Package ‘PracTools’

October 21, 2018

Type Package

Title Tools for Designing and Weighting Survey Samples

Version 1.1

Date 2018-10-19

Author Richard Valliant, Jill A. Dever, Frauke Kreuter

Maintainer Richard Valliant <rvallian@umd.edu>

Description Functions and datasets to support Valliant, Dever, and Kreuter, “Practical Tools for Designing and Weighting Survey Samples” (2nd edition, 2018). Contains functions for sample size calculation for survey samples using stratified or clustered one-, two-, and three-stage sample designs. Other functions compute variance components for multistage designs and sample sizes in two-phase designs. A number of example data sets are included.

Suggests doBy, foreign, pps, reshape, sampling, samplingbook, survey

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

Depends R (>= 2.10)

Repository CRAN

Date/Publication 2018-10-21 07:30:13 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW2stagePPS</td>
<td>2</td>
</tr>
<tr>
<td>BW2stagePPSe</td>
<td>4</td>
</tr>
<tr>
<td>BW2stageSRS</td>
<td>6</td>
</tr>
<tr>
<td>BW3stagePPS</td>
<td>8</td>
</tr>
<tr>
<td>BW3stagePPSe</td>
<td>9</td>
</tr>
<tr>
<td>clusOpt2</td>
<td>12</td>
</tr>
<tr>
<td>clusOpt2fixedPSU</td>
<td>14</td>
</tr>
<tr>
<td>clusOpt3</td>
<td>15</td>
</tr>
<tr>
<td>clusOpt3fixedPSU</td>
<td>17</td>
</tr>
<tr>
<td>CVcalc2</td>
<td>19</td>
</tr>
</tbody>
</table>
Relvariance components for 2-stage sample

Description

Compute components of relvariance for a sample design where primary sampling units (PSUs) are selected with probability proportional to size (pps) and elements are selected via simple random sampling (srs). The input is an entire sampling frame.
BW2stagePPS

Usage

BW2stagePPS(X, pp, psuid)

Arguments

X data vector; length is the number of elements in the population.

pp vector of one-draw probabilities for the PSUs; length is number of PSUs in population.

psuid vector of PSU identification numbers. This vector must be as long as X. Each element in a given PSU should have the same value in psuid. PSUs must be in the same order as in X.

Details

BW2stagePPS computes the between and within population relvariance components appropriate for a two-stage sample in which PSUs are selected with varying probabilities and with replacement. Elements within PSUs are selected by simple random sampling. The components are appropriate for approximating the relvariance of the probability-with-replacement (pwr)-estimator of a total when the same number of elements are selected within each sample PSU. The function requires that an entire frame of PSUs and elements be input. (Use BW2stagePPSe if only a sample of PSUs and elements are available.)

Value

List object with values:

\(B_2 \) between PSU unit relvariance

\(W_2 \) within PSU unit relvariance

unit relvar unit relvariance for population

\(B_2 + W_2 \) sum of between and within relvariance estimates

k ratio of \(B^2 + W^2 \) to unit relvariance

delta measure of homogeneity with PSUs estimated as \(B^2/(B^2 + W^2) \)

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`BW2stagePPSe`, `BW2stageSRS`, `BW3stagePPS`, `BW3stagePPSe`

Examples

data(MDarea.pop)
MDsub <- MDarea.pop[1:100000,]
Use PSU and SSU variables to define psu's
pp.PSU <- table(MDsub$PSU) / nrow(MDsub)
p.p.SSU <- table(MDsub$SSU) / nrow(MDsub)
components with psu's defined by the PSU variable
BW2stagePPS(MDsub$y1, pp=pp.PSU, psuID=MDsub$PSU)
components with psu's defined by the SSU variable
BW2stagePPS(MDsub$y1, pp=pp.SSU, psuID=MDsub$SSU)

Use census tracts and block groups to define psu's
trtBG <- 10*MDsub$TRACT + MDsub$BLKGROUP
pp.trt <- table(MDsub$TRACT) / nrow(MDsub)
p.BG <- table(trtBG) / nrow(MDsub)
components with psu's defined by tracts
BW2stagePPS(MDsub$ins.cov, pp=pp.trt, psuID=MDsub$TRACT)
components with psu's defined by block groups
BW2stagePPS(MDsub$ins.cov, pp=pp.BG, psuID=trtBG)

BW2stagePPSe

Estimated relvariance components for 2-stage sample

Description

Estimate components of relvariance for a sample design where primary sampling units (PSUs) are selected with `pps` and elements are selected via `srs`. The input is a sample selected in this way.

Usage

`BW2stagePPSe(Ni, ni, X, psuID, w, m, pp)`

Arguments

- **Ni**
 - vector of number of elements in the population of each sample PSU; length is the number of PSUs in the sample.
- **ni**
 - vector of number of sample elements in each sample PSU; length is the number of PSUs in the sample. PSUs must be in the same order in `ni` and in `X`.
- **X**
 - data vector for sample elements; length is the number of elements in the sample. These must be in PSU order. PSUs must be in the same order in `ni` and in `X`.
- **psuID**
 - vector of PSU identification numbers. This vector must be as long as `X`. Each element in a given PSU should have the same value in `psuID`.
vector of full sample weights. This vector must be as long as \(x \). Vector must be in the same order as \(x \).

* \(m \): number of sample PSUs

* \(pp \): vector of 1-draw probabilities for the PSUs. The length of this vector is the number of PSUs in the sample. Vector must be in the same order as \(ni \) and \(ni \).

Details

`BW2stagePpSe` computes the between and within population variance and relvariance components appropriate for a two-stage sample in which PSUs are selected with varying probabilities and with replacement. Elements within PSUs are selected by simple random sampling. The number of elements selected within each sample PSU can vary but must be at least two. The estimated components are appropriate for approximating the relvariance of the \(pwr \)-estimator of a total when the same number of elements are selected within each sample PSU. This function can also be used if PSUs are selected by \(srswr \) by appropriate definition of \(pp \).

Value

List with values:

* \(\text{vpsu} \): estimated between PSU unit variance

* \(\text{vssu} \): estimated within PSU unit variance

* \(\text{B} \): estimated between PSU unit relvariance

* \(\text{W} \): estimated within PSU unit relvariance

* \(k \): estimated ratio of \(B+W \) to estimated unit relvariance of the analysis variable

* \(\text{delta} \): intraclass correlation estimated as \(B/(B+W) \)

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`BW2stagePPS, BW2stageSRS, BW3stagePPS, BW3stagePPSe`

Examples

```r
## Not run:
require(sampling)
require(reshape)    # has function that allows renaming variables
data(MDarea.pop)
Ni <- table(MDarea.pop$TRACT)
```
m <- 20
probi <- m*Ni / sum(Ni)
select sample of clusters
sam <- cluster(data=MData.pop, clustername="TRACT", size=m, method="systematic",
 pik=probi, description=TRUE)
extract data for the sample clusters
samclus <- getdata(MData.pop, sam)
samclus <- rename(samclus, c(Prob = "pi1"))

treat sample clusters as strata and select srswor from each
s <- strata(data = as.data.frame(samclus), stratanames = "TRACT",
 size = rep(50,m), method="srswor")
extracts the observed data
samdat <- getdata(samclus,s)
samdat <- rename(samdat, c(Prob = "pi2"))

extract pop counts for PSUs in sample
pick <- names(Ni) %in% sort(unique(samdat$TRACT))
Ni.sam <- Ni[pick]
pp <- Ni.sam / sum(Ni)
wt <- 1/samdat$p1i/samdat$p12
BW2stagePPSe(Ni = Ni.sam, ni = rep(50,20), X = samdat$y1,
 psuID = samdat$TRACT, w = wt,
 m = 20, pp = pp)

End(Not run)

BW2stageSRS Relvariance components for 2-stage sample

Description

Compute components of relvariance for a sample design where primary sampling units (PSUs) and elements are selected via srs. The input is an entire sampling frame.

Usage

BW2stageSRS(X, psuID)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>data vector; length is the number of elements in the population.</td>
</tr>
<tr>
<td>psuID</td>
<td>vector of PSU identification numbers. This vector must be as long as X. Each element in a given PSU should have the same value in psuID. PSUs must be in the same order as in X.</td>
</tr>
</tbody>
</table>
Details

`BW2stageSRS` computes the between and within population relvariance components appropriate for a two-stage sample in which PSUs are selected via *srs* (either with or without replacement). Elements within PSUs are assumed to be selected by *srswor*. The same number of elements is assumed to be selected within each sample PSU. The function requires that an entire frame of PSUs and elements be input. (Use `BW2stagePPSe` if only a sample of PSUs and elements are available.)

Value

List with values:

- B^2: between PSU unit relvariance
- W^2: within PSU unit relvariance
- `unit relvar`: unit relvariance for population
- $B^2 + W^2$: $B^2 + W^2$
- `k`: ratio of $B^2 + W^2$ to unit relvariance
- `delta full`: intraclass correlation estimated as $B^2/(B^2 + W^2)$

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`BW2stagePPS`, `BW2stagePPSe`, `BW3stagePPS`, `BW3stagePPSe`

Examples

```r
data(MDarea.pop)
MDsub <- MDarea.pop[1:100000,]
# psu's are defined by PSU variable
BW2stageSRS(abs(MDsub$Hispanic-2), psuID=MDsub$PSU)
# psu's are defined by SSU variable
BW2stageSRS(abs(MDsub$Hispanic-2), psuID=MDsub$SSU)
```
Relvariance components for 3-stage sample

Description
Compute components of relvariance for a sample design where primary sampling units (PSUs) are selected with `ppswr` and secondary sampling units (SSUs) and elements within SSUs are selected via `srs`. The input is an entire sampling frame.

Usage
`BW3stagePPS(x, pp, psuID, ssuID)`

Arguments
- `x`: data vector; length is the number of elements in the population.
- `pp`: vector of one-draw probabilities for the PSUs; length is number of PSUs in population.
- `psuID`: vector of PSU identification numbers. This vector must be as long as `x`. Each element in a given PSU should have the same value in `psuID`. PSUs must be in the same order as in `x`.
- `ssuID`: vector of SSU identification numbers. This vector must be as long as `x`. Each element in a given SSU should have the same value in `ssuID`. PSUs and SSUs must be in the same order as in `x`. `ssuID` should have the form `psuID||ssuID` within PSU.

Details
`BW3stagePPS` computes the between and within population relvariance components appropriate for a three-stage sample in which PSUs are selected with varying probabilities and with replacement. SSUs and elements within SSUs are selected by simple random sampling. The components are appropriate for approximating the relvariance of the `pwr`-estimator of a total when the same number of SSUs are selected within each PSU, and the same number of elements are selected within each sample SSU. The function requires that an entire sampling frame of PSUs and elements be input. (Use `BW2stagePPSe` if only a sample of PSUs, SSUs, and elements is available.)

