Package ‘PracticalEquiDesign’

December 6, 2021

Title Design of Practical Equivalence Trials
Version 0.0.3
Description
Sample size calculations for practical equivalence trial design with a time to event endpoint.
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
Imports dplyr, ggplot2, methods, numDeriv, stats, Temporal, tidyr
RoxygenNote 7.1.1
VignetteBuilder R.rsp
Suggests R.rsp, testthat (>= 3.0.0), withr
Config/testthat/edition 3
NeedsCompilation no
Author Zachary McCaw [aut, cre] (<https://orcid.org/0000-0002-2006-9828>)
Maintainer Zachary McCaw <zmccaw@alumni.harvard.edu>
Repository CRAN
Date/Publication 2021-12-06 08:30:09 UTC

R topics documented:

ProbCurve .. 2
SampleSize ... 3
SupProb ... 5
WeiAvgInfo ... 6
WeibullSpec ... 7
WeiMed ... 7

Index 9
ProbCurve

Plot Sample Size Curve

Description

Plot the probability of selecting the superior treatment as a function of the sample size n.

Usage

```r
ProbCurve(
  cens_prop = 0,
  med1 = NULL,
  shape1 = NULL,
  rate1 = NULL,
  med2 = NULL,
  shape2 = NULL,
  rate2 = NULL,
  info_reps = 50,
  delta = 1,
  min_n = 10,
  max_n = 100,
  margin = 0,
  target_prob = 0.8,
  use_exp_calc = TRUE
)
```

Arguments

- `cens_prop`: Expected censoring proportion.
- `med1`: Median for treatment arm 1, assuming shape1 is 1. Overwrites shape and rate if supplied.
- `shape1`: Shape parameter for treatment arm 1.
- `rate1`: Rate parameter for treatment arm 1.
- `med2`: Median for treatment arm 2, assuming shape2 is 1. Overwrites shape and rate if supplied.
- `shape2`: Shape parameter for treatment arm 2.
- `rate2`: Rate parameter for treatment arm 2.
- `info_reps`: Replicates used for estimating the observed information matrix.
- `delta`: Increment between consecutive sample sizes to evaluate.
- `min_n`: Minimum allowable sample size.
- `max_n`: Maximum allowable sample size.
- `margin`: Margin of practical equivalence.
- `target_prob`: Probability of selecting the more effective treatment.
- `use_exp_calc`: If both shape parameters are 1, should the calculations be performed assuming an exponential distribution for the time to event in each arm?
Value

ggplot object.

Examples

Plot the selection probability curve for the case of two exponentials
with medians of 9 and 12 (e.g.) months, and a 2 month margin of
practical equivalence.
q <- ProbCurve(
 cens_prop = 0.15,
 med1 = 9,
 med2 = 12,
 margin = 2.0
)

SampleSize

<table>
<thead>
<tr>
<th>SampleSize</th>
<th>Sample Size Estimation</th>
</tr>
</thead>
</table>

Description

Estimate the sample size for a practical equivalence trial with a time to event endpoint. The sample size is determined by specifying the time to event distribution of each treatment arm, the margin of practical equivalence, and the desired probability of selecting the superior treatment. The distribution in each treatment arm may be specified either by providing the median, in which case the time to event is assumed to be exponential, or by specifying the shape and rate of a Weibull distribution. For guidance on how to set the shape and rate parameters when using a Weibull calculation, see WeibullSpec.

Usage

SampleSize(
 cens_prop = 0,
 med1 = NULL,
 shape1 = NULL,
 rate1 = NULL,
 med2 = NULL,
 shape2 = NULL,
 rate2 = NULL,
 info_reps = 50,
 min.n = 10,
 max.n = 100,
 margin = 0,
 target_prob = 0.8,
 use_exp_calc = TRUE
)
Arguments

cens_prop Expected censoring proportion.
med1 Median for treatment arm 1, assuming shape1 is 1. Overwrites shape and rate if supplied.
shape1 Shape parameter for treatment arm 1.
rate1 Rate parameter for treatment arm 1.
med2 Median for treatment arm 2, assuming shape2 is 1. Overwrites shape and rate if supplied.
shape2 Shape parameter for treatment arm 2.
rate2 Rate parameter for treatment arm 2.
info_reps Replicates used for estimating the observed information matrix.
min_n Minimum allowable sample size.
max_n Maximum allowable sample size.
margin Margin of practical equivalence.
target_prob Probability of selecting the more effective treatment.
use_exp_calc If both shape parameters are 1, should the calculations be performed assuming an exponential distribution for the time to event in each arm? Default is TRUE.

