Package ‘ProbitSpatial’

October 12, 2022

Type Package
Title Probit with Spatial Dependence, SAR, SEM and SARAR Models
Version 1.1
Date 2021-10-06
Maintainer Davide Martinetti <davide.martinetti@inrae.fr>
Description Fast estimation of binomial spatial probit regression models with spatial autocorrelation for big datasets.
License GPL (>= 2)
Imports numDeriv, RANN, Rcpp (>= 1.0.4.6), methods
Depends Matrix
LinkingTo Rcpp, RcppEigen
RoxygenNote 7.1.1
NeedsCompilation yes
Author Davide Martinetti [aut, cre] (<https://orcid.org/0000-0003-2047-1793>), Ghislain Geniaux [aut]
Repository CRAN
Date/Publication 2021-06-30 08:50:02 UTC

R topics documented:

ProbitSpatial-package .. 2
dependence.ProbitSpatial .. 3
conditional_SARAR_UC .. 4
conditional_SARAR_UP .. 4
conditional_SAR_UC ... 5
conditional_SAR_UP ... 5
conditional_SEM_UC ... 6
conditional_SEM_UP ... 6
effects_ProbitSpatial ... 7
fitted.ProbitSpatial ... 8
generate_W ... 8
ProbitSpatial-package

Probit with Spatial Dependence, SAR, SEM, and SARAR Models.

Description

ProbitSpatial package allows to fit spatial autoregressive (SAR) and spatial error (SEM) probit models. It also provides functions to simulated spatial binary data, an empirical data set and different methods for the diagnostic of the estimated model.

Details

The main function of this package is ProbitSpatialFit. It allows to fit both SAR and SEM models for big datasets in a reasonable time. The function is based on the maximisation of the approximate likelihood function. The approximation is inspired by the Mendell and Elston algorithm for computing multivariate normal probabilities and take advantage of the sparsity of the spatial weight matrix. Two methods are available for the estimation of the model parameter: the first one is known as conditional method (see Case (1992)) and performs relatively well in terms of accuracy of the estimated parameters and is very rapid. The second method, that minimises the full-log-likelihood, is slower but it should be more accurate. Monte Carlo experiments on simulated data reported in Martinetti and Geniaux (2017) showed that the full-log-likelihood approach is not always overperforming the conditional method in terms of accuracy. At the present stage, our suggestion is to use the conditional method for a first estimation and only attempt the full-likelihood approach in a second moment, when the dataset size is not bigger than a few thousands.

Another feature of the ProbitSpatialFit function is the possibility to fit the model using the precision matrix instead of the variance-covariance matrix, since it is usually sparser and hence allows faster computations (see LeSage and Pace (2009)).

The output of ProbitSpatialFit function is an object of class ProbitSpatial, for which the methods residuals, fitted, effects, predict and coef are available.

The package also contains the function sim_binomial_probit that allows to simulate data samples of both SAR and SEM models. It can be used to replicate the Monte Carlo experiments reported in Martinetti and Geniaux (2017) as well as the experiment of Calabrese and Elkink (2014). An empirical data set Katrina on the reopening decisions of firms in the aftermath of the Katrina Hurricane in New Orleans is also available (LeSage et al.(2011)).

Other packages in CRAN repository on the same subject are McSpatial (McMillen (2013)) and spatialprobit (Wilhelm and Godinho de Matos (2013)).
The core functions of the present package have been coded using the Rcpp and RcppEigen libraries (Bates and Eddelbuettel (2013)), that allow direct interchange of rich R objects between R and C++.

Author(s)

Davide Martinetti <davide.martinetti@inra.fr> and Ghislain Geniaux <ghislain.geniaux@inra.fr>

References

Description

Returns the coefficients estimated by a `ProbitSpatial` model.