Value
List with values:
- `B`: between PSU unit relvariance
- `W`: within PSU unit relvariance computed as if the sample were two-stage
- `W2`: unit relvariance among SSU totals
- `W3`: unit relvariance among elements within PSU/SSUs
- `unit relvar`: unit relvariance for population
k1 ratio of $B^2 + W^2$ to unit relvariance
k2 ratio of $W_2^2 + W_3^2$ to unit relvariance
delta1 homogeneity measure among elements within PSUs estimated as $B^2/(B^2 + W^2)$
delta2 homogeneity measure among elements within SSUs estimated as $W_2^2/(W_2^2 + W_3^2)$

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
BW2stagePPS, BW2stagePPSe, BW2stageSRS, BW3stagePPS

Examples
```r
data(MDarea.pop)
MDsub <- MDarea.pop[1:100000,]
M <- length(unique(MDsub$PSU))
# srs/srs/srs design
pp.PSU <- rep(1/M, M)
BW3stagePPSe(X=MDsub$y1, pp=pp.PSU, psuID=MDsub$PSU, ssuID=MDsub$SSU)
# ppswr/srs/srs design
pp.PSU <- table(MDsub$PSU) / nrow(MDsub)
BW3stagePPSe(X=MDsub$y1, pp=pp.PSU, psuID=MDsub$PSU, ssuID=MDsub$SSU)
```

BW3stagePPSe

Estimated relvariance components for 3-stage sample

Description

Estimate components of relvariance for a sample design where primary sampling units (PSUs) are selected with probability proportional to size with replacement (ppswr) and secondary sampling units (SSUs) and elements within SSUs are selected via simple random sampling (srs). The input is a sample selected in this way.
Usage

BW3stagePPSe(dat, v, Ni, Qi, Qij, m)

Arguments

dat data frame for sample elements with PSU and SSU identifiers, weights, and analysis variable(s). The data frame should be sorted in hierarchical order: by PSU and SSU within PSU. Required names for columns: psuID = PSU identifier; ssuID = SSU identifier. These must be unique, i.e., numbering should not restart within each PSU. Setting ssuID = psuID||ssuID within PSU is a method of doing this. w1i = vector of weights for PSUs; w2ij = vector of weights for SSUs (PSU weight*SSU weight within PSU); w = full sample weight

v Name or number of column in data frame dat with variable to be analyzed.

Ni m-vector of number of SSUs in the population in the sample PSUs; m is number of sample PSUs.

Qi m-vector of number of elements in the population in the sample PSUs

Qij vector of numbers of elements in the population in the sample SSUs

m number of sample PSUs

Details

BW3stagePPSe computes the between and within population relvariance components appropriate for a three-stage sample in which PSUs are selected with varying probabilities and with replacement. SSUs and elements within SSUs are selected by simple random sampling. The estimated components are appropriate for approximating the relvariance of the \(pwr \)-estimator of a total when the same number of SSUs are selected within each PSU, and the same number of elements are selected within each sample SSU.

Value

List with values:

- **Vpsu** estimated between PSU unit variance
- **Vssu** estimated second-stage unit variance among SSU totals
- **Vtsu** estimated third-stage unit variance
- **B** estimated between PSU unit relvariance
- **W** estimated within PSU unit relvariance computed as if the sample were two-stage
- **k1** estimated ratio of B*W to estimated unit relvariance of the analysis variable
- **W2** estimated unit relvariance among SSU totals
- **W3** estimated third-stage unit relvariance among elements within PSU/SSUs
- **k2** estimated ratio of W2+W3 to estimated unit relvariance of the analysis variable
- **delta1** homogeneity measure among elements within PSUs estimated as \(B^2/(B^2 + W^2) \)
- **delta2** homogeneity measure among elements within SSUs estimated as \(W_2^2/(W_2^2 + W_3^2) \)
Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
`BW2stagePPS, BW2stagePPSe, BW2stageSRS, BW3stagePPS`

Examples
```r
## Not run:
  # select 3-stage sample from Maryland population
data(MDarea.pop)
MDpop <- MDarea.pop
require(sampling)
require(reshape) # has function that allows renaming variables
  # make counts of SSUs and elements per PSU
xx <- do.call("rbind", list(by(1:nrow(MDpop), MDpop$SSU, head, 1)))
pop.tmp <- MDpop[xx, ]
Ni <- table(pop.tmp$PSU)
Qi <- table(MDarea.pop$PSU)
Qij <- table(MDpop$SSU)
m <- 30 # no. of PSUs to select
probi <- m*Qi / sum(Qi)
  # select sample of clusters
sam <- cluster(data=MDpop, clusternames="PSU", size=m, method="systematic",
                pik=probi, description=TRUE)
  # extract data for the sample clusters
samclus <- getdata(MDpop, sam)
samclus <- rename(samclus, c(Prob = "p31"))
samclus <- samclus[order(samclus$PSU), ]
  # treat sample clusters as strata and select srswor of block groups from each
  # identify psu IDs for 1st instance of each ssuID
xx <- do.call("rbind", list(by(1:nrow(samclus), samclus$SSU, head, 1)))
SSUs <- cbind(PSU=samclus$PSU[xx], SSU=samclus$SSU[xx])
  # select 2 SSUs per tract
n <- 2
s <- strata(data = as.data.frame(SSUs), stratanames = "PSU",
            size = rep(n, m), method="srswor")
s <- rename(s, c(Prob = "p21"))
  # extract the SSU data
  # s contains selection probs of SSUs, need to get those onto data file
SSUsam <- SSUs[, s[, 2:3]]
  # identify rows in PSU sample that correspond to sample SSUs
```
clusOpt2

Compute optimal sample sizes for a two-stage sample

Description

Compute the sample sizes that minimize the variance of the \(pwr \)-estimator of a total in a two-stage sample.

Usage

clusOpt2(C1, C2, delta, unit.rv, k=1, CV0=NULL, tot.cost=NULL, cal.sw)

Arguments

- **C1**
 unit cost per primary sampling unit (PSU)

- **C2**
 unit cost per element

- **delta**
 homogeneity measure \(\delta \)

- **unit.rv**
 unit relvariance
clusOpt2

\[k \] \begin{align*}
\text{ratio of } B^2 + W^2 \text{ to unit relvariance}
\end{align*}

\[CV_0 \] \begin{align*}
\text{target CV}
\end{align*}

\[\text{tot. cost} \] \begin{align*}
\text{total budget for variable costs}
\end{align*}

\[\text{cal. sw} \] \begin{align*}
\text{specify type of optimum: 1 = find optimal } m_{\text{opt}} \text{ for fixed total budget; 2 = find optimal } m_{\text{opt}} \text{ for target } CV_0
\end{align*}

Details

clusOpt2 will compute \(m_{\text{opt}} \) and \(\bar{n}_{\text{opt}} \) for a two-stage sample which uses simple random sampling at each stage or \(ppswr \) at the first stage and \(srs \) at the second.

Value

List with values:

- \(C_1 \) \begin{align*}
\text{unit cost per PSU}
\end{align*}
- \(C_2 \) \begin{align*}
\text{unit cost per element}
\end{align*}
- \(\text{delta} \) \begin{align*}
\text{homogeneity measure}
\end{align*}
- \(\text{unit relvar} \) \begin{align*}
\text{unit relvariance}
\end{align*}
- \(k \) \begin{align*}
\text{ratio of } B^2 + W^2 \text{ to unit relvariance}
\end{align*}
- \(\text{cost} \) \begin{align*}
\text{total budget for variable costs, } C-C_0 \text{ if } \text{cal. sw}=1; \text{ or computed cost if } \text{cal. sw}=2
\end{align*}
- \(m_{\text{opt}} \) \begin{align*}
\text{optimum number of sample PSUs}
\end{align*}
- \(n_{\text{opt}} \) \begin{align*}
\text{optimum number of sample elements per PSU}
\end{align*}
- \(CV \) \begin{align*}
\text{computed CV if } \text{cal. sw}=1; \text{ or target CV if } \text{cal. sw}=2
\end{align*}

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

clusOpt2fixedPSU, clusOpt3, clusOpt3fixedPSU

Examples

```
# optimum for a fixed total budget
clusOpt2(C1=750, C2=100, delta=0.05, unit.rv=1, k=1, tot.cost=100000, cal.sw=1)
# optimum for a target CV
clusOpt2(C1=750, C2=100, delta=0.01, unit.rv=1, k=1, CV0=0.05, cal.sw=2)
```
clusOpt2fixedPSU

Optimal number of sample elements per PSU in a two-stage sample when the sample of PSUs is fixed

Description

Compute the optimum number of sample elements per primary sampling unit (PSU) for a fixed set of PSUs

Usage

clusOpt2fixedPSU(C1, C2, m, delta, unit.rv, k=1, CV0=NULL, tot.cost, cal.sw)

Arguments

- C1: unit cost per PSU
- C2: unit cost per element
- m: number of sample PSUs (fixed)
- delta: homogeneity measure
- unit.rv: unit relvariance
- k: ratio of $B^2 + W^2$ to unit relvariance
- CV0: target CV
- tot.cost: total budget for variable costs
- cal.sw: specify type of optimum: 1 = find optimal \bar{n} for fixed total budget; 2 = find optimal \bar{n} for target CV0

Details

clusOpt2fixedPSU will compute \bar{n}_{opt} for a two-stage sample which uses simple random sampling at each stage or ppswr at the first stage and srs at the second. The PSU sample is fixed.

Value

List with values:

- C1: unit cost per PSU
- C2: unit cost per element
- m: number of (fixed) sample PSUs
- delta: homogeneity measure
- unit_relvar: unit relvariance
- k: ratio of $B^2 + W^2$ to unit relvariance
- cost: total budget for variable costs, $C-C_0$ if cal.sw=1; or computed cost if cal.sw=2
- n: optimum number of sample elements per PSU
- CV: computed CV if cal.sw=1; or target CV if cal.sw=2
clusOpt3

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
clusOpt2, clusOpt3, clusOpt3fixedPSU

Examples

```r
# optima for a vector of budgets
clusOpt2fixedPSU(C1=500, C2=100, m=100, delta=0.05, unit.rv=2, k=1, CV0=NULL, 
tot.cost=c(100000, 500000, 10^6), cal.sw=1)

# optima for a target CV and vector of PSU costs
clusOpt2fixedPSU(C1=c(500,1000,5000), C2=100, m=100, delta=0.05, unit.rv=2, k=1, 
CV0=0.05, tot.cost=NULL, cal.sw=2)
```

clusOpt3

Compute optimal sample sizes for a three-stage sample

Description
Compute the sample sizes that minimize the variance of the pwr-estimator of a total in a three-stage sample.

Usage
clusOpt3(unit.cost, delta1, delta2, unit.rv, k1=1, k2=1, CV0=NULL, tot.cost=NULL, cal.sw)

Arguments
- **unit.cost**: vector with three components for unit costs: C1 = unit cost per primary sampling unit (PSU); C2 = unit cost per secondary sampling unit (SSU); C3 = unit cost per element
- **delta1**: homogeneity measure among elements within PSUs
- **delta2**: homogeneity measure among elements within SSUs
- **unit.rv**: population unit relvariance
- **k1**: ratio of $B^2 + W^2$ to the population unit relvariance
- **k2**: ratio of $W_2^2 + W_3^2$ to the population unit relvariance
- **CV0**: target CV
- **tot.cost**: total budget for variable costs
- **cal.sw**: specify type of optimum: 1 = find optimal m.opt for fixed total budget; 2 = find optimal m.opt for target CV0
clusOpt3 will compute \(m_{opt} \), \(\bar{n}_{opt} \), and \(\bar{q}_{opt} \) for a three-stage sample which uses simple random sampling at each stage or \(ppswr \) at the first stage and \(srs \) at the second and third stages.

Value

List with values:

- **C1** unit cost per PSU
- **C2** unit cost per SSU
- **C3** unit cost per element
- **delta1** homogeneity measure among elements within PSUs
- **delta2** homogeneity measure among elements within SSUs
- **unit relvar** unit relvariance
- **k1** ratio of \(B^2 + W^2 \) to the population unit relvariance
- **k2** ratio of \(W_2^2 + W_3^2 \) to the population unit relvariance
- **cost** total budget for variable costs if cal. sw=1; or computed cost if cal. sw=2
- **m. opt** optimum number of sample PSUs
- **n. opt** optimum number of sample SSUs per PSU
- **q. opt** optimum number of sample elements per SSU
- **CV** achieved CV if cal. sw=1 or target CV if cal. sw=2

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

clusOpt2, clusOpt2fixedPSU, clusOpt3fixedPSU

Examples

```
# optima for a fixed total budget
clusOpt3(unit.cost=c(500, 100, 120), delta1=0.01, delta2=0.10, unit.rv=1,
          k1=1, k2=1, tot.cost=100000, cal.sw=1)

# optima for a target CV
clusOpt3(unit.cost=c(500, 100, 120), delta1=0.01, delta2=0.10, unit.rv=1,
          k1=1, k2=1, CV0=0.01, cal.sw=2)
```
clusOpt3fixedPSU

Compute optimal number of sample secondary sampling units (SSUs) and elements per SSU for a fixed set of primary sampling units (PSUs) in a three-stage sample.