Value

Integer sample size.

Examples

Sample size calculation based on exponentials.
n <- SampleSize(
cens_prop = 0.15,
 med1 = 9,
 med2 = 12
)

Sample size calculation based on exponentials with a 2 month margin.
Note that the required sample size is expected to increase.
n <- SampleSize(
cens_prop = 0.15,
 med1 = 9,
 med2 = 12,
 margin = 2
)

Sample size calculation based on Weibulls.
n <- SampleSize(
cens_prop = 0.15,
 shape1 = 2.8,
 rate1 = 0.10,
 shape2 = 4.0,
 rate2 = 0.08
)
Superiority Probability

Description

Probability of selecting the more effective treatment as \(\Pr(\text{median}_2 - \text{median}_1 \geq \text{margin}) + 0.5 \times \Pr(\text{abs}(\text{median}_2 - \text{median}_1) < \text{margin}) \).

Usage

```r
SupProb(
  cens_prop,
  n,
  med1 = NULL,
  shape1 = NULL,
  rate1 = NULL,
  med2 = NULL,
  shape2 = NULL,
  rate2 = NULL,
  info_reps = 50,
  margin = 0,
  use_exp_calc = TRUE
)
```

Arguments

- `cens_prop`: Expected censoring proportion.
- `n`: Sample size.
- `med1`: Median for treatment arm 1, assuming \(\text{shape}_1 = 1 \). Overwrites shape and rate if supplied.
- `shape1`: Shape parameter for arm 1.
- `rate1`: Rate parameter for arm 1.
- `med2`: Median for treatment arm 2, assuming \(\text{shape}_2 = 1 \). Overwrites shape and rate if supplied.
- `shape2`: Shape parameter for arm 2.
- `rate2`: Rate parameter for arm 2.
- `info_reps`: Replicates used for estimating the observed information matrix.
- `margin`: Margin of practical equivalence.
- `use_exp_calc`: If both shape parameters are 1, should the calculations be performed assuming an exponential distribution for the time to event in each arm? Default is TRUE.

Value

Numeric equivalence probability.
Examples

Calculation in the case of exponentials with no margin.
prob <- SupProb(
cens_prop = 0.15,
n = 100,
med1 = 9,
med2 = 12,
)

Calculation in the case of exponentials with a 2 month margin.
The probability should be lower than in the absence of a margin.
prob <- SupProb(
cens_prop = 0.15,
n = 100,
med1 = 9,
med2 = 12,
margin = 2
)

Calculation in the case of Weibulls with a 2 month margin.
prob <- SupProb(
cens_prop = 0.15,
n = 100,
shape1 = 2.8,
rate1 = 0.10,
shape2 = 4.0,
rate2 = 0.08,
margin = 2
)

WeiAvgInfo

Weibull Average Information

Description

Estimate the expected information as the average value of the observed information across `reps` realizations of the data.

Usage

```
WeiAvgInfo(cens_prop, n, shape, rate, reps = 10)
```

Arguments

cens_prop Censoring proportion.
n Sample size.
shape Shape parameter `alpha`.
rate Rate parameter `lambda`.
reps Replicates to average.
WeibullSpec

Value

Numeric information matrix for shape and rate.

<table>
<thead>
<tr>
<th>WeibullSpec</th>
<th>Weibull Specification</th>
</tr>
</thead>
</table>

Description

Calculate shape and rate of a Weibull distribution from the value of the survival curve at 2 time points.

Usage

WeibullSpec(t1, p1, t2, p2)

Arguments

t1 First time point.
p1 Probability at the first time point.
t2 Second time point.
p2 Probability at the second time point.

Value

Numeric vector containing the shape and rate.

Examples

Determine the shape and rate parameter of a Weibull distribution
where survival at 6 (e.g.) months is 80%, and survival at 12
months is 50%.
theta <- WeibullSpec(t1 = 6, p1 = 0.8, t2 = 12, p2 = 0.5)

WeiMed

Weibull Median

Description

Calculate the median of a Weibull distribution from the shape and rate.

Usage

WeiMed(shape, rate)
Arguments

- shape: Shape parameter, ‘alpha’.
- rate: Rate parameter, ‘lambda’.

Value

Numeric median.

Examples

```r
# In the case of shape = 1 and rate = 1, the distribution
# is exponential, and the median is log(2).
med <- WeiMed(shape = 1, rate = 1)
```
Index

ProbCurve, 2
SampleSize, 3
SupProb, 5
WeiAvgInfo, 6
WeibullSpec, 3, 7
WeiMed, 7