Usage

```r
## S3 method for class 'ProbitSpatial'
coef(object, ...)
```

Arguments

- `object` an object of class `ProbitSpatial`.
- `...` ignored
Value

It returns the value of the estimated parameters.

conditional _**SARAR**_ **UC**
Conditional SARAR UC.

Description

Performs conditional estimation of SARAR model with variance-covariance matrix.

Usage

```
conditional_SARAR_UC(myenv)
```

Arguments

- `myenv` an environment.

Details

We discourage the direct use of this function.

Value

the log-likelihood and the estimated parameters.

conditional _**SARAR**_ **UP**
Conditional SARAR UP.

Description

Performs conditional estimation of SARAR model with precision matrix.

Usage

```
conditional_SARAR_UP(myenv)
```

Arguments

- `myenv` an environment.

Details

We discourage the direct use of this function.

Value

the log-likelihood and the estimated parameters.
conditional_SAR_UC

Conditional SAR UC.

Description

Performs conditional estimation of SAR model with variance-covariance matrix.

Usage

```
conditional_SAR_UC(myenv)
```

Arguments

- `myenv` an environment.

Details

We discourage the direct use of this function.

Value

the log-likelihood and the estimated parameters.

conditional_SAR_UP

Conditional SAR UP.

Description

Performs conditional estimation of SAR model with precision matrix.

Usage

```
conditional_SAR_UP(myenv)
```

Arguments

- `myenv` an environment.

Details

We discourage the direct use of this function.

Value

the log-likelihood and the estimated parameters.
conditional_SEM_UC Conditional SEM UC.

Description
Performs conditional estimation of SEM model with variance-covariance matrix.

Usage
conditional_SEM_UC(myenv)

Arguments
myenv an environment.

Details
We discourage the direct use of this function.

Value
the log-likelihood and the estimated parameters.

conditional_SEM_UP Conditional SEM UP.

Description
Performs conditional estimation of SEM model with precision matrix.

Usage
conditional_SEM_UP(myenv)

Arguments
myenv an environment.

Details
We discourage the direct use of this function.

Value
the log-likelihood and the estimated parameters.
effects_ProbitSpatial

Effects of a spatial probit model.

Description

Returns the marginal effects of a ProbitSpatial model.

Usage

effects_ProbitSpatial(object)

Arguments

object an object of class ProbitSpatial.

Details

The effects function has different outputs according to the DGP of the ProbitSpatial model:

“SAR” The marginal effects of a spatial autoregressive model are more complicated than usual measurements of impacts for non spatial models. Here we follow LeSage and Pace and propose the following summaries for impact measures:

Average direct effects: the average over all the observations of the effects of the change of an explanatory variable of a single observation on the choice probability of that same observation.

Average indirect effects: the average over all the observations of the effect of a change on an explanatory variable on the choice probability of the neighbouring observations.

Average total effects: the sum of direct and indirect impacts.

“SEM” marginal effects should be interpreted as if it were a standard probit model.

Value

It returns the marginal effects of the estimated ProbitSpatial model.

References

fitted.ProbitSpatial Extract spatial probit model fitted values.

Description
Extract the fitted values of a ProbitSpatial model.

Usage
S3 method for class 'ProbitSpatial'
fitted(object, type = c("link", "response", "binary"), cut = 0.5, ...)

Arguments
- object: an object of class ProbitSpatial.
- type: the type of output:
 - "link" the value of the latent variable. Default.
 - "response" probability.
 - "binary" binary 0/1 output.
- cut: the threshold probability for the "binary" type. Default is 0.5.
- ...: ignored

Value
Returns the vector of fitted values of the ProbitSpatial model

generate_W Generate a random spatial weight matrix.

Description
Generate a spatial weight matrix of given size and number of nearest neighbors from randomly-located observations on the unit square.

Usage
generate_W(n, nneigh, seed=123)

Arguments
- n: the size of the matrix.
- nneigh: the number of nearest neighbors.
- seed: an integer to set the seed for the random generated locations.
Details

The output matrix has zero diagonal and it is row-standardised. The n observations are allocated randomly in the unit square. For each observation, the nneigh closests observations w.r.t. the Euclidean distance are assigned with a weight equal to 1/nneigh.