Description

Compute the sample sizes that minimize the variance of the \(pwr \)-estimator of a total in a three-stage sample when the PSU sample is fixed.

Usage

\[
\text{clusOpt3fixedPSU}(\text{unit.cost}, m, \text{delta1}, \text{delta2}, \text{unit.rv}, k1=1, k2=1, \text{CV0}=\text{NULL}, \text{tot.cost} = \text{NULL}, \text{cal.sw})
\]

Arguments

- **unit.cost**: 3-vector of unit costs: \(C1 = \) unit cost per PSU; \(C2 = \) unit cost per SSU; \(C3 = \) unit cost per element
- **m**: number of sample PSUs (fixed)
- **delta1**: homogeneity measure among elements within PSUs
- **delta2**: homogeneity measure among elements within SSUs
- **unit.rv**: unit relvariance
- **k1**: ratio of \(B^2 + W^2 \) to unit relvariance
- **k2**: ratio of \(W^2_2 + W^2_3 \) to unit relvariance
- **CV0**: target CV
- **tot.cost**: total budget for variable costs, including PSU costs
- **cal.sw**: specify type of optimum: 1 = find optimal \(m_{opt} \) for fixed total budget; 2 = find optimal \(m_{opt} \) for target CV0

Details

clusOpt3 will compute \(\bar{n}_{opt} \) and \(\bar{q}_{opt} \) for a three-stage sample which uses simple random sampling at each stage or \(ppswr \) at the first stage and \(srs \) at the second and third stages. The set of sample PSUs is assumed to be fixed. "Variable costs" in \(\text{tot.cost} \) includes the budget for all costs that vary with the number of sample PSUs, SSUs, and elements, i.e., \(C1m + C2m\bar{n} + C3m\bar{q} \).

Value

List with values:

- **C1**: unit cost per PSU
- **C2**: unit cost per SSU
- **C3**: unit cost per element
m number of sample PSUs (fixed)
delta1 homogeneity measure among elements within PSUs
delta2 homogeneity measure among elements within SSUs
unit relvar unit relvariance
k1 ratio of $B^2 + W^2$ to unit relvariance
k2 ratio of $W_2^2 + W_3^2$ to unit relvariance
cost budget constraint, tot.cost if cal.sw=1; computed cost if cal.sw=2
n optimum number of sample SSUs per PSU
q optimum number of sample elements per SSU
CV achieved CV, used if cal.sw=1; or target CV, used if cal.sw=2
CV check computed CV based on optimal sample sizes; used only if cal.sw=2

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
clusOpt2, clusOpt2fixedPSU, clusOpt3

Examples
optima for a fixed total budget
clusOpt3fixedPSU(unit.cost=c(500, 100, 120), m=100, delta1=0.01, delta2=0.05, unit.rv=1, k1=1, k2=1, tot.cost=500000,cal.sw=1)
optima for a target CV
clusOpt3fixedPSU(unit.cost=c(500, 100, 120), m=100, delta1=0.01, delta2=0.05, unit.rv=1, k1=1, k2=1, CV0=0.05,cal.sw=2)
CVcalc2 Coefficient of variation of an estimated total in a 2-stage sample

Description
Compute the coefficient of variation of an estimated total in a two-stage design. Primary sampling units (PSUs) can be selected either with probability proportional to size (pps) or with equal probability. Elements are selected via simple random sampling (srs).

Usage
CVcalc2(V=NULL, m=NULL, nbar=NULL, k=1, delta=NULL, Bsq=NULL, Wsq=NULL)

Arguments
v unit relvariance of analysis variable in the population
m number of sample PSUs
nbar number of sample elements per PSU
k ratio of $B^2 + W^2$ to V. Default value is 1.
delta measure of homogeneity equal to $B^2/(B^2 + W^2)$
Bsq unit relvariance of PSU totals
Wsq within PSU relvariance

Details
CVcalc2 computes the coefficient of variation of an estimated total for a two-stage sample. PSUs can be selected either with varying probabilities and with replacement or with equal probabilities and with replacement. Elements within PSUs are selected by simple random sampling. The CV formula is appropriate for approximating the relvariance of the probability-with-replacement (pwr)-estimator of a total when the same number of elements is selected within each sample PSU. See Sections 9.2.1–9.2.3 of Valliant, Dever, and Kreuter (2013) for details of formulas.

Value
Value of the coefficient of variation of an estimated total

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References
See Also

CVcalc3

Examples

CVcalc2(V=1, m=20, nbar=5, k=1, delta=0.05)
CVcalc2(V=10, m=20, nbar=5, k=1, delta=0.5)
CVcalc2(V=2.5, m=20, nbar=5, k=2, Bs=1, Ws=4)

CVcalc3

Coefficient of variation of an estimated total in a 3-stage sample

Description

Compute the coefficient of variation of an estimated total in a three-stage design. Primary sampling units (PSUs) can be selected either with probability proportional to size (pps) or with equal probability. Secondary units and elements within SSUs are selected via simple random sampling (srs).

Usage

CVcalc3(V=NULL, m=NULL, nbar=NULL, qbar=NULL, k1=1, k2=1, delta1=NULL, delta2=NULL, Bs=NULL, Ws=NULL, W2s=NULL, W3s=NULL)

Arguments

- \(V \)
 - unit relvariance of analysis variable in the population
- \(m \)
 - number of sample PSUs
- \(nbar \)
 - number of sample secondary units per PSU
- \(qbar \)
 - number of sample elements per SSU
- \(k1 \)
 - ratio of \(B^2 + W^2 \) to \(V \). Default value is 1.
- \(k2 \)
 - ratio of \(W_2^2 + W_3^2 \) to \(V \). Default value is 1.
- \(\delta_{1} \)
 - measure of homogeneity between PSUs equal to \(B^2/(B^2 + W^2) \)
- \(\delta_{2} \)
 - measure of homogeneity between SSUs within PSUs, equal to \(W_2^2/(W_2^2 + W_3^2) \)
- \(Bs \)
 - unit relvariance of PSU totals, equal to population variance of totals divided by \(\bar{t}_U \)
- \(Ws \)
 - within PSU relvariance of elements
- \(W2s \)
 - unit SSU relvariance
- \(W3s \)
 - unit element relvariance
Details

CVcalc3 computes the coefficient of variation of an estimated total for a three-stage sample. PSUs can be selected either with varying probabilities and with replacement or with equal probabilities and with replacement. SSUs and elements within SSUs are selected by simple random sampling. The \(CV \) formula is appropriate for approximating the relvariance of the probability-with-replacement \((pwr) \)-estimator of a total when the same number of SSUs is selected in each PSU and the same number of elements is selected within each sample SSU. See Sect. 9.2.4 of Valliant, Dever, and Kreuter (2013) for details of formulas.

Value

Value of the coefficient of variation of an estimated total

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

CVcalc3

Examples

CVcalc3(V=1, m=20 , nbar=5, qbar=10, delta1=0.02, delta2=0.10)
CVcalc3(V=1, m=20 , nbar=5, qbar=10, delta1=0.02, delta2=0.09)
CVcalc3(V=2, m=20 , nbar=5, qbar=10, k1=5, k2=10, Bsq=1, Wsq=9, W2sq=2 , W3sq=18)

deff

Design effects of various types

Description

Compute the Kish, Henry, Spencer, or Chen-Rust design effects.

Usage

deff(w, x=NULL, y=NULL, p=NULL, strvar=NULL, clvar=NULL, Wh=NULL, nest=FALSE, type)
Arguments

w vector of weights for a sample
x matrix of covariates used to construct a GREG estimator of the total of y. This matrix does not include the intercept. Used only for Henry deff.
y vector of the sample values of an analysis variable
p vector of 1-draw selection probabilities, i.e., the probability that each unit would be selected in a sample of size 1. Used only for Spencer deff.
strvar vector of stratum identifiers; equal in length to that of w. Used only for Chen-Rust deff.
c1var vector of cluster identifiers; equal in length to that of w. Used only for Chen-Rust deff.
wh vector of the proportions of elements that are in each stratum; length is number of strata. Used only for Chen-Rust deff.
nest Are cluster IDs numbered within strata (TRUE or FALSE)? If TRUE, cluster IDs can be restarted within strata, e.g., 1,2,3,1,2,3,...
type type of allocation; must be one of "kish", "henry", "spencer", "cr"

Details
deff calls one of deffK, deffH, deffS, or deffCR depending on the value of the type parameter. The Kish design effect is the ratio of the variance of an estimated mean in stratified simple random sampling without replacement (stsrswor) to the variance of the estimated mean in srswor, assuming that all stratum unit variances are equal. In that case, proportional allocation with equal weighting is optimal. deffK equals 1 + relvar(w) where relvar is relvariance of the vector of survey weights. This measure is not appropriate in samples where unequal weighting is more efficient than equal weighting.

The Henry design effect is the ratio of the variance of the general regression (GREG) estimator of a total of y to the variance of the estimated total in srswr. Calculations for the Henry deff are done as if the sample is selected in a single-stage and with replacement. Varying selection probabilities can be used. The model for the GREG is assumed to be y = α + βx + ε, i.e., the model has an intercept.

The Spencer design effect is the ratio of the variance of the pwr-estimator of the total of y, assuming that a single-stage sample is selected with replacement, to the variance of the total estimated in srswr. Varying selection probabilities can be used.

The Chen-Rust deff accounts for stratification, clustering, and unequal weights, but does not account for the use of any auxiliary data in the estimator of a mean. The Chen-Rust deff returned here is appropriate for stratified, two-stage sampling.

Value

Numeric design effect for types kish, henry, spencer. For type cr a list with components:
strata components Matrix with deff’s due to weighting, clustering, and stratification for each stratum
overall deff Design effect for full sample accounting for weighting, clustering, and stratification
Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
deffK, deffH, deffS, deffCR

Examples
```
require(reshape)  # has function that allows renaming variables
require(sampling)

set.seed(-500398777)
# generate population using HMT function
pop.dat <- as.data.frame(HMT())
mos <- pop.dat$x
pop.dat$prbs.1d <- mos / sum(mos)
# select pps sample
n <- 80
pk <- n * pop.dat$prbs.1d
sam <- UPrandomsystematic(pk)
sam <- sam[1]

sam.dat <- pop.dat[sam,]
dsgn.wts <- 1/pk[sam]
deff(w=dsgn.wts, type="kish")
deff(w=dsgn.wts, y=sam.dat$y, p=sam.dat$prbs.1d, type="spencer")
deff(w=dsgn.wts, x=sam.dat$x, y=sam.dat$y, type="henry")

data(MDarea.pop)
Ni <- table(MDarea.pop$TRACT)
m <- 10
```
select sample of clusters
set.seed(-780087528)
sam <- cluster(data=Marea.pop, clustername="TRACT", size=m, method="systematic",
 pik=probi, description=TRUE)

extract data for the sample clusters
samclus <- getdata(Marea.pop, sam)
samclus <- rename(samclus, c(Prob = "p1"))

treat sample clusters as strata and select srswor from each
nbar <- 4
s <- strata(data = as.data.frame(samclus), stratanames = "TRACT",
 size = rep(nbar,m), method="srswor")

extracts the observed data
samdat <- getdata(samclus,s)
samdat <- rename(samdat, c(Prob = "pi2"))

add a fake stratum ID
H <- 2
nh <- m * nbar / H
stratum <- NULL
for (h in 1:H){
 stratum <- c(stratum, rep(h,nh))
}
wt <- 1/(samdat$pi1*samdat$pi2) * runif(m*nbar)
samdat <- cbind(subset(samdat, select = ~c(STRATUM)), stratum, wt)
deff(w = samdat$wt, y=samdat$y2, strvar = samdat$stratum, clvar = samdat$TRACT, Wh=NULL, type="cr")

deffCR

Chen-Rust design effect

Description

Chen-Rust design effect for stratified, clustered, two-stage samples

Usage

deffCR(w, strvar=NULL, clvar=NULL, Wh=NULL, nest=FALSE, y)

Arguments

w vector of weights for a sample
strvar vector of stratum identifiers; equal in length to that of w.
clvar vector of cluster identifiers; equal in length to that of w.
Wh vector of the proportions of elements that are in each stratum; length is number of strata.
nest Are cluster IDs numbered within strata (TRUE or FALSE)? If TRUE, cluster IDs can be restarted within strata, e.g., 1,2,3,1,2,3,...
y vector of the sample values of an analysis variable
Details
The Chen-Rust \textit{deff} accounts for stratification, clustering, and unequal weights, but does not account for the use of any auxiliary data in the estimator of a mean. The Chen-Rust \textit{deff} returned here is appropriate for stratified, two-stage sampling.

Value
A list with components:

- \texttt{strata components}
 Matrix with \textit{deff}'s due to weighting, clustering, and stratification for each stratum
- \texttt{overall deff}
 Design effect for full sample accounting for weighting, clustering, and stratification

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
\texttt{deff, deffH, deffK, deffS}

Examples
```
require(sampling)
require(reshape)
data(MDarea.pop)
Ni <- table(MDarea.pop$TRACT)
m <- 10
probi <- m*Ni / sum(Ni)
  # select sample of clusters
set.seed(-780087528)
sam <- sampling::cluster(data=MDarea.pop, clustername="TRACT", size=m, method="systematic", pik=probi, description=TRUE)
  # extract data for the sample clusters
samclus <- getdata(MDarea.pop, sam)
samclus <- rename(samclus, c(Prob = "pi1"))
  # treat sample clusters as strata and select srswor from each
nbar <- 4
s <- sampling::strata(data = as.data.frame(samclus), stratanames = "TRACT", size = rep(nbar,m), method="srswor")
```
extracts the observed data
samdat <- getdata(samclus,s)
samdat <- rename(samdat, c(Prob = "pi2"))
add a fake stratum ID
H <- 2
nh <- m * nbar / H
stratum <- NULL
for (h in 1:H)
 stratum <- c(stratum, rep(h,nh))
wt <- 1/(samdat$pi1*samdat$pi2) * runif(m*nbar)
samdat <- cbind(subset(samdat, select = -c(STRATUM)), stratum, wt)
deffCR(w = samdat$wt, strvar = samdat$stratum, clvar = samdat$TRACT, Wh=NULL, y=samdat$y2)

deffH

Henry design effect for pps sampling and GREG estimation of totals

Description

Compute the Henry design effect for single-stage samples when a general regression estimator is used for a total.

Usage

deffH(w, y, x)

Arguments

- `w` vector of inverses of selection probabilities for a sample
- `y` vector of the sample values of an analysis variable
- `x` matrix of covariates used to construct a GREG estimator of the total of `y`. This matrix does not include the intercept.

Details

The Henry design effect is the ratio of the variance of the general regression (GREG) estimator of a total of `y` to the variance of the estimated total in `srswr`. Calculations for the Henry `deff` are done as if the sample is selected in a single-stage and with replacement. Varying selection probabilities can be used. The model for the GREG is assumed to be $y = \alpha + \beta x + \epsilon$, i.e., the model has an intercept.

Value

numeric design effect

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter
References

See Also

deff, deffCR, deffK, deffS

Examples

```r
set.seed(-5003987777)
# generate population using HMT function
pop.dat <- as.data.frame(HMT())
mos <- pop.dat$x
pop.dat$prbs.1d <- mos / sum(mos)
  # select pps sample
require(sampling)
  n <- 80
pk <- n * pop.dat$prbs.1d
sam <- UPrandomsystematic(pk)
sam <- sam==1
sam.dat <- pop.dat[sam,]
dsgn.wts <- 1/pk[sam]
deffK(w=dsgn.wts, y=sam.dat$y, x=sam.dat$x)
```

deffK
Kish design effect

Description

Compute the Kish design effect due to having unequal weights.

Usage

deffK(w)

Arguments

- **w** vector of inverses of selection probabilities for a sample

Details

The Kish design effect is the ratio of the variance of an estimated mean in stratified simple random sampling without replacement (*stsrswor*) to the variance of the estimated mean in *srswor*, assuming that all stratum unit variances are equal. In that case, proportional allocation with equal weighting is optimal. \(\text{deffK} = 1 + \text{relvar}(w) \) where \(\text{relvar} \) is relvariance of the vector of survey weights. This measure is not appropriate in samples where unequal weighting is more efficient than equal weighting.
Value
numeric design effect

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
deff, deffCR, deffH, deffS

Examples
data(nhis)
w <- nhis$svywt
deffk(w)

deffS(p, w, y)

Arguments
\(p\) vector of 1-draw selection probabilities, i.e., the probability that each unit would be selected in a sample of size 1.
\(w\) vector of inverses of selection probabilities for a sample
\(y\) vector of the sample values of an analysis variable

Details
The Spencer design effect is the ratio of the variance of the \(pwr\)-estimator of the total of \(y\), assuming that a single-stage sample is selected with replacement, to the variance of the total estimated in \(srswr\). Varying selection probabilities can be used.
Domainy1y2

Value

numeric design effect

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

deff, deffCR, deffH, deffK

Examples

```r
set.seed(-500398777)
  # generate population using HMT function
pop.dat <- as.data.frame(HMT())
mos <- pop.dat$x
pop.dat$prbs.1d <- mos / sum(mos)
  # select pps sample
require(sampling)
n <- 80
pk <- n * pop.dat$prbs.1d
sam <- UPrandomsystematic(pk)
sam <- sam[1]
sam.dat <- pop.dat[sam,]
dsgn.wts <- 1/pk[sam]
deffS(p=sam.dat$prbs.1d, w=dsgn.wts, y=sam.dat$y)
```

Domainy1y2

Domain data

Description

Domainy1y2 is a small data file used for an exercise in sample size calculations.

Usage

data(Domainy1y2)
Format

A data frame with 30 observations on 2 variables.

- `y1` an artificial variable
- `y2` an artificial variable

References

Examples

```r
data(Domainy1y2)
str(Domainy1y2)
summary(Domainy1y2)
```

Description

Compute sample sizes at each phase of a two-phase design where strata are created using the first phase.

Usage

```r
dub(c1, c2, Ctot, Nh, Sh, Yh.bar)
```

Arguments

- `c1`: cost per unit in phase-1
- `c2`: cost per unit in phase-2
- `Ctot`: Total variable cost
- `Nh`: Vector of stratum population counts or proportions
- `Sh`: Vector of stratum population standard deviations
- `Yh.bar`: Vector of stratum population means

Details

Compute the first and second phase sample sizes for a double sampling design. A first phase sample is selected by simple random sampling (*srs*). Strata are formed based on information collected in the first phase. The Neyman allocation to strata of the second phase sample is computed ignoring costs. Optimal total sample sizes are computed for the first and second phases, given per-unit costs for the first and second phases and a fixed total budget for both phases combined.
Value

A list object with elements:

- **V1**: Variance component associated with phase-1
- **V2**: Variance component associated with phase-2
- **n1**: Phase-1 sample size
- **n2**: Total phase-2 sample across all strata
- "n2/n1": Fraction that phase-2 is of phase-1
- **ney.alloc**: Vector of stratum sample sizes for phase-2 sample
- **Vopt**: Variance of mean with the calculated phase-1 and phase-2 sample sizes
- **nsrs**: Size of an srs that has cost Ctot, assuming each unit costs c2
- **Vsrs**: Variance of mean in an srs of cost Ctot, assuming each unit costs c2
- **Vratio**: Ratio of Vopt to Vsrs
- **Ctot**: Input value of total cost
- **cost.chk**: Computed value of phase-1 plus phase-2 sample with optimal sample sizes; should agree with Ctot

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

Examples

```r
Wh <- rep(0.25, 4)
Ph <- c(0.02, 0.12, 0.37, 0.54)
Sh <- sqrt(Ph*(1-Ph))
c1 <- 10
c2 <- 50
Ctot <- 20000
dub(c1, c2, Ctot, Nh=Wh, Sh, Yh.bar=Ph)
```
Description

Regresses a y on a set of covariates X where $\text{Var}_M(y) = \sigma^2 x^\gamma$ and then regresses the squared residuals on $\log(x)$ to estimate γ.

Usage

gamEst(X1, x1, y1, v1)

Arguments

- **X1**: matrix of predictors in the linear model for y1
- **x1**: vector of x’s for individual units in the assumed specification of $\text{Var}_M(y)$
- **y1**: vector of dependent variables for individual units
- **v1**: vector proportional to $\text{Var}_M(y)$

Details

The function `gamEst` estimates the power γ in a model where the variance of the errors is proportional to x^γ for some covariate x. Values of γ are typically in $[0, 2]$. The function is iteratively called by `gammaFit`, which is normally the function that an analyst should use.

Value

The estimate of γ.

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`gammaFit`
Examples

data(hospital)
x <- hospital$x
y <- hospital$y

X <- cbind(sqrt(x), x)
gamEst(X1 = X, x1 = x, y1 = y, v1 = x)

gammaFit (Iteratively estimate variance model parameter γ)

Description

Iteratively computes estimate of γ in a model with $E_M(y) = x^T \beta$ and $Var_M(y) = \sigma^2 x^\gamma$.

Usage

gammaFit(x, x, y, maxiter = 100, show.iter = FALSE, tol = 0.001)

Arguments

x matrix of predictors in the linear model for y
x vector of x’s for individual units in the assumed specification of $Var_M(y)$
y vector of dependent variables for individual units
maxiter maximum number of iterations allowed
show.iter should values of γ be printed of each iteration? TRUE or FALSE
tol size of relative difference in γ’s between consecutive iterations used to determine convergence. Algorithm terminates when relative difference is less than tol.

Details

The function gammaFit estimates the power γ in a model where the variance of the errors is proportional to x^γ for some covariate x. Values of γ are typically in [0,2]. The function calls gamEst.

Value

A list with the components:
g.hat estimate of γ when iterative procedure stopped
converged TRUE or FALSE depending on whether convergence was obtained
steps number of steps used by the algorithm

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter
References

See Also

`gamEst`

Examples

```r
data(hospital)
x <- hospital$x
y <- hospital$y

X <- cbind(sqrt(x), x)
gammaFit(X = X, x = x, y = y, maxiter=100, tol=0.001)
```

HMT

Generate an HMT population

Description

Generate a population that follows the model in Hansen, Madow, and Tepping (1983)

Usage

```r
HMT(N=5000, H=10)
```

Arguments

- `N` population size
- `H` number of strata

Details

`HMT` generates a population based on the model: $E(y) = \alpha + \beta x$, $Var(y) = \sigma^2 x^{3/2}$. Both x and y have gamma distributions. Strata are formed to have approximately the same total of x.

Value

$N \times 3$ matrix with columns:

- `strat` stratum ID
- `x` auxiliary variable x
- `y` analysis variable y
Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

Examples

```r
# generate HMT population with 1000 units and 5 strata and plot results
pop <- HMT(N=1000, H=5)
plot(pop[,"x"],pop[,"y"])
```

hospital

Hospital Data

Description
The hospital data file is a national sample of short-stay hospitals with fewer than 1000 beds.

