of continuous variables.}\)
- **coeff.mat** \(\text{Matrix of coefficients produced from fleishman.coef.}\)
- **corr.vec** \(\text{Vector of elements below the diagonal of correlation matrix ordered column-wise.}\)
- **corr.mat** \(\text{Specified correlation matrix.}\)

Value

A correlation matrix of size n.C\(\times\)n.C.

References

intermediate.corr.PB

See Also

intermediate.corr.PC, intermediate.corr.BC

Examples

```r
## Not run:
n.P=2
c.C=4
coeff.mat=matrix(c(
-0.31375, 0.00000, 0.10045, -0.10448,
0.82632, 1.08574, 1.10502, 0.98085,
0.31375, 0.00000, -0.10045, 0.10448,
0.02271, -0.02945, -0.04001, 0.00272),4,byrow=TRUE)
corr.vec = NULL
corr.mat=matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3,1.0,-0.3,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3,-0.3,1.0,0.4,0.5,0.6,
-0.3,-0.3,0.5,0.7,1.0,0.9,
-0.3,-0.3,0.6,0.8,0.9,1.0),6,byrow=TRUE)
intmatCC
## End(Not run)
```

intermediate.corr.PB Computes the pairwise entries of the intermediate normal correlation matrix for all Poisson-binary combinations given the specified correlation matrix.

Description

This function computes the pairwise entries of the intermediate normal correlation matrix for all Poisson-binary combinations given the specified correlation matrix as formulated in Amatya and Demirtas (2015).

Usage

```r
intermediate.corr.PB(n.P, n.B, n.C, lambda.vec = NULL, prop.vec = NULL,
coeff.mat = NULL, corr.vec = NULL, corr.mat = NULL)
```

Arguments

- `n.P` Number of Poisson variables.
- `n.B` Number of binary variables.
- `n.C` Number of continuous variables.
- `lambda.vec` Rate vector for Poisson variables.
prop.vec Proportion vector for binary variables.
coef.mat Matrix of coefficients produced from `fleishman.coef`.
corr.vec Vector of elements below the diagonal of correlation matrix ordered column-wise.
corr.mat Specified correlation matrix.

Value

A matrix of n.P*n.B.

References

See Also

`intermediate.corr.PP`, `intermediate.corr.BB`

Examples

```r
## Not run:
n.P<-2
n.B<-1
lambda.vec<-c(2,3)
prop.vec<-c(0.3)
corr.mat=matrix(c(1,0.2,0.1,0.2,1,0.5,0.1,0.5,1),3,3)

intmatPB=intermediate.corr.PB(n.P,n.B,n.C=0,lambda.vec,prop.vec,coef.mat=NULL,
corr.vec=NULL,corr.mat)
intmatPB

## End(Not run)
```

`intermediate.corr.PC` Computes the pairwise entries of the intermediate normal correlation matrix for all Poisson-continuous combinations given the specified correlation matrix.

Description

This function computes the pairwise entries of the intermediate normal correlation matrix for all Poisson-continuous combinations given the specified correlation matrix as formulated in Amatya and Demirtas (2015).
Usage

Arguments

- n.P: Number of Poisson variables.
- n.B: Number of binary variables.
- n.C: Number of continuous variables.
- lambda.vec: Rate vector for Poisson variables.
- prop.vec: Proportion vector for binary variables.
- coef.mat: Matrix of coefficients produced from fleishman.coef.
- corr.vec: Vector of elements below the diagonal of correlation matrix ordered column-wise.
- corr.mat: Specified correlation matrix.

Value

A correlation matrix of size n.P*n.C.

References

See Also

intermediate.corr.PP, intermediate.corr.CC

Examples

```r
## Not run:
set.seed(1)
n.P=2
n.C=4
lambda.vec=c(2,3)
prop.vec=matrix(rep(c(0,1,0,0),each=2),2)
coef.mat=matrix(c(1,0.5,0.5,0.5,0.5,1,0.5,0.5,0.5,0.5,1),3,3)
corr.vec = NULL
corr.mat=matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1,0.5,0.5,0.5,0.5,1),3,3)

intmatPC=intermediate.corr.PC(n.P,n.B=0,n.C,lambda.vec,prop.vec=NULL,
coef.mat,corr.vec=NULL,corr.mat)
```
intermediate.corr.PP

Computes an intermediate normal correlation matrix for Poisson variables given the specified correlation matrix

Description

This function computes the intermediate normal correlation matrix for Poisson-Poisson combinations before inverse cdf matching as formulated in Amatya and Demirtas (2015).

Usage

Arguments

n.P Number of Poisson variables.

n.B Number of binary variables.

n.C Number of continuous variables.

lambda.vec Rate vector for Poisson variables

corr.vec Vector of elements below the diagonal of correlation matrix ordered column-wise.

corr.mat Specified correlation matrix.

Value

A correlation matrix of size n.P*n.P.

References

See Also

intermediate.corr.PB, intermediate.corr(PC)
Examples

```r
n.P<-3
lambda.vec<-c(1,2,3)
corr.mat<-matrix(c(1,0.352,0.265,0.352,1,0.121,0.265,0.121,1),n.P,n.P)
intmatPP=intermediate.corr.PP(n.P,n.B=0,n.C=0,lambda.vec,corr.vec=NULL,corr.mat)

## Not run:
#See also cmat.star in R package PoisNor
#cmat.star(no.pois=3,no.norm=0,corMat=corr.mat,lambda=vec)

## End(Not run)
```

overall.corr.mat
Computes the final intermediate correlation matrix

Description

This function computes the final correlation matrix by combining pairwise intermediate correlation matrix entries for Poisson-Poisson, Poisson-binary, Poisson-continuous, binary-binary, binary-continuous, and continuous-continuous combinations. If the resulting correlation matrix is not positive definite, a nearest positive matrix will be used.

Usage

```r
```

Arguments

- `n.P`: Number of Poisson variables.
- `n.B`: Number of binary variables.
- `n.C`: Number of continuous variables.
- `lambda.vec`: Rate vector for Poisson variables.
- `prop.vec`: Proportion vector for binary variables.
- `coef.mat`: Matrix of coefficients produced from `fleishman.coef`.
- `corr.vec`: Vector of elements below the diagonal of correlation matrix ordered column-wise.
- `corr.mat`: Specified correlation matrix.

Value

See Also

`intermediate.corr.PP, intermediate.corr.BB, intermediate.corr.CC,`
`intermediate.corr.PB, intermediate.corr.PC, intermediate.corr.BC`

Examples

```r
## Not run:
n.P <- 1
n.B <- 1
n.C <- 1
lambda.vec <- c(1)
prop.vec <- c(0.3)
coef.mat <- matrix(c(0, 1, 0), 4, 1)
corr.vec <- NULL
corr.mat <- matrix(c(1, 0.2, 0.1, 0.2, 1, 0.5, 0.1, 0.5, 1), 3, 3)
finalmat = overall.corr.mat(n.P, n.B, n.C, lambda.vec, prop.vec, coef.mat, 
corr.vec = NULL, corr.mat)
finalmat
## End(Not run)
```

validation.bin

Validates the marginal specification of the binary variables

Description

Checks whether the marginal specification of the binary part is valid and consistent.

Usage

```r
validation.bin(n.B, prop.vec = NULL)
```

Arguments

- `n.B` Number of binary variables.
- `prop.vec` Proportion vector for binary variables.

Value

The function returns TRUE if no specification problem is encountered. Otherwise, it returns an error message.
validation.corr

Validates the specified correlation matrix

Description

This function validates the specified correlation vector and/or matrix for appropriate dimension, symmetry, range, and positive definiteness. If both correlation matrix and correlation vector are supplied, it checks whether the matrix and vector are conformable.

Usage

Arguments

- **n.P** Number of Poisson variables.
- **n.B** Number of binary variables.
- **n.C** Number of continuous variables.
- **corr.vec** Vector of elements below the diagonal of correlation matrix ordered column-wise.
- **corr.mat** Specified correlation matrix.

Examples

```r
n.B<3
prop.vec<-c(0.25,0.5,0.75)
validation.bin(n.B, prop.vec)

## Not run:
n.B<3
validation.bin(n.B)

n.B<-3
prop.vec<-c(0.25,0.5,0.75)
validation.bin(n.B, prop.vec)

n.B<0
prop.vec<-c(0.25,0.5,0.75)
validation.bin(n.B, prop.vec)

n.B<-5
prop.vec<-c(0.25,0.5,0.75)
validation.bin(n.B, prop.vec)

n.B<3
prop.vec<-c(0.25,0.5,-0.75)
validation.bin(n.B, prop.vec)

## End(Not run)
```
validation.skewness.kurtosis

Value

The function returns TRUE if no specification problem is encountered. Otherwise, it returns an error message.

See Also

correlation.limits.correlation.bound.check

Examples

n.P<-1
n.B<-1
corr.vec<-c(0.2,0.1,0.5)

n.P<2
corr.mat=matrix(0.5,6,6)
diag(corr.mat)=1

Not run:
n.P<2
corr.mat=matrix(0.5,6,6)
diag(corr.mat)=1

validation.skewness.kurtosis

Validates the marginal specification of the continuous variables

Description

Checks whether the marginal specification of the continuous part is valid and consistent.
validation.skewness.kurtosis

Usage

validation.skewness.kurtosis(n.C, skewness.vec = NULL, kurtosis.vec = NULL)

Arguments

- n.C: Number of continuous variables.
- skewness.vec: Skewness vector for continuous variables.
- kurtosis.vec: Kurtosis vector for continuous variables.

Value

The function returns TRUE if no specification problem is encountered. Otherwise, it returns an error message.

References

Examples

```r
n.C<-3
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,8)
validation.skewness.kurtosis(n.C,skewness.vec,kurtosis.vec)

## Not run:
n.C<-1
skewness.vec=c(0)
kurtosis.vec=c(-1.2)
validation.skewness.kurtosis(n.C,skewness.vec,kurtosis.vec)

n.C<-3
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,5)
validation.skewness.kurtosis(3)

n.C<-3
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,5)
validation.skewness.kurtosis(n.C,skewness.vec)
validation.skewness.kurtosis(n.C,kurtosis.vec)

n.C<-0
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,8)
validation.skewness.kurtosis(n.C,skewness.vec,kurtosis.vec)

n.C<-2
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1.2,6,8)
```
validation.skewness.kurtosis(nC,skewness.vec,kurtosis.vec)

n.C<-2
skewness.vec=c(0,2,3)
kurtosis.vec=c(-1,2,6)
validation.skewness.kurtosis(nC,skewness.vec,kurtosis.vec)

skewness.vec=c(2,3)
kurtosis.vec=c(1,5)
validation.skewness.kurtosis(nC,skewness.vec,kurtosis.vec)

End(Not run)
Index

* Topic concurrent generation of Poisson, binary and continuous variables
 PoisBinNonNor-package, 2
* Topic generating multivariate Poisson variables
 PoisBinNonNor-package, 2
* Topic generating multivariate binary variables
 PoisBinNonNor-package, 2
* Topic generating multivariate continuous variables
 PoisBinNonNor-package, 2

correlation.bound.check, 2, 3, 5, 20
correlation.limits, 2, 3, 4, 20

fleishman.coef, 3, 5, 6, 8, 11, 12, 14, 15, 17
gen.PoisBinNonNor, 2, 7
intermediate.corr.BB, 2, 9, 11, 14, 18
intermediate.corr.BC, 2, 10, 10, 13, 18
intermediate.corr.CC, 2, 11, 12, 15, 18
intermediate.corr.PB, 2, 10, 13, 16, 18
intermediate.corr.PC, 2, 13, 14, 16, 18
intermediate.corr.PP, 2, 14, 15, 16, 18

overall.corr.mat, 2, 8, 17

PoisBinNonNor (PoisBinNonNor-package), 2
PoisBinNonNor-package, 2

validation.bin, 2, 18
validation.corr, 2, 3, 5, 19
validation.skewness.kurtosis, 2, 7, 20