Value

a matrix of class dgCMatrix (sparse matrix).

See Also

sim_binomial_probit.

Examples

W <- generate_W(100,4,seed=12)

Katrina

New Orleans business recovery in the aftermath of Hurricane Katrina.

Description

This dataset has been used in the LeSage et al. (2011) paper entitled "New Orleans business recovery in the aftermath of Hurricane Katrina" to study the decisions of shop owners to reopen business after Hurricane Katrina. The dataset contains 673 observations on 3 streets in New Orleans and can be used to estimate the spatial probit models and to replicate the findings in the paper.

Usage

data(Katrina)

Format

Katrina is a data frame with 673 observations on the following 15 variables:

code a numeric vector
long longitude coordinate of store
lat latitude coordinate of store
street1 a numeric vector
medinc median income
perinc a numeric vector
elevation a numeric vector
flood flood depth (measured in feet)
owntype type of store ownership: "sole proprietorship" vs. "local chain" vs. "national chain"
sesstatus socio-economic status of clientele (1-5): 1-2 = low status customers, 3 = middle, 4-5 = high status customers
sizeemp "small size" vs. "medium size" vs. "large size" firms
openstatus1 a numeric vector
openstatus2 a numeric vector
days days to reopen business
street 1=Magazine Street, 2=Carrollton Avenue, 3=St. Claude Avenue

Katrina is a data frame with 673 observations on the following 13 variables.

long longitude coordinate of store
lat latitude coordinate of store
flood_depth flood depth (measured in feet)
log_medinc log median income
small_size binary variable for "small size" firms
large_size binary variable for "large size" firms
low_status_customers binary variable for low socio-economic status of clientele
high_status_customers binary variable for high socio-economic status of clientele
owntype_sole_proprietor a binary variable indicating "sole proprietor" ownership type
owntype_national_chain a binary variable indicating "national chain" ownership type
y1 reopening status in the very short period 0-3 months; 1=reopened, 0=not reopened
y2 reopening status in the period 0-6 months; 1=reopened, 0=not reopened
y3 reopening status in the period 0-12 months; 1=reopened, 0=not reopened

Details

The Katrina dataset contains the data found on the website before some of the variables are recoded. For example, the socio-economic status of clientele is coded as 1-5 in the raw data, but only 3 levels will be used in estimation: 1-2 = low status customers, 3 = middle, 4-5 = high status customers. Hence, with "middle" as the reference category, Katrina contains 2 dummy variables for low status customers and high status customers.

The dataset Katrina is the result of these recoding operations and can be directly used for model estimation.

Note

When defining the reopening status variables y1 (0-3 months), y2 (0-6 months), and y3 (0-12 months) from the days variable, the Matlab code ignores the seven cases where days=90. To be consistent with the number of cases in the paper, we define y1,y2,y3 in the same way: y1=sum(days < 90), y2=sum(days < 180 & days != 90), y3=sum(days < 365 & days != 90). So this is not a bug, its a feature.

Source

The raw data was obtained from the Royal Statistical Society dataset website and brought to RData format by Wilhelm and Godinho de Matos (2013).
Katrina

References

Examples

Not run:
data(Katrina)
attach(Katrina)
table(y1) # 300 of the 673 firms reopened during 0-3 months horizon, p.1016
table(y2) # 425 of the 673 firms reopened during 0-6 months horizon, p.1016
table(y3) # 478 of the 673 firms reopened during 0-12 months horizon, p.1016
detach(Katrina)

replicate LeSage et al. (2011), Table 3, p.1017
require(spdep)