Usage
data(hospital)

Format
A data frame with 393 observations on the following 2 variables.

- y Number of patients discharged by the hospital in January 1968
- x Number of inpatient beds in the hospital

Details
The hospital data are from the National Hospital Discharge Survey conducted by the U.S. National Center for Health Statistics. The survey collects characteristics of inpatients discharged from non-Federal short-stay hospitals in the United States. This population is from the January 1968 survey and contains observations on 393 hospitals.

Source
National Center for Health Statistics Hospital Discharge Survey of 1968.

References
Examples

data(hospital)
str(hospital)

labor Labor force population

Description

A clustered population of persons extracted from the September 1976 Current Population Survey (CPS)

Usage

data(labor)

Format

A data frame with 478 persons on the following variables:

- h: stratum
- cluster: cluster (or segment) number
- person: person number
- age: age of person
- agecat: age category (1 = 19 years and under; 2 = 20-24; 3 = 25-34; 4 = 35-64; 5 = 65 years and over)
- race: race (1 = non-Black; 2 = Black)
- sex: Gender (1 = Male; 2 = Female)
- HoursPerWk: Usual number of hours worked per week
- WklyWage: Usual amount of weekly wages (in 1976 U.S. dollars)
- y: An artificial variable generated to follow a model with a common mean. Persons in the same cluster are correlated. Persons in different clusters are uncorrelated under the model.

Details

This population is a clustered population of 478 persons extracted from the September 1976 Current Population Survey (CPS) in the United States. The clusters are compact geographic areas used as one of the stages of sampling in the CPS and are typically composed of about 4 nearby households. The elements within clusters for this illustrative population are individual persons.

Source

MDarea.pop

Examples

```r
data(labor)
str(labor)
table(labor$h)
hist(labor$wklyWage)
```

MDarea.pop Maryland area population

Description

An artificial population of census tracts, block groups, and persons

Usage

```r
data(MDarea.pop)
```

Format

A data frame with 403,997 persons on the following variables:

- **PSU** A grouping of block groups (BLKGROUP) which has about 5050 persons
- **SSU** A grouping of block groups which has about 1010 persons
- **TRACT** A geographic area defined by the Census Bureau. Tracts generally have between 1,500 and 8,000 people but have a much wider range in Anne Arundel county.
- **BLKGROUP** Block group. A geographic area defined by the Census Bureau. Block groups generally have between 600 and 3,000 people.
- **Hispanic** Hispanic ethnicity (1=Hispanic; 2=Non-Hispanic)
- **Gender** Gender (1=Male; 2=Female)
- **Age** 23 level age category (1 = Under 5 years; 2 = 5 to 9 years; 3 = 10 to 14 years; 4 = 15 to 17 years; 5 = 18 and 19 years; 6 = 20 years; 7 = 21 years; 8 = 22 to 24 years; 9 = 25 to 29 years; 10 = 30 to 34 years; 11 = 35 to 39 years; 12 = 40 to 44 years; 13 = 45 to 49 years; 14 = 50 to 54 years; 15 = 55 to 59 years; 16 = 60 and 61 years; 17 = 62 to 64 years; 18 = 65 and 66 years; 19 = 67 to 69 years; 20 = 70 to 74 years; 21 = 75 to 79 years; 22 = 80 to 84 years; 23 = 85 years and over)
- **person** Counter for person within tract/block group/Hispanic/Gender/Age combination
- **y1** Artificial continuous variable
- **y2** Artificial continuous variable
- **y3** Artificial continuous variable
- **ins.cov** Medical coverage (0 = person does not have medical insurance coverage; 1 = person has medical insurance coverage)
- **hosp.stay** Overnight hospital stay (0 = person did not have an overnight hospital stay in last 12 months; 1 = person did have an overnight hospital stay in last 12 months)
Details

A dataset of 403,997 persons based on the 2000 decennial U.S. Census for Anne Arundel County in the state of Maryland. Person records were generated based on counts from the 2000 census. Individual values for each person were generated using models. Groupings to form the variables PSU and SSU were done after sorting the census file by tract and block group within tract.

Source

Examples

data(MDarea.pop)
str(MDarea.pop)
table(MDarea.pop$TRACT)
table(MDarea.pop$TRACT, MDarea.pop$Hispanic)

Description

Demographic and health related variables from a U.S. household survey in the state of Michigan

Usage

data(mibrfss)

Format

A data frame with 2485 observations on persons for the following 21 variables.

SMOKE100 Smoked 100 or more cigarettes in lifetime (1 = Yes; 2 = No)
BMICAT3 Body mass index category (1 = Neither overweight nor obese (BMI < 25); 2 = Overweight (25 <= BMI <= 30); 3 = Obese (BMI > 30))
AGECAT Age group (1 = 18-24 years; 2 = 25-34 years; 3 = 35-44 years; 4 = 45-54 years; 5 = 55-64 years; 6 = 65+)
GENHLTH General health (self-reported) (1 = Excellent; 2 = Very good; 3 = Good; 4 = Fair; 5 = Poor)
PHYSACT Physical activity: In last month participated in activities such as running, calisthenics, golf, gardening, or walking for exercise (1 = Yes; 2 = No)
HIGHBP High blood pressure: Have you ever been told by a doctor, nurse, or other health professional that you have high blood pressure? (1 = Yes; 2 = No)
ASTHMA Asthma: Have you ever been told by a doctor, nurse, or other health professional that you have asthma? (1 = Yes; 2 = No)
HISPANIC Hispanic ethnicity (1 = Yes; 2 = No; 7 = Missing)
WEIGHT Body weight in pounds
GENDER Gender (1 = Male; 2 = Female)
CELLPHON Has a wireless phone (1 = Yes; 2 = No)
INETHOME Has access to the Internet at home (1 = Yes; 2 = No)
WEBUSE How often do you use the Internet at home? Would you say, at least once a day, five to six times a week, two to four times a week, about once a week, less than once a week, or have you not used the Internet in the last month? (1 = At least once a day; 2 = 5-6 times a week; 3 = 2-4 times a week; 4 = About once a week; 5 = Less than once a week; 6 = Not in the last month)
RACECAT Race (1 = White; 2 = African American; 3 = Other)
EDCAT Education level (1 = Did not graduate high school; 2 = Graduated high school; 3 = Attended college or technical school; 4 = Graduated from college or technical school)
INCOMC3 Income category (1 = Less than $15000; 2 = $15000 to less than $25000; 3 = $25000 to less than $35000; 4 = $35000 to less than $50000; 5 = $50000 or more)
DIABETE2 Diabetes: Have you ever been told by a doctor, nurse, or other health professional that you have diabetes? (1 = Yes; 2 = No)
CHOLCHK Cholesterol check: Blood cholesterol is a fatty substance found in the blood. Have you ever had your blood cholesterol checked? (1 = Yes; 2 = No)
BMI Body mass index (continuous)
BINGE2 Binge drinking: At risk for binge drinking based on alcohol consumption responses (1 = Yes; 2 = No)
ARTHRT Arthritis: Have you ever been told by a doctor, nurse, or other health professional that you have some form of arthritis, rheumatoid arthritis, gout, lupus, or fibromyalgia, or have joint symptoms of arthritis? (1 = Yes; 2 = No; 3 = Don’t know, not sure, or refused)

Details

The Michigan Behavioral Risk Factor Surveillance Survey (MIBRFSS) is part of a national state-by-state system of surveys used to monitor health conditions in the U.S. Data are collected through telephone household interviews. Demographic variables and a few health related variables are included in this subset. The mibrfss data set contains observations on 2845 persons and is extracted from the 2003 U.S. survey. The file contains only persons 18 years and older.

Source

See Also

nhis, nhis.large
Examples

```r
data(mibrfss)
str(mibrfss)
table(mibrfss$SMOKE100, useNA = "always")
table(mibrfss$BMICAT3, useNA = "always")
```

nCont

Compute a simple random sample size for an estimated mean

Description

Compute a simple random sample size using either a target coefficient of variation, CV_0, or target variance, V_0, for an estimated mean.

Usage

```r
nCont(CV0=NULL, V0=NULL, S2=NULL, ybarU=NULL, N=Inf, CVpop=NULL)
```

Arguments

- `CV0` : target value of coefficient of variation of \bar{y}_s
- `V0` : target value of variance of \bar{y}_s
- `S2` : unit (population) variance
- `ybarU` : population mean of target variable
- `N` : number of units in finite population
- `CVpop` : unit (population) coefficient of variation

Details

If CV_0 is the desired target, then the unit CV, CVpop, or the population mean and variance, $ybarU$ and $S2$, must also be provided. If V_0 is the constrained value, then $S2$ must be also be included in the function call.

Value

numeric sample size

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

nContMoe

Computes a simple random sample size for an estimated mean of a continuous variable based on margin of error.

Description

Compute a simple random sample size using a margin of error specified as the half-width of a normal approximation confidence interval or the half-width relative to the population mean.

Usage

```r
nContMoe(moe.sw, e, alpha=0.05, CVpop=NULL, S2=NULL, ybarU=NULL, N=Inf)
```

Arguments

- **moe.sw**: switch for setting desired margin of error (1 = CI half-width on the mean; 2 = CI half-width on the mean divided by \(\bar{y}_U \))
- **e**: desired margin of error; either \(e = z_{1-\alpha/2} \sqrt{V(\bar{y}_s)} \) or \(e = z_{1-\alpha/2} CV(\bar{y}_s) \)
- **alpha**: 1 - (confidence level)
- **CVpop**: unit (population) coefficient of variation
- **S2**: population variance of the target variable
- **ybarU**: population mean of target variable
- **N**: number of units in finite population

Examples

```r
nCont(CV0=0.05, CVpop=2)
nCont(CV0=0.05, CVpop=2, N=500)
nCont(CV0=0.10/1.645, CVpop=1)
```

Compute sample size for a ratio estimator in smho98 population
Identify large units to select with certainty first

data(smho98)
cert <- smho98[, "BEDS"] > 2000
tmp <- smho98[!cert,]
tmp <- tmp[tmp[, "BEDS"] > 0,]

x <- tmp[, "BEDS"]
y <- tmp[, "EXPTotal"]
m <- lm(y ~ 0 + x, weights = 1/x)
ybaru <- mean(y)
S2R <- sum(m$residuals^2/(length(x)-1))
nCont(CV0=0.15, S2=S2R, ybarU=ybaru)

See Also

nLogOdds, nProp, nPropMoe, nWilson
Details
If moe.sw=1, then S2 must be provided. If moe.sw=2, then either (i) CVpop or (ii) S2 and ybarU must be provided.

Value
numeric sample size

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
nCont, nLogOdds, nProp, nPropMoe, nWilson

Examples
nContMoe(moe.sw=1, e=0.05, alpha=0.05, S2=2)
nContMoe(moe.sw=1, e=0.05, alpha=0.05, S2=2, N=200)
nContMoe(moe.sw=2, e=0.05, alpha=0.05, CVpop=2)
nContMoe(moe.sw=2, e=0.05, alpha=0.05, CVpop=2, N=200)
nContMoe(moe.sw=2, e=0.05, alpha=0.05, S2=4, ybarU=2)
nDep2sam(S2x, S2y, g, r, rho, alt, del, sig.level=0.05, pow=0.80)

Arguments
S2x unit variance of analysis variable x in sample 1
S2y unit variance of analysis variable y in sample 2
g proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
rho unit-level correlation between x and y
ndep2sam

\[
\begin{align*}
\text{alt} & \quad \text{should the test be 1-sided or 2-sided; allowable values are alt="one.sided" or alt="two.sided".} \\
\text{del} & \quad \text{size of the difference between the means to be detected} \\
\text{sig.level} & \quad \text{significance level of the hypothesis test} \\
\text{pow} & \quad \text{desired power of the test}
\end{align*}
\]

Details

`ndep2sam` computes sample sizes in two groups that are required for testing whether the difference in group means is significant. The power of the test is one of the input parameters. The samples have a specified proportion of units in common. Both samples are assumed to be selected via simple random sampling.

