Package ‘PortfolioOptim’

February 7, 2019

Title Small/Large Sample Portfolio Optimization
Version 1.1.1
Description Two functions for financial portfolio optimization by linear programming are provided. One function implements Benders decomposition algorithm and can be used for very large data sets. The other, applicable for moderate sample sizes, finds optimal portfolio which has the smallest distance to a given benchmark portfolio.

Depends R (>= 3.3.0)
License GNU General Public License version 3
Encoding UTF-8
LazyData true
Author Andrzej Palczewski [aut, cre], Aleksandra Dabrowska [ctb]
Maintainer Andrzej Palczewski <A.Palczewski@mimuw.edu.pl>
Imports Rsymphony
RoxygenNote 6.1.1
Suggests mvtnorm, Rglpk, testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2019-02-07 12:53:25 UTC

R topics documented:

BDportfolio_optim .. 2
PortfolioOptimProjection 4

Index 7
BDportfolio_optim is a linear program for financial portfolio optimization. Portfolio risk is measured by one of the risk measures from the list c("CVAR", "DCVAR", "LSAD", "MAD"). Benders decomposition method is explored to enable optimization for very large returns samples (~ 10^6).

The optimization problem is:
\[
\min \ F(\theta^T r) \\
\text{over} \\
\theta^T E(r) \geq \text{portfolio_return}, \\
LB \leq \theta \leq UB, \\
Aconstr \theta \leq bconstr, \\
\text{where} \\
F \text{ is a measure of risk;} \\
r \text{ is a time series of returns of assets;} \\
\theta \text{ is a vector of portfolio weights.}
\]

Usage

BDportfolio_optim(dat, portfolio_return,
risk=c("CVAR", "DCVAR", "LSAD", "MAD"), alpha=0.95,
Aconstr=NULL, bconstr=NULL, LB=NULL, UB=NULL, maxiter=500, tol=1e-8)

Arguments

dat \quad \text{Time series of returns data; dat = cbind(r, pk), where r is an array (time series) of asset returns, for n returns and k assets it is an array with dim(r) = (n, k), pk is a vector of length n containing probabilities of returns.}

portfolio_return \quad \text{Target portfolio return.}

risk \quad \text{Risk measure chosen for optimization; one of "CVAR", "DCVAR", "LSAD", "MAD", where "CVAR" – denotes Conditional Value-at-Risk (CVaR), "DCVAR" – denotes deviation CVaR, "LSAD" – denotes Lower Semi Absolute Deviation, "MAD" – denotes Mean Absolute Deviation.}

alpha \quad \text{Value of alpha quantile used to compute portfolio VaR and CVaR; used also as quantile value for risk measures CVAR and DCVAR.}

Aconstr \quad \text{Matrix defining additional constraints, dim(Aconstr) = (m, k), where k – number of assets, m – number of constraints.}

bconstr \quad \text{Vector defining additional constraints, length (bconstr) = m.}

LB \quad \text{Vector of length k, lower bounds of portfolio weights } \theta; \text{ warning: condition LB = NULL is equivalent to LB = rep(0, k) (lower bound zero).}

UB \quad \text{Vector of length k, upper bounds for portfolio weights } \theta.
maxiter Maximal number of iterations.
tol Accuracy of computations, stopping rule.

Value

BDportfolio_optim returns a list with items:

return_mean vector of asset returns mean values.
mu realized portfolio return.
theta portfolio weights.
CVaR portfolio CVaR.
VaR portfolio VaR.
MAD portfolio MAD.
risk portfolio risk measured by the risk measure chosen for optimization.
new_portfolio_return modified target portfolio return; when the original target portfolio return is too high for the problem, the optimization problem is solved for new_portfolio_return as the target return.

References

Examples

```r
library(Rsymphony)
library(Rglpk)
library(mvtnorm)
k = 3
num = 100
dat <- cbind(rmvnorm(n=num, mean = rep(0,k), sigma=diag(k)), matrix(1/num,num,1))
# a data sample with num rows and (k+1) columns for k assets;
port_ret = 0.05 # target portfolio return
```
alpha_optim = 0.95

minimal constraints set: \(\sum \theta_i = 1\)
has to be in two inequalities: \(1 - \epsilon \leq \sum \theta_i \leq 1 + \epsilon\)
a0 <- rep(1,k)
Aconstr <- rbind(a0, -a0)
bconstr <- c(1+1e-8, -1+1e-8)

LB <- rep(0,k)
UB <- rep(1,k)

res <- BDportfolio_optim(dat, port_ret, "CVAR", alpha_optim,
Aconstr, bconstr, LB, UB, maxiter=200, tol=1e-8)

res$theta

portfoliooptimprojection

Portfolio optimization which finds an optimal portfolio with the smallest distance to a benchmark.