(a) 0-3 months time horizon
LeSage et al. (2011) use k=11 nearest neighbors in this case
nb <- knn2nb(knearneigh(cbind(Katrina$lat, Katrina$long), k=11))
listw <- nb2listw(nb, style="W")
W1 <- as(as_dgRMatrix_listw(listw), "CsparseMatrix")

fit1_cond <- ProbitSpatialFit(y1 ~ flood_depth + log_medinc + small_size + large_size + low_status_customers + high_status_customers + owntype_sole_proprietor + owntype_national_chain,
 W=W1, data=Katrina, DGP=’SAR’, method=’conditional’, varcov=’varcov’)
summary(fit1_cond)

fit1_FL <- ProbitSpatialFit(y1 ~ flood_depth + log_medinc + small_size + large_size + low_status_customers + high_status_customers + owntype_sole_proprietor + owntype_national_chain,
 W=W1, data=Katrina, DGP=’SAR’, method=’full-lik’, varcov=’varcov’)
summary(fit1_FL)

fit1_cond_10nn <- ProbitSpatialFit(y1 ~ flood_depth + log_medinc + small_size + large_size + low_status_customers + high_status_customers + owntype_sole_proprietor + owntype_national_chain,
 W=W1, data=Katrina, DGP=’SAR’, method=’conditional’, varcov=’varcov’,
 control=list(iW_CL=10))
summary(fit1_cond_10nn)

(b) 0-6 months time horizon
LeSage et al. (2011) use k=15 nearest neighbors
nb <- knn2nb(knearneigh(cbind(Katrina$lat, Katrina$long), k=15))
listw <- nb2listw(nb, style="W")
W2 <- as(as_dgRMatrix_listw(listw), "CsparseMatrix")
names.ProbitSpatial

Description

Extract names of ProbitSpatial class.
predict.ProbitSpatial

Usage

S3 method for class 'ProbitSpatial'
names(x, ...)

Arguments

x an object of class ProbitSpatial.

... ignored

Value

Returns the names of the ProbitSpatial object.

predict.ProbitSpatial Spatial probit model predictions.

Description

Predicts of a ProbitSpatial model on a set X of covariates. Works on both in-sample and out-of-sample using BLUP formula from Goulard et al. (2017)

Usage

S3 method for class 'ProbitSpatial'
predict(
 object,
 X,
 type = c("link", "response", "binary"),
 cut = 0.5,
 oos = FALSE,
 WSO = NULL,
 ...
)

Arguments

object an object of class ProbitSpatial.

X a matrix of explanatory variables. If oos=TRUE, it may contain more observations than the dataset on which the model has been trained

type the type of output:
 "link" the value of the latent variable. Default
 "response" probability.
 "binary" binary 0/1 output.

cut the threshold probability for the "binary" type. Default is 0.5.

oos logical. If TRUE, out-of-sample predictions are returned.
W matrix containing weights of in-sample and out-of-sample data. Observations must be ordered in such a way that the first elements belong to the in-sample data and the remaining ones to the out-of-sample data.

Details

If oos=FALSE, the function computes the predicted values for the estimated model (same as fitted). Otherwise, it applies the BLUP formula of Goulard et al. (2017):

$$\hat{y} = (\hat{y}_S, \hat{y}_O),$$

where the sub-indexes S and O refer, respectively, to the in-sample and out-of-sample data. \hat{y}_S corresponds to fitted values, while \hat{y}_O is computed as follows:

$$\hat{y}_O = (I - \rho W)^{-1}(X\beta - Q^{-1}Q_O S(y_S - \hat{y}_S),$$

where Q is the precision matrix of $\Sigma = \sigma^2((I - \rho W)'(I - \rho W))^{-1}$, and the sub-indexes OO and OS refer to the corresponding block matrices.

Value

Returns a vector of predicted values for the set X of covariates if oos=FALSE or the best linear unbiased predictors of the set $X_O S$ if oos=TRUE.