Value

List with values:

- `n1`: sample size in group 1
- `n2`: sample size in group 2
- `S2x.S2y`: unit variances in groups 1 and 2
- `delta`: difference in group means to be detected
- `gamma`: proportion of sample 1 that is in the overlap with sample 2
- `r`: ratio of the size of sample 1 to that of sample 2
- `rho`: unit-level correlation between analysis variables in groups 1 and 2
- `alt`: type of test: one-sided or two-sided
- `sig.level`: significance level of test
- `power`: power of the test

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`nprop2sam`
Examples

nDep2sam(S2x=200, S2y=200,
g=0.75, r=1, rho=0.9,
alt="one.sided", del=5,
sig.level=0.05, pow=0.80)

nDomain

Compute a simple random sample size for an estimated mean or total for a domain

Description

Compute a simple random sample size using either a target coefficient of variation, $CV_0(d)$, or target variance, $V_0(d)$, for an estimated mean or total for a domain.

Usage

nDomain(CV0d=NULL, V0d=NULL, S2d=NULL, ybarUd=NULL, N=Inf, CVpopd=NULL, Pd, est.type)

Arguments

CV0d target value of coefficient of variation of estimated domain mean or total
V0d target value of variance of estimated domain mean or total
S2d unit (population) variance for domain units
ybarUd population mean of target variable for domain units
N number of units in full finite population (not just the domain population)
CVpopd unit (population) coefficient of variation for domain units
Pd proportion of units in the population that are in the domain
est.type type of estimate; allowable values are "mean" or "total"

Details

If CV0d is the desired target, then the unit CV, CVpopd, or the domain population mean and variance, ybarUd and S2d, must also be provided. If V0d is the constrained value, then ybarUd must also be included in the function call. CV0d will then be computed as \sqrt{V0d/ybarUd}.

Value

numeric sample size

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter
References

See Also

nCont, nLogOdds, nProp, nPropMoe, nWilson

Examples

```r
nDomain(CV0d=0.05, N=Inf, CVpopd=1, Pd=0.5, est.type="total")
nDomain(CV0d=0.05, N=Inf, CVpopd=1, Pd=0.5, est.type="mean")
nDomain(CV0d=50, ybarUd=50, S2d=100, N=Inf, Pd=0.5, est.type="total")
nDomain(CV0d=0.05, ybarUd=50, S2d=100, N=Inf, Pd=0.5, est.type="total")
nDomain(CV0d=0.05, ybarUd=50, S2d=100, N=Inf, Pd=0.5, est.type="mean")
```

nhis

National Health Interview Survey: Demographic variables

Description

Demographic variables from a U.S. national household survey

Usage

```r
data(nhis)
```

Format

A data frame with 3,911 observations on the following 16 variables.

- ID: Identification variable
- stratum: Sample design stratum
- psu: Primary sampling unit, numbered within each stratum (1,2)
- svywt: Survey weight
- sex: Gender (1 = male; 2 = female)
- age: Age, continuous
- age_r: Recoded age (3 = 18-24 years; 4 = 25-44 years; 5 = 45-64 years; 6 = 65-69 years; 7 = 70-74 years; 8 = 75 years and older)
- hisp: Hispanic ethnicity (1 = Hispanic; 2 = Non-Hispanic)
- marital: Marital status (1 = Separated; 2 = Divorced; 3 = Married; 4 = Single/never married; 5 = Widowed; 9 = Unknown marital status)
- parents: Parent(s) of sample person present in the family (1 = Mother, no father; 2 = Father, no mother; 3 = Mother and father; 4 = Neither mother nor father)
- parents_r: Parent(s) of sample person present in the family recode (1 = Yes; 2 = No)
Details

The National Health Interview Survey (NHIS) is used to monitor health conditions in the U.S. Data are collected through personal household interviews. Only demographic variables are included in this subset which was collected in 2003. The nhis data set contains observations for 3,911 persons. The file contains only persons 18 years and older.

Source

See Also

nhis.large

data(nhis)
str(nhis)
table(nhis$sex,nhis$age_r)

Description

Demographic and health related variables from a U.S. national household survey

Usage

data(nhis.large)
Format

A data frame with 21,588 observations on the following 18 variables.

- **id**: Identification variable
- **stratum**: Sample design stratum
- **psu**: Primary sampling unit, numbered within each stratum (1,2)
- **svywt**: Survey weight
- **sex**: Gender (1 = male; 2 = female)
- **agegrp**: Age group (1 = < 18 years; 2 = 18-24 years; 3 = 25-44 years; 4 = 45-64 years; 5 = 65+)
- **hisp**: Hispanic ethnicity (1 = Hispanic; 2 = Non-Hispanic White; 3 = Non-Hispanic Black; 4 = Non-Hispanic All other race groups)
- **parents**: Parents present in the household (1 = mother, father, or both present; 2 = neither present)
- **educ**: Highest level of education attained (1 = High school graduate, graduate equivalence degree, or less; 2 = Some college; 3 = Bachelor’s or associate’s degree; 4 = Master’s degree or higher; NA = missing)
- **race**: Race (1 = White; 2 = Black; 3 = All other race groups)
- **incgrp**: Family income group (1 = < $20K; 2 = $20000-$24999; 3 = $25000-$34999; 4 = $35000-$44999; 5 = $45000-$54999; 6 = $55000-$64999; 7 = $65000-$74999; 8 = $75K+; NA = missing)
- **delaymed**: Delayed medical care in last 12 months because of cost (1 = Yes; 2 = No; NA = missing)
- **hospstay**: Had an overnight hospital stay in last 12 months (1 = Yes; 2 = No; NA = missing)
- **docvisit**: During 2 WEEKS before interview, did person see a doctor or other health care professional at a doctor's office, a clinic, an emergency room, or some other place? (excluding overnight hospital stay)? (1 = Yes; 2 = No)
- **medicaid**: Covered by medicaid, a governmental subsidy program for the poor (1 = Yes; 2 = No; NA = missing)
- **notcov**: Not covered by any type of health insurance (1 = Yes; 2 = No; NA = missing)
- **doinglw**: What was person doing last week? (1 = Working for pay at a job or business; 2 = With a job or business but not at work; 3 = Looking for work; 4 = Working, but not for pay, at a job or business; 5 = Not working and not looking for work; NA = missing)
- **limited**: Is the person limited in any way in any activities because of physical, mental or emotional problems? (1 = Limited in some way; 2 = Not limited in any way; NA = missing)

Details

The National Health Interview Survey (NHIS) is used to monitor health conditions in the U.S. Data are collected through personal household interviews. Demographic variables and a few health related variables are included in this subset. The `nhis.large` data set contains observations on 21,588 persons extracted from the 2003 U.S. NHIS survey. The file contains only persons 18 years and older.

Source

National Health Interview Survey of 2003 conducted by the U.S. National Center for Health Statistics. http://www.cdc.gov/nchs/nhis.htm
See Also

\texttt{nhis}

Examples

\begin{verbatim}
data(nhis.large)
str(nhis.large)
table(nhis.large$stratum, nhis.large$psu)
table(nhis.large$delay.med, useNA="always")
\end{verbatim}

\begin{verbatim}

\texttt{nhispart}
\end{verbatim}

\textit{National Health Interview Survey data from 2003: socioeconomic variables}

Description

Socioeconomic variables from a U.S. national household survey

Usage

\begin{verbatim}
data(nhispart)
\end{verbatim}

Format

A data frame with 3,924 observations on the following variables.

\begin{verbatim}
HHX Household identification variable
PX Person identifier within household
STRATUM Sample design stratum
PSU Primary sampling unit, numbered within each stratum (1,2)
WTFA survey weight
SEX Gender (1 = male; 2 = female)
AGE_P Age of persons; values are 18-85 (85 includes age 85 and older)
R_AGE1 Age group (3 = 18-24 years; 4 = 25-44 years; 5 = 45-64 years; 6 = 65-69 years; 7 = 70-74 years; 8 = 75 years and over)
ORIGIN_1 Hispanic ethnicity (1 = Hispanic; 2 = Non-Hispanic)
RACERPI2 Race grouped (1 = White only; 2 = Black/African American only; 3 = American Indian or Alaska native (AIAN) only; 4 = Asian only; 5 = Race group not releasable; 6 = Multiple race)
MRACRPI2 Race detailed (1 = White; 2 = Black/African American; 3 = Indian (American), Alaska Native; 9 = Asian Indian; 10 = Chinese; 11 = Filipino; 15 = Other Asian; 16 = Primary race not releasable; 17 = Multiple race, no primary race selected)
RACRECI2 White/Black (1 = White; 2 Black; 3 All other race groups)
\end{verbatim}
R_MARITL Marital status (1 = Married - spouse in household; 2 = Married - spouse not in household; 3 = Married - unknown whether spouse in household; 4 = Widowed; 5 = Divorced; 6 = Separated; 7 = Never married; 8 = Living with partner; 9 = Unknown marital status)

CDCMSTAT CDC marital status (1 = Mother, no father; 2 = Father, no mother; 3 = Mother and father; 4 = Neither mother nor father)

INCGRP Total combined family income group (1 = 0-$4999; 2 = $5000-$9999; 3 = $10000-$14999; 4 = $15000-$19999; 5 = $20000-$24999; 6 = $25000-$34999; 7 = $35000-$44999; 8 = $45000-$54999; 9 = $55000-$64999; 10 = $65000-$74999; 11 = $75000 and over; 12 = $20000 or more (no detail); 13 = Less than $20000 (no detail); 97 = Refused; 98 = Not ascertained; 99 = Don’t know)

PARENTS Parent(s) present in the family (1 = Mother, no father; 2 = Father, no mother; 3 = Mother and father; 4 = Neither mother nor father)

EDUC_R1 Highest level of education attained (1 = Less than high school graduate; 3 = High school graduate or general education development degree (GED); 5 = Some college, no degree; 6 = AA degree, technical or vocational or AA degree, academic program or Bachelor’s degree (BA, BS, AB, BBA); 9 = Master’s, professional, or doctoral degree)

RAT_CAT Ratio of family income to poverty level (1 = Under 0.50; 2 = 0.50 to 0.74; 3 = 0.75 to 0.99; 4 = 1.00 to 1.24; 5 = 1.25 to 1.49; 6 = 1.50 to 1.74; 7 = 1.75 to 1.99; 8 = 2.00 to 2.49; 9 = 2.50 to 2.99; 10 = 3.00 to 3.49; 11 = 3.50 to 3.99; 12 = 4.00 to 4.49; 13 = 4.50 to 4.99; 14 = 5.00 and over; 99 = Unknown)

Details

The National Health Interview Survey (NHIS) is used to monitor health conditions in the U.S. Data are collected through personal household interviews. Socioeconomic variables are included in this subset along with household and person codes. The nhispart data set contains observations on 3,924 persons extracted from the 2003 U.S. survey. The file contains only persons 18 years and older.

Source

Examples

data(nhispart)
str(nhispart)
table(nhispart$STRATUM, nhispart$PSU)
table(nhispart$RACERPI2, nhispart$RACRECII2, useNA="always")
nLogOdds

Calculate simple random sample size for estimating a proportion

Description

Calculate the simple random sample size for estimating a proportion using the log-odds transformation.

Usage

```r
calculate the sample size for estimating a proportion using the log-odds transformation.
```

Arguments

- `moe.sw` switch for setting desired margin of error: 1 = CI half-width on the proportion; 2 = CI half-width on a proportion divided by \(\pi U \)
- `e` desired margin of error
- `alpha` 1 - (confidence level)
- `\pi U` population proportion
- `N` number of units in finite population

Details

The function accepts five parameters, which are the same ones as accepted by `nPropMoe`. The desired margin of error can be specified as the CI half-width on the proportion (`moe.sw=1`) or as the CI half-width as a proportion of the population value \(\pi U \) (`moe.sw=2`).

Value

numeric sample size

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`nProp`, `nPropMoe`, `nWilson`, `nCont`

Examples

```r
nLogOdds(moe.sw=1, e=0.05, alpha=0.05, \pi U=0.2, N=Inf)
nLogOdds(moe.sw=2, e=0.05, alpha=0.05, \pi U=0.2, N=Inf)
```
nProp

Compute simple random sample size for estimating a proportion

Description
Compute the simple random sample size for estimating a proportion based on different precision requirements.

Usage
nProp(CV0 = NULL, V0 = NULL, pU = NULL, N = Inf)

Arguments
- CV0: target value of coefficient of variation of the estimated proportion
- V0: target value of variance of the estimated proportion
- pU: population proportion
- N: number of units in finite population

Details
The precision requirement of p_* can be set based on either a target coefficient of variation, CV_0, or a target variance, V_0. In either case, a value of p_U must be supplied.

Value
numeric sample size

Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also
nCont, nLogOdds, nPropMoe, nWilson
Examples

```r
# srs sample size so that CV of estimated proportion is 0.05
# assuming the population is large and pu=0.01
# Both examples below are equivalent
nProp(Y0=0.0005^2, N=Inf, pu=0.01) # or
nProp(CV0=0.05, N=Inf, pu=0.01)

# srswor sample size so that half-width of 2-sided 95% CI is 0.005
nProp(Y0=(0.0005/1.96)^2, N=Inf, pu=0.01)
```

nProp2sam

Simple random sample size for difference in proportions

Description

Compute a simple random sample size for estimating the difference in proportions when samples overlap.

Usage

```r
nProp2sam(px, py, pxy, g, r, alt, sig.level=0.05, pow=0.80)
```

Arguments

- `px`: proportion in group 1
- `py`: proportion in group 2
- `pxy`: proportion in the overlap has the characteristic in both samples
- `g`: proportion of sample 1 that is in the overlap with sample 2
- `r`: ratio of the size of sample 1 to that of sample 2
- `alt`: should the test be 1-sided or 2-sided; allowable values are `alt="one.sided"` or `alt="two.sided"`.
- `sig.level`: significance level of the hypothesis test
- `pow`: desired power of the test

Details

`nProp2sam` computes sample sizes in two groups that are required for testing whether the difference in group proportions is significant. The power of the test is one of the input parameters. The samples have a specified proportion of units in common.
Value

List with values:

- `n1` sample size in group 1
- `n2` sample size in group 2
- `px, py, pxy` input values of the `px`, `py`, `pxy` parameters
- `gamma` proportion of sample 1 that is in the overlap with sample 2
- `r` ratio of the size of sample 1 to that of sample 2
- `alt` type of test: one-sided or two-sided
- `sig.level` significance level of test
- `power` power of the test

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`nDep2sam`

Examples

```r
nProp2sam(px=0.5, py=0.55, pxy=0.45, g=0.5, r=1, alt="two.sided")
```

nPropMoe
Simple random sample size for a proportion based on margin of error

Description

Calculates a simple random sample size based on a specified margin of error.

Usage

```r
nPropMoe(moe.sw, e, alpha = 0.05, pu, N = Inf)
```
Arguments

moe.sw switch for setting desired margin of error (1 = CI half-width on the proportion; 2 = CI half-width on a proportion divided by \(p_U \))
e desired margin of error; either \(e = z_{1-\alpha/2} \sqrt{V(p_s)} \) or \(e = z_{1-\alpha/2} CV(p_s) \)
alpha 1 - (confidence level)
pU population proportion
N number of units in finite population

Details

The margin of error can be set as the half-width of a normal approximation confidence interval, \(e = z_{1-\alpha/2} \sqrt{V(p_s)} \), or as the half-width of a normal approximation confidence interval divided by the population proportion, \(e = z_{1-\alpha/2} CV(p_s) \). The type of margin of error is selected by the parameter moe.sw where moe.sw=1 sets \(e = z_{1-\alpha/2} \sqrt{V(p_s)} \) and moe.sw=2 sets i.e., \(e = \frac{z_{1-\alpha/2} \sqrt{V(p_s)}}{p_U} \).

Value

numeric sample size

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

nCont, nLogOdds, nProp, nWilson

Examples

srs sample size so that half-width of a 95% CI is 0.01
population is large and population proportion is 0.04
nPropMoe(moe.sw=1, e=0.01, alpha=0.05, pU=0.04, N=Inf)

srswo sample size for a range of margins of error defined as
half-width of a 95% CI
nPropMoe(moe.sw=1, e=seq(0.01,0.08,0.01), alpha=0.05, pU=0.5)

srswo sample size for a range of margins of error defined as
the proportion that the half-width of a 95% CI is of pU
nPropMoe(moe.sw=2, e=seq(0.05,0.1,0.2), alpha=0.05, pU=0.5)
NRadjClass

Class-based nonresponse adjustments

Description
Compute separate nonresponse adjustments in a set of classes.

Usage
NRadjClass(ID, NRclass, resp, preds=NULL, wts=NULL, type)

Arguments
- ID: identification value for a unit
- NRclass: vector of classes to use for nonresponse adjustment. Length is number of respondents plus nonrespondents
- resp: indicator for whether unit is a nonrespondent (must be coded 0) or respondent (must be coded 1)
- preds: response probabilities, typically estimated from a binary regression model as in pclass
- wts: vector of survey weights, typically base weights or base weights adjusted for unknown eligibility
- type: type of adjustment computed within each value of NRclass. Allowable codes are 1, 2, 3, 4, or 5. (1 = unweighted average of response propensities, i.e., preds; 2 = weighted average response propensity; 3 = unweighted response rate; 4 = weighted response rate; 5 = median response propensity)

Details
The input vectors should include both respondents and nonrespondents in a sample. A single value between 0 and 1 is computed in each nonresponse adjustment class to be used as a nonresponse adjustment. Five alternatives are available for computing the adjustment based on the value of type. The value of the adjustment is merged with individual unit data and stored in the RR field of the output data frame.

Value
A data frame of respondents only with four columns:
- NRc1.no: number of the nonresponse adjustment class for each unit
- ID: identification value for a unit
- resp: value of the resp variable (always 1)
- RR: nonresponse adjustment for each unit
Sample sizes for a nonresponse follow-up study

Description

Compute optimal values of the first-phase sample size and the second-phase sampling fraction in a two-phase sample.

Usage

NRFUopt(Ctot=NULL, c1, c2, theta, CV0=NULL, CVpop=NULL, N=Inf, type.sw)

Arguments

- **Ctot**: total variable cost
- **c1**: cost per unit in phase-1
- **c2**: cost per unit in phase-2
- **theta**: probability of response for each unit
- **CV0**: target coefficient of variation for the estimated total or mean
- **CVpop**: Unit coefficient of variation
- **N**: Population size; default is Inf
- **type.sw**: type of allocation; "cost" = target total variable cost, "cv" = target coefficient of variation
Details

NRFUopt computes the optimal values of the first-phase sample size and the second-phase sampling fraction in a two-phase sample. Both stages are assumed to be selected using simple random sampling without replacement. If type=\\"cost\\", the optima are computed for a target total, expected cost across both phases. If type=\\"cv\\", the optima are computed for a target coefficient of variation for an estimated mean.

Value

List object with values:

- allocation: type of allocation: either "fixed cost" or "fixed CV"
- "Total variable cost": expected total cost: fixed cost if type. sw="cost" or computed cost if type. sw="cv"; unrounded sample sizes are used in calculation
- "Response rate": first-phase response rate
- CV: anticipated coefficient of variation (CV) if type. sw="cost" or target CV if type. sw="cv"
- v.opt: optimal fraction of first-phase nonrespondents to select for second-phase follow-up
- n1.opt: optimal number of units to sample at first-phase
- "Expected n2": expected number of respondents obtained at second-phase
- "Expected total cases (2-phase)" expected number of respondents across both phases
- "srs sample for same cv": size of single-phase simple random sample (srs) needed to obtain same CV as the two-phase sample
- "Cost Ratio: Two phase to srs": ratio of expected cost for two-phase sample to cost of single-phase srs

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

Examples

optima for fixed target CV
NRFUopt(Ctot=NULL, c1=50, c2=200, theta=0.5, CV0=0.05, CVpop=1, type.sw = "cv")
optima for fixed total cost
NRFUopt(Ctot=100000, c1=50, c2=200, theta=0.5, CV0=NULL, CVpop=1, type.sw = "cost")

nWilson

Calculate a simple random sample size for estimating a proportion

Description

Calculate a simple random sample size for estimating a proportion using the Wilson method.

Usage

nWilson(moe.sw, alpha = 0.05, pU, e)

Arguments

moe.sw
switch for setting desired margin of error (1 = CI half-width on the proportion; 2 = CI half-width on a proportion divided by pU)

alpha
1 - (confidence level)

pU
population proportion

e
desired margin of error; either the value of CI half-width or the value of the half-width divided by pU

Details

Calculate a simple random sample size using the Wilson (1927) method. A margin of error can be set as the CI half-width on the proportion (moe.sw=1) or as the CI half-width as a proportion of the population value pU (moe.sw=2).

Value

n.sam
numeric sample size

"CI lower limit"
lower limit of Wilson confidence interval with computed sample size

"CI upper limit"
upper limit of Wilson confidence interval with computed sample size

"length of CI"
length of Wilson confidence interval with computed sample size

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter
References

See Also

nCont, nLogOdds, nProp, nPropMoe

Examples

srs sample size using wilson method so that half-width of a 95% CI
is 0.01. Population proportion is 0.04
nWilson(moe.sw = 1, pU = 0.04, e = 0.01)

pclass

Form nonresponse adjustment classes based on propensity scores

Description

Fit a binary regression model for response probabilities and divide units into a specified number of classes.

Usage

pclass(formula, data, link="logit", numcl=5, type, design=NULL)

Arguments

formula symbolic description of the binary regression model to be fitted as used in glm
data an optional data frame; must be specified if type="unwtd"
link a specification for the model link function; allowable values are "logit", "probit", or "cloglog"
numcl number of classes into which units are split based on estimated propensities
type whether an unweighted or weighted binary regression should be fit; allowable values are "unwtd" or "wtd"
design sample design object; required if type="wtd"

Details

A typical formula has the form response ~ terms where response is a two-level variable coded as 0 or 1, or is a factor where the first level denotes nonresponse and the second level is response. If type="unwtd", glm is used to fit an unweighted regression. If type="wtd", svyglm in the survey package is used to fit a survey-weighted regression.
Value

A list with components:

- `p.class`: propensity class for each unit
- `propensities`: estimated response probability for each unit

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

`nradjclass`

Examples

```r
# classes based on unweighted logistic regression
require(PraCTools)
data(nhis)
out <- pclass(formula = resp ~ age + as.factor(sex) + as.factor(hisp) + as.factor(race),
              data = nhis, type = "unwtd", link="logit", numcl=5)
table(out$p.class, useNA="always")
summary(out$propensities)

# classes based on survey-weighted logistic regression
require(survey)
nhis.dsgn <- svydesign(ids = ~psu, strata = ~stratum, data = nhis, nest = TRUE, weights = ~svywt)
out <- pclass(formula = resp ~ age + as.factor(sex) + as.factor(hisp) + as.factor(race),
              type = "wtd", design = nhis.dsgn, link="logit", numcl=5)
table(out$p.class, useNA="always")
summary(out$propensities)
```

smho.874

Survey of Mental Health Organizations Data

Description

Data from the 1998 Survey of Mental Health Organizations (SMHO)

Usage

data(smho.874)
Format

A data frame with 874 observations on the following 6 variables.

- **EXPTOTAL** Total expenditures in 1998
- **BEDS** Total inpatient beds
- **SEENCNT** Unduplicated client/patient count seen during year
- **E0YCNT** End of year count of patients on the role
- **FINDIRECT** Hospital receives money from the state mental health agency (1=Yes; 2=No)
- **hosp.type** Hospital type (1 = Psychiatric; 2 = Residential or veterans; 3 = General; 4 = Outpatient, partial care; 5 = Multi-service, substance abuse)

Details

The 1998 SMHO was conducted by the U.S. Substance Abuse and Mental Health Services Administration. It collected data on mental health care organizations and general hospitals that provide mental health care services, with an objective to develop national and state level estimates for total expenditure, full time equivalent staff, bed count, and total caseload by type of organization. The population omits one extreme observation in the smho98 population and has fewer variables than smho98. smho.N874 contains observations on 874 facilities.

Source

Substance Abuse and Mental Health Services Administration

References

See Also

- smho98

Examples

data(smho.N874)
str(smho.N874)
Description

Data from the 1998 Survey of Mental Health Organizations (SMHO)

Usage

data(smho98)

Format

A data frame with 875 observations on the following variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATUM</td>
<td>Sample design stratum (1 = Psychiatric Hospital, private; 2 = Psychiatric Hospital, public; 3 = Residential, children; 4 = Residential, adults; 5 = General Hospital, public, inpatient or residential care; 6 = General Hospital, public, outpatient care only; 7 = General Hospital, private, inpatient or residential care; 8 = General Hospital, private, outpatient care only; 9 = Military Veterans, inpatient or residential care; 10 = Military Veterans, outpatient care only; 11 = Partial Care 12 = Outpatient care, private; 13 = Outpatient care, public; 14 = Multi-service, private; 15 = Multi-service, public; 16 = Substance Abuse)</td>
</tr>
<tr>
<td>BEDS</td>
<td>Total inpatient beds</td>
</tr>
<tr>
<td>EXPTOTAL</td>
<td>Total expenditures in 1998</td>
</tr>
<tr>
<td>SEENCNT</td>
<td>Unduplicated client/patient count seen during year</td>
</tr>
<tr>
<td>E0YCNT</td>
<td>End of year count of patients on the role</td>
</tr>
<tr>
<td>Y_IP</td>
<td>Number of inpatient visits during year</td>
</tr>
<tr>
<td>OPCSFRST</td>
<td>Number of outpatients on the rolls on the first day of the reporting year</td>
</tr>
<tr>
<td>OPCSADDS</td>
<td>Number of outpatients admitted, readmitted, or transferred to the organization during the reporting year for less than a 24 hour period and not overnight</td>
</tr>
<tr>
<td>OPCSVISIT</td>
<td>Number of outpatient visits during the reporting year for less than a 24 hour period and not overnight</td>
</tr>
<tr>
<td>EMGWALK</td>
<td>Number of emergency walk-ins during the reporting year</td>
</tr>
<tr>
<td>PSYREHAB</td>
<td>Number of visits for psychiatric rehabilitation services</td>
</tr>
<tr>
<td>IPCSADDS</td>
<td>Number of residential patients added during the reporting year or patients admitted for more than a 24 hour period</td>
</tr>
</tbody>
</table>

Details

The 1998 SMHO was conducted by the U.S. Substance Abuse and Mental Health Services Administration. It collected data on mental health care organizations and general hospitals that provide mental health care services, with an objective to develop national and state level estimates for total expenditure, full time equivalent staff, bed count, and total caseload by type of organization.
strAlloc

Allocate a sample to strata

Description

Compute the proportional, Neyman, cost-constrained, and variance-constrained allocations in a stratified simple random sample.

Usage

```r
strAlloc(n.tot = NULL, Nh = NULL, Sh = NULL, cost = NULL, ch = NULL, 
V0 = NULL, CV0 = NULL, ybarU = NULL, alloc)
```

Arguments

- `n.tot`: fixed total sample size
- `Nh`: vector of population stratum sizes \(\left(N_h \right) \) or pop stratum proportions \(\left(W_h \right) \)
- `Sh`: stratum unit standard deviations \(\left(S_h \right) \), required unless `alloc = "prop"`
- `cost`: total variable cost
- `ch`: vector of costs per unit in stratum \(h \) \(\left(c_h \right) \)
- `V0`: fixed variance target for estimated mean
- `CV0`: fixed CV target for estimated mean
- `ybarU`: population mean of \(y \) \(\left(\bar{y}_U \right) \)
- `alloc`: type of allocation; must be one of "prop", "neyman", "totcost", "totvar"

Source

Substance Abuse and Mental Health Services Administration

References

See Also

`smho.N874`

Examples

```r
data(smho98)
str(smho98)
summary(smho98)
```
Details

alloc="prop" computes the proportional allocation of a fixed total sample size, \(n_{tot} \), to the strata. alloc="neyman" computes the allocation of a fixed total sample size, \(n_{tot} \), to the strata that minimizes the variance of an estimated mean. alloc="totcost" computes the allocation of a fixed total sample size, \(n_{tot} \), to the strata that minimizes the variance of an estimated mean subject to the fixed total cost. alloc="totvar" computes the allocation that minimizes total cost subject to the target coefficient of variation, \(CV_0 \), or the target variance, \(V_0 \), of the estimated mean.

Value

For proportional allocation, a list with values:

- alloc type of allocation: "prop", "neyman", "totcost", "totvar"
- Nh vector of population sizes \((N_h) \) or pop stratum proportions \((W_h) \)
- nh vector of stratum sample sizes
- "nh/n" proportion of sample allocated to each stratum

For other allocations, the three components above plus:

- Sh stratum unit standard deviations \((S_h) \)
- "anticipated SE of estimated mean" Anticipated SE of the estimated mean for the computed allocation

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

See Also

nCont, nLogOdds, nProp, nPropMoe, nWilson

Examples

Neyman allocation
Nh <- c(215, 65, 252, 50, 149, 144)
Sh <- c(26787207, 10645109, 6909676, 11085034, 9817762, 44553355)
strAlloc(n.tot = 100, Nh = Nh, Sh = Sh, alloc = "neyman")

cost constrained allocation
ch <- c(1400, 200, 300, 600, 450, 1000)
strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch, alloc = "totcost")

allocation with CV target of 0.05
strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.05, ch = ch, ybarU = 11664181, alloc = "totvar")
Description

The ThirdGrade data file is a population of students who participated in the Third International Mathematics and Science Study (TIMSS).

Usage

data(ThirdGrade)

Format

A data frame with 2,427 students on the following variables:

- region: Geographic region of the U.S. (1 = Northeast; 2 = South; 3 = Central; 4 = West)
- school.id: School identifier (1 - 135)
- student.id: Student identifier (1 - 2427)
- sex: Sex of student (1 = female; 2 = male)
- language: Is language of test spoken at home? (1 = always; 2 = sometimes; 3 = never)
- math: Mathematics test score
- ethnicity: Ethnicity of student (1 = White, non-Hispanic; 2 = Black; 3 = Hispanic; 4 = Asian; 5 = Native American; 6 = Other)
- science: Science test score
- community: Type of location of school (2 = village or rural area; 3 = outskirts of a town or city; 4 = close to center of a town or city)
- enrollment: Number of students in entire school

Details

The Third Grade population consists of 2,427 students in the U.S. who participated in the Third International Mathematics and Science Study (Caslyn, Gonzales, Frase 1999). The methods used in conducting the original study are given in TIMSS International Study Center (1996). Clusters are schools while units within clusters are the students.

Source

TIMSS International Study Center 1996.

References

Examples
data(ThirdGrade)
str(ThirdGrade)

wtdvar(x, w, na.rm=TRUE)

Arguments

x data vector
w vector of survey weights; must be same length as x
na.rm remove missing values (TRUE or FALSE)

Details

wtdvar is also used by BW3stagePPSe in estimating relvariance components.

Value

numeric estimate of population unit variance

Author(s)

Richard Valliant, Jill A. Dever, Frauke Kreuter

References

Examples

x <- c(1:3)
wts <- c(4, 6, 8)
wtdvar(x=x, w=wts)
Index

*Topic datasets
 Domainy1y2, 29
 hospital, 35
 labor, 36
 MDarea.pop, 37
 mibrfss, 38
 nhis, 45
 nhis.large, 46
 nhispart, 48
 smho.N874, 60
 smho98, 62
 ThirdGrade, 65

*Topic methods
 BW2stagePPS, 2
 BW2stagePPSe, 4
 BW2stageSRS, 6
 BW3stagePPS, 8
 BW3stagePPSe, 9
 clusOpt2, 12
 clusOpt2fixedPSU, 14
 clusOpt3, 15
 clusOpt3fixedPSU, 17
 CVcalc2, 19
 CVcalc3, 20
 deff, 21
 deffCR, 24
 deffH, 26
 deffK, 27
 deffS, 28
 dub, 30
 HMT, 34
 nCont, 40
 nContMoe, 41
 nDep2sam, 42
 nDomain, 44
 nLogOdds, 50
 nProp, 51
 nProp2sam, 52
 nPropMoe, 53
 NRAdjClass, 55
 NRFUopt, 56
 nWilson, 58
 pclass, 59
 strAlloc, 63
 wtdvar, 66

*Topic models
 gamEst, 32
 gammaFit, 33

*Topic survey
 BW2stagePPS, 2
 BW2stagePPSe, 4
 BW2stageSRS, 6
 BW3stagePPS, 8
 BW3stagePPSe, 9
 clusOpt2, 12
 clusOpt2fixedPSU, 14
 clusOpt3, 15
 clusOpt3fixedPSU, 17
 CVcalc2, 19
 CVcalc3, 20
 deff, 21
 deffCR, 24
 deffH, 26
 deffK, 27
 deffS, 28
 dub, 30
 HMT, 34
 nCont, 40
 nContMoe, 41
 nDep2sam, 42
 nDomain, 44
 nLogOdds, 50
 nProp, 51
 nProp2sam, 52
 nPropMoe, 53
 NRAdjClass, 55
 NRFUopt, 56
 nWilson, 58
clusOpt2, 12, 15, 16, 18
clusOpt2fixedPSU, 13, 14, 16, 18
classOpt3, 13, 15, 16, 18
clusOpt3fixedPSU, 13, 15, 16, 17
CVcalc2, 19
CVcalc3, 20, 20, 21
deff, 21, 25, 27–29
deffC, 23, 24, 27–29
deffH, 23, 25, 26, 28, 29
deffK, 23, 25, 27, 27, 29
deffs, 23, 25, 27, 28, 28
domainly2, 29
dub, 30
gamEst, 32, 33, 34
gammaFit, 32, 33
HMT, 34
hospital, 35
labor, 36
MDarea.pop, 37
mibrfss, 38
nCont, 40, 42, 45, 50, 51, 54, 59, 64
nContMoe, 41
nDep2sam, 42, 53
nDomain, 44
nhis, 39, 45, 48
nhis.large, 39, 46, 46
nhispart, 48
nLogOdds, 41, 42, 45, 50, 51, 54, 59, 64
nProp, 41, 42, 45, 50, 51, 54, 59, 64
nProp2sam, 43, 52
nPropMoe, 41, 42, 45, 50, 51, 53, 59, 64
NRadjClass, 55, 60
NRFUopt, 56
nWilson, 41, 42, 45, 50, 51, 54, 58, 64