Description

PortfolioOptimProjection is a linear program for financial portfolio optimization. The function finds an optimal portfolio which has the smallest distance to a benchmark portfolio given by bvec. Solution is by the algorithm due to Zhao and Li modified to account for the fact that the benchmark portfolio bvec has the dimension of portfolio weights and the solved linear program has a much higher dimension since the solution vector to the LP problem consists of a set of primal variables: financial portfolio weights, auxiliary variables coming from the reduction of the mean-risk problem to a linear program and also a set of dual variables depending on the number of constrains in the primal problem (see Palczewski).

Usage

portfoliooptimprojection (dat, portfolio_return, risk=c("CVAR","DCVAR","LSAD","MAD"), alpha=0.95, bvec, Aconstr=NULL, bconstr=NULL, LB=NULL, UB=NULL, maxiter=500, tol=1e-7)

Arguments

dat Time series of returns data; dat = cbind(rr, pk), where rr is an array (time series) of asset returns, for n returns and k assets it is an array with \(\text{dim}(rr) = (n, k)\), pk is a vector of length n containing probabilities of returns.
PortfolioReturnOptination

portfolio_return

Target portfolio return.

risk

Risk measure chosen for optimization; one of "CVaR", "DCVAR", "LSAD", "MAD", where "CVaR" – denotes Conditional Value-at-Risk (CVaR), "DCVAR" – denotes deviation CVaR, "LSAD" – denotes Lower Semi Absolute Deviation, "MAD" – denotes Mean Absolute Deviation.

alpha

Value of alpha quantile used to compute portfolio VaR and CVaR; used also as quantile value for risk measures CVaR and DCVAR.

bvec

Benchmark portfolio, a vector of length k; function PortfolioOptimProjection finds an optimal portfolio with the smallest distance to bvec.

Aconstr

Matrix defining additional constraints, \(\text{dim}(A_{\text{constr}}) = (m, k) \), where \(k \) – number of assets, \(m \) – number of constraints.

bconstr

Vector defining additional constraints, length \((b_{\text{constr}}) = m \).

LB

Vector of length k, lower bounds of portfolio weights \(\theta \); warning: condition LB = NULL is equivalent to LB = rep(0, k) (lower bound zero).

UB

Vector of length k, upper bounds for portfolio weights \(\theta \).

maxiter

Maximal number of iterations.

tol

Accuracy of computations, stopping rule.

Value

PortfolioOptimProjection returns a list with items:

- return_mean: vector of asset returns mean values.
- mu: realized portfolio return.
- theta: portfolio weights.
- CVaR: portfolio CVaR.
- VaR: portfolio VaR.
- MAD: portfolio MAD.
- risk: portfolio risk measured by the risk measure chosen for optimization.
- new_portfolio_return: modified target portfolio return; when the original target portfolio return is too high for the problem, the optimization problem is solved for new_portfolio_return as the target return.

References

Zhao, Y-B., Li, D., Locating the least 2-norm solution of linear programs via a path-following method, SIAM Journal on Optimization, 12 (2002), 893–912. DOI:10.1137/S1052623401386368.

Examples

library(mvtnorm)
k = 3
num = 100
dat <- cbind(rmvnorm(n=num, mean = rep(0,k), sigma=diag(k)), matrix(1/num,num,1))
a data sample with num rows and (k+1) columns for k assets;
w_m <- rep(1/k,k) # benchmark portfolio, a vector of length k,
port_ret = 0.05 # portfolio target return
alpha_optim = 0.95

minimal constraints set: \sum theta_i = 1
has to be in two inequalities: 1 - \epsilon <= \sum theta_i <= 1 + \epsilon
a0 <- rep(0,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)

LB <- rep(0,k)
UB <- rep(1,k)

res <- PortfolioOptimProjection(dat, port_ret, risk="MAD",
alpha=alpha_optim, w_m, Aconstr, bconstr, LB, UB, maxiter=200, tol=1e-7)

cat (c("Projection optimal portfolio:

")
cat(c("weights \n"))
print(res$theta)

cat (c ("\n mean = ", res$mu, " risk = ", res$risk, " \n CVaR = ", res$CVaR, " VaR = ",
res$VaR, " \n MAD = ", res$MAD, " \n"))
Index

BDportfolio_optim, 2
PortfolioOptimProjection, 4