References

ProbitSpatialFit

- nobs numeric, number of observations.
- nvar numeric, number of covariates.
- y numeric, vector of observed dependent variable.
- X matrix, matrix of covariates.
- time numeric, estimation time.
- DGP character, DGP of the model (SAR, SEM or SARAR).
- method character, estimation method ("conditional" or "full-lik").
- varcov character, indicates the matrix used in the algorithm ("varcov" or "precision").
- W SparseMatrix, the spatial weight matrix of y.
- M SparseMatrix, the spatial weight matrix of the disturbances.
- iW_CL numeric, the order of approximation used in the conditional method.
- iW_FL numeric, the order of approximation used inside the likelihood function for the full-lik method.
- iW_FG numeric, the order of approximation used inside the gradient functions for the full-lik method.
- reltol numeric, the relative convergence tolerance.
- prune numeric, the pruning for the gradient functions.
- env an environment containing information for use in later function calls to save time.
- message a integer giving any additional information or NULL.

ProbitSpatialFit

Fit a spatial probit model.

Description

Approximate likelihood estimation of the probit model with spatial autoregressive (SAR), spatial error (SEM), spatial autoregressive with autoregressive disturbances (SARAR).

Usage

ProbitSpatialFit(formula, data, W,
 DGP='SAR', method="conditional", varcov="varcov",
 M=NULL, control=list())

Arguments

- formula an object of class formula: a symbolic description of the model to be fitted.
- data the data set containing the variables of the model.
- W the spatial weight matrix of class "dgCMatrix".
- DGP the data generating process of data: SAR, SEM, SARAR (Default is SAR).
the optimisation method: "conditional" or "full-lik" (Default is "conditional", see Details).

varcov
the likelihood function is computed using the variance-covariance matrix ("varcov") or the precision matrix ("precision")? Default is "varcov".

M
the second spatial weight matrix for SARAR models. Same class as W.

control
a list of control parameters. See Details.

Details
The estimation is based on the approximate value of the true likelihood of spatial probit models.
The DGP of the spatial autoregressive model (SAR) model is the following
\[y = \rho W y + X \beta + \epsilon, \]
where the disturbances \(\epsilon \) are iid standard normally distributed, \(W \) is a sparse spatial weight matrix and \(\rho \) is the spatial lag parameter. The variance of the error term is equal to \(\Sigma = \sigma^2 ((I_n - \rho W)^{-1}((I_n - \rho W)^{-1})^t) \). The DGP of the spatial error model (SEM) is as follows
\[y = X \beta + u, \]
\[u = \rho W u + \epsilon, \]
where the disturbances \(\epsilon \) are iid standard normally distributed, \(W \) is a sparse spatial weight matrix and \(\rho \) is the spatial error parameter. The variance of the error term is equal to \(\Sigma = \sigma^2 ((I_n - \rho W)^{-1}((I_n - \rho W)^{-1})^t) \). The DGP of the spatial autoregressive model with autoregressive disturbances (SARAR) is as follows
\[y = \rho W y + X \beta + u, \]
\[u = \lambda M u + \epsilon, \]
where the disturbances \(\epsilon \) are iid standard normally distributed, \(W \) and \(M \) are two sparse spatial weight matrix, while \(\rho \) and \(\lambda \) are the spatial lag and spatial error parameters, respectively. The variance of the error term is equal to \(\Sigma = \sigma^2 ((I_n - \rho W)^{-1}(I_n - \lambda M)^{-1}((I_n - \lambda M)^{-1})^t((I_n - \rho W)^{-1})^t) \).

The approximation is inspired by the Mendell-Elston approximation of the multivariate normal probabilities (see References). It makes use of the Cholesky decomposition of the variance-covariance matrix \(\Sigma \).

The ProbitSpatialFit command estimates the model by maximising the approximate log-likelihood. We propose two optimisation method:

"conditional": it relies on a standard probit estimation which applies to the model estimated conditional on \(\rho \).

"full-lik": it minimises the full-log-likelihood using the analytical gradient functions (only available for SAR and SEM specification). The optimisation is performed by means of the optim function with method = "BFGS".

In both cases a "conditional" estimation is performed. If method="conditional", then ProbitSpatialFit returns the results of this first estimation. In case method="full-lik", the function tries to improve the log-likelihood by means of a further exploration around the value of the parameters found by
the conditional step. The conditional step is usually very accurate and particularly fast. The second step is more time consuming and does not always improve the results of the first step. We dissuade the user from using the full-likelihood method for sample sizes bigger than ten thousands, since the computation of the gradients is quite slow. Simulation studies reported in Martinetti and Geniaux (2017) prove that the conditional estimation is highly reliable, even if compared to the full-likelihood ones.

In order to reduce the computation time of the function ProbitSpatialFit, we propose a variant of the likelihood-function estimation that uses the inverse of the variance-covariance matrix (a.k.a. precision matrix). This variant applies to both the "conditional" and the "full-lik" methods and can be invoked by setting varcov="precision". Simulation studies reported in Martinetti and Geniaux (2017) suggest that the accuracy of the results with the precision matrix are sometimes worst than the one with the true variance-covariance matrix, but the estimation time is considerably reduced.

The control argument is a list that can supply any of the following components:

- **iW_CL**: the order of approximation of \((I_n - \rho W)^{-1}\) used in the "conditional" method. Default is 6, while 0 means no approximation (it uses exact inversion of matrixes, not suitable for big sample sizes). See Martinetti and Geniaux (2017) for further references.
- **iW_FL**: the order of approximation of \((I_n - \rho W)^{-1}\) used in the computation of the likelihood function for the "full-lik" method. Default is 0, meaning no approximation.
- **iW_FG**: the order of approximation of \((I_n - \rho W)^{-1}\) used in the computation of the gradient functions for the "full-lik" method. Default is 0, meaning no approximation.
- **reltol**: relative convergence tolerance. It represents tol in optimize function for method="conditional" and reltol in optim function for method="full-lik”. Default is 1e-5.
- **prune**: the pruning value used in the gradients. Default is 0, meaning no pruning. Typical values are around 1e-3 and 1e-6. They help reducing the estimation time of the gradient functions.
- **silent**: Default is TRUE.

Value

Return an object of class ProbitSpatial.

References

Examples

```R
n <- 1000
nneigh <- 3
rho <- 0.5
beta <- c(4,-2,1)
W <- generate.W(n, nneigh, seed=123)
X <- cbind(1, rnorm(n, 2, 2), rnorm(n, 0, 1))
```

colnames(X) <- c("intercept","X1","X2")
y <- sim_binomial_probit(W=W,X=X,beta=beta,rho=rho,model="SAR")
d <- as.data.frame(cbind(y,X))
mod <- ProbitSpatialFit(y~X1+X2,d,W,
 DGP='SAR',method="conditional",varcov="varcov")

S3 method for class 'ProbitSpatial'
residuals(object, ...)

Arguments

 object an object of class ProbitSpatial.
 ... ignored

Value

 Return a vector containing the generalised residuals of the ProbitSpatial model.

sim_binomial_probit Simulate the dependent variable of a SAR/SEM/SARAR model.

Description

 The function sim_binomial_probit is used to generate the dependent variable of a spatial binomial
 probit model, where all the data and parameters of the model can be modified by the user.

Usage

 sim_binomial_probit(W,X,beta,rho,model="SAR",M=NULL,lambda=NULL,
 sigma2=1,ord_iW=6,seed=123)
Arguments

- \(W \) the spatial weight matrix (works for "SAR" and "SEM" models).
- \(X \) the matrix of covariates.
- \(\beta \) the value of the covariates parameters.
- \(\rho \) the value of the spatial dependence parameter (works for "SAR" and "SEM" models).
- \(\text{model} \) the type of model, between "SAR", "SEM", "SARAR" (Default is "SAR").
- \(M \) the second spatial weight matrix (only if \(\text{model} \) is "SARAR").
- \(\lambda \) the value of the spatial dependence parameter (only if \(\text{model} \) is "SARAR").
- \(\sigma^2 \) the variance of the error term (Default is 1).
- \(\text{ord}_iW \) the order of approximation of the matrix \((I_n - \rho W)^{-1}\).
- \(\text{seed} \) to set the random generator seed of the error term.

Details

The `sim_binomial_probit` generates a vector of dependent variables for a spatial probit model. It allows to simulate the following DGPs (Data Generating Process): SAR

\[
z = (I_n - \rho W)^{-1}(X\beta + \epsilon)
\]

SEM

\[
z = X\beta + (I_n - \rho W)^{-1}\epsilon
\]

SARAR

\[
z = (I_n - \rho W)^{-1}(X\beta + (I_n - \lambda M)^{-1}\epsilon)
\]

where \(\epsilon \) are independent and normally distributed with mean zero and variance \(\sigma^2 \) (default is 1).

The matrix \(X \) of covariates, the corresponding parameters \(\beta \), the spatial weight matrix \(W \) and the corresponding spatial dependence parameter \(\rho \) need to be passed by the user. Eventually, the same applies for \(\lambda \) and \(M \) for the SARAR model.

The matrix \((I_n - \rho W)^{-1}\) is computed using the `approxW` function, that can either invert \((I_n - \rho W)\) exactly, if \(\text{ord}_iW=0 \) (not suitable for \(n \) bigger than 1000), or using the Taylor approximation

\[
(I_n - \rho W)^{-1} = I_n + \rho W + \rho^2 W^2 + \ldots
\]

of order \(\text{ord}_iW \) (default is approximation of order 6).

Value

a vector of zeros and ones

See Also

- `generate_W`
- `ProbitSpatialFit`
Examples

```r
n <- 500
nneigh <- 3
rho <- 0.5
beta <- c(4,-2,1)
W <- generate_W(n,nneigh)
X <- cbind(1,rnorm(n,2,2),rnorm(n,0,1))
#SAR
y <- sim_binomial_probit(W,X,beta,rho,model="SAR") #SAR model
#SEM
y <- sim_binomial_probit(W,X,beta,rho,model="SEM") #SEM model
#SARAR
M <- generate_W(n,nneigh,seed=1)
lambda <- -0.5
y <- sim_binomial_probit(W,X,beta,rho,model="SARAR",M=M,lambda=lambda)
```

Description

Print the results of a `ProbitSpatial` model.

Usage

```r
## S3 method for class 'ProbitSpatial'
summary(object, covar = FALSE, ...)
```

Arguments

- `object` an object of class `ProbitSpatial`
- `covar` should the statistics be computed with the matrix of variance of the parameters or not. Default is FALSE, hence Likelihood-ratio statistics are printed.
- `...` further arguments

Details

The `summary` function prints

- **Model** Features on the model and dataset.
- **Time** Estimation time.
- **Statistics** Standard errors of the estimated parameters. If `covar=TRUE`, it uses the matrix of variance of the parameters, else the likelihood ratio test.
- **Accuracy** Confusion Matrix and accuracy of the estimated model.

Value

This function does not return any value.
Description

extract a slot from ProbitSpatial class object.

Usage

```r
## S4 method for signature 'ProbitSpatial'
x$name
```

Arguments

- `x` an object of class ProbitSpatial.
- `name` of the slot.

Value

The content of the slot.
Index

* datasets
 Katrina, 9
 $,ProbitSpatial-method, 21

 coef.ProbitSpatial, 3
 conditional_SAR_UC, 5
 conditional_SAR_UP, 5
 conditional_SARAR_UC, 4
 conditional_SARAR_UP, 4
 conditional_SEM_UC, 6
 conditional_SEM_UP