Package ‘PoolDilutionR’

February 15, 2023

Type Package

Title Calculate Gross Biogeochemical Flux Rates from Isotope Pool Dilution Data

Version 1.0.0

Description Pool dilution is an isotope tracer technique wherein a biogeochemical pool is artificially enriched with its heavy isotopologue and the gross productive and consumptive fluxes of that pool are quantified by the change in pool size and isotopic composition over time. This package calculates gross production and consumption rates from closed-system isotopic pool dilution time series data. Pool size concentrations and heavy isotope (e.g., 15N) content are measured over time and the model optimizes production rate (P) and the first order rate constant (k) by minimizing error in the model-predicted total pool size, as well as the isotopic signature. The model optimizes rates by weighting information against the signal:noise ratio of concentration and heavy-isotope signatures using measurement precision as well as the magnitude of change over time. The calculations used here are based on von Fischer and Hedin (2002) <doi:10.1029/2001GB001448> with some modifications.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0), knitr, rmarkdown, ggplot2, tibble, tidyr

Config/testthat/edition 3

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation no

Author Kendalynn A. Morris [cre, aut] (<https://orcid.org/0000-0002-0388-6965>), Ben Bond-Lamberty [ctb] (<https://orcid.org/0000-0001-9525-4633>)

Maintainer Kendalynn A. Morris <kendalynn.morris@gmail.com>

Repository CRAN

Date/Publication 2023-02-15 12:20:06 UTC
 frac_k_default

R topics documented:

frac_k_default .. 2
frac_P_default .. 3
Morris2023 .. 3
pdr_cost .. 4
pdr_estimate_k0 .. 5
pdr_fractionation ... 6
pdr_optimize ... 6
pdr_optimize_df ... 8
pdr_predict .. 9

Index 11

frac_k_default Retrieve default k fractionation value for a pool

Description

Retrieve default k fractionation value for a pool

Usage

frac_k_default(pool)

Arguments

pool Name of pool, character

Value

The default entry for pool listed in pdr_fractionation.

Examples

frac_k_default("CH4")
frac_P_default

Retrieve default P fractionation value for a pool

Description
Retrieve default P fractionation value for a pool

Usage
frac_P_default(pool)

Arguments
pool Name of pool, character

Value
The default entry for pool listed in pdr_fractionation.

Examples
frac_P_default("CH4")

Morris2023
Example time series data from a methane dilution pool experiment.

Description
Sequential measurements of methane concentration and isotopic signature were taken using a Picarro G2920 with a Small Sample Introduction module. This instrument provides gas concentrations in ppm and signatures in delta-13C, here we provide those data converted into volume of methane and atom percent.

Usage
Morris2023

Format
id Sample ID, a factor
time_days time in days between measurements, starting at 0
cal12CH4ml ml of 12C-CH4 at each timestep
cal13CH4ml ml of 13C-CH4 at each timestep
AP_obs atom percent 13C-CH4 at each timestep
pdr_cost

Cost function between observed and predicted pools

Description

Cost function between observed and predicted pools

Usage

```r
pdr_cost(
  params,
  time,
  m,
  n,
  m_prec,
  ap_prec,
  p,
  k,
  pool = "CH4",
  frac_P = frac_P_default(pool),
  frac_k = frac_k_default(pool),
  log_progress = NULL
)
```

Arguments

- `params`: Named list holding optimizer-assigned values for parameters
- `time`: Vector of numeric time values; first should be zero
- `m`: Observed total pool size, same length as time
- `n`: Observed pool size of heavy isotope, same length as time
- `m_prec`: Instrument precision for pool size, expressed as a standard deviation
- `ap_prec`: Instrument precision for atom percent, expressed as a standard deviation
- `p`: Production rate, unit pool size/unit time
- `k`: First-order rate constant for consumption, 1/unit time
- `pool`: Name of pool; see `pdr_fractionation`
- `frac_P`: Fractionation value for production; see `pdr_fractionation`
- `frac_k`: Fractionation value for consumption; see `pdr_fractionation`
- `log_progress`: An optional logging function

Value

Returns a cost metric summarizing the difference between the predicted and observed m (total pool size) and AP (atom percent).
Note
This implements Equations 12-14 from von Fischer and Hedin (2002).

Author(s)
K.A. Morris & B. Bond-Lamberty

Examples
```r
m <- c(10, 8, 6, 5, 4, 3)
n <- c(1, 0.7, 0.6, 0.4, 0.3, 0.2)
pdr_cost(params = list(P = 0.5, k = 0.3), time = 0:5, m, n, m_prec = 0.001, ap_prec = 0.01)
```

pdr_estimate_k0

Estimate initial k from heavy isotope concentration data

Description
Estimate initial k from heavy isotope concentration data

Usage
```r
pdr_estimate_k0(time, n, frac_k, quiet = FALSE)
```

Arguments
- **time**: Vector of numeric time values (e.g. days); first should be zero
- **n**: Observed heavy isotope (as a volume), same length as time
- **frac_k**: Fractionation: 13C consumption as a fraction of 12C consumption
- **quiet**: Suppress output message, logical

Value
Initial estimate of k0 (consumption rate constant)

Examples
```r
pdr_estimate_k0(1:5, c(1, 0.9, 0.7, 0.65, 0.4), frac_k = 0.98)
```
pdr_fractionation
P and k fractionation values

Description

A compendium of possible production (P) and consumption (k) fractionation values, by pool.

Usage

```r
pdr_fractionation
```

Format

- **Pool** Name of pool (gas or solid)
- **frac_P** Fractionation value of production (P)
- **frac_k** Fractionation value of consumption (k)

Default

Default for this pool? Logical

Source

Source paper or URL

Note

Currently there is only one set of fractionation values available, from von Fischer and Hedin (2002, 10.1029/2001GB001448).

pdr_optimize
Optimize production and consumption parameters for pool dilution data

Description

Optimize production and consumption parameters for pool dilution data

Usage

```r
pdr_optimize(
  time,
  m,
  n,
  m_prec,
  ap_prec,
  P,
  k,
  params_to_optimize = c("P", "k"),
  pool = "CH4",
)```
Arguments

- `time`: Vector of numeric time values (e.g. days); first should be zero
- `m`: Observed total pool size (as a volume), same length as time
- `n`: Observed heavy isotope (as a volume), same length as time
- `m_prec`: Instrument precision for pool size, expressed as a standard deviation
- `ap_prec`: Instrument precision for atom percent, expressed as a standard deviation
- `P`: Production rate, unit gas/unit time
- `k`: First-order rate constant for consumption, 1/unit time
- `params_to_optimize`: Named vector of parameters ("P", "k", "frac_P", and/or "frac_k") to optimize against observations
- `pool`: Name of pool to use when looking up fractionation values if they are not supplied; see `pdr_fractionation`
- `frac_P`: Fractionation value for production; see `pdr_fractionation`
- `frac_k`: Fractionation value for consumption; see `pdr_fractionation`
- `other_params`: Other parameters pass on to `optim`
- `cost_fn`: Cost function to use; the default is `pdr_cost`
- `prediction_fn`: Prediction function that the cost function will use; the default is `pdr_predict`
- `include_progress`: Include detailed optimizer progress data in output?
- `quiet`: Suppress output messages, logical

Value

The output of `optim`.

Note

Currently there is only one set of fractionation values available in `pdr_fractionation`, from von Fischer and Hedin (2002, 10.1029/2001GB001448).

See Also

- `pdr_optimize_df`
Examples

tm <- 0:5
m <- c(10, 8, 6, 5, 4, 3)
n <- c(1, 0.7, 0.6, 0.4, 0.3, 0.2)
m_prec <- 0.001
ap_prec <- 0.01

# Optimize values for P (production) and k (consumption), provide starting values for P and k
pdr_optimize(time = tm, m, n, m_prec, ap_prec, P = 0.5, k = 0.3)
# If we don't provide a value for k, it can be estimated from the data
pdr_optimize(tm, m, n, m_prec, ap_prec, P = 0.5)
# Hold k and frac_k constant (ie., k = estimated k0, frac_k = default value), optimize P and frac_P
pdr_optimize(tm, m, n, m_prec, ap_prec, P = 0.5, params_to_optimize = c("P", "frac_P"))
# Optimize only k (provide P and exclude from params_to_optimize)
pdr_optimize(tm, m, n, m_prec, ap_prec, P = 0.5, params_to_optimize = "k")
# Optimize only k, bounding its possible values
op <- list(lower = c("k" = 0.2), upper = c("k" = 0.3))
pdr_optimize(tm, m, n, m_prec, ap_prec, 0.5, 0.27, params_to_optimize = "k", other_params = op)

pdr_optimize_df

Optimize production and consumption parameters for pool dilution data

Description

Optimize production and consumption parameters for pool dilution data

Usage

pdr_optimize_df(...)

Arguments

... Parameters to be passed on to pdr_optimize

Value

The output of pdr_optimize summarized in a data frame, with one line per parameter estimates (P, k, frac_P, and/or frac_k).

See Also

pdr_optimize
Examples

```r
tm <- 0:5
m <- c(10, 8, 6, 5, 4, 3)
n <- c(1, 0.7, 0.6, 0.4, 0.3, 0.2)
m_prec <- 0.001
ap_prec <- 0.01
Optimize values for P (production) and k (consumption)
pdr_optimize_df(time = tm, m, n, m_prec, ap_prec, P = 0.5, k = 0.3)
```

---

**pdr_predict**  
*Predict total pool, heavy isotope pool, and atom percent*

**Description**

Predict total pool, heavy isotope pool, and atom percent

**Usage**

```r
pdr_predict(
 time,
m0,
n0,
P,
k,
pool = "CH4",
frac_P = frac_P_default(pool),
frac_k = frac_k_default(pool)
)
```

**Arguments**

- `time`  
  Vector of numeric time values (e.g. days); first should be zero
- `m0`  
  total pool size at time zero, as a volume
- `n0`  
  pool size of heavy isotope at time zero, as a volume
- `P`  
  production rate, unit gas/unit time
- `k`  
  first-order rate constant for consumption, 1/unit time
- `pool`  
  Name of pool; see `pdr_fractionation`
- `frac_P`  
  Fractionation value for production; see `pdr_fractionation`
- `frac_k`  
  Fractionation value for consumption; see `pdr_fractionation`

**Value**

Returns a data frame with `mt`, `nt`, and `AP_pred` (atom percent) for each time step
Note
This is Eq. 11 from von Fischer and Hedin 2002 with a few modifications.

Author(s)
K.A. Morris & B. Bond-Lamberty

Examples
pdr_predict(time = 0:5, m0 = 10, n0 = 1, P = 0.5, k = 0.3)
Index

* datasets
  Morris2023, 3
  pdr_fractionation, 6

frac_k_default, 2
frac_P_default, 3

Morris2023, 3

optim, 7

pdr_cost, 4, 7
pdr_estimate_k0, 5
pdr_fractionation, 2–4, 6, 7, 9
pdr_optimize, 6, 8
pdr_optimize_df, 7, 8
pdr_predict, 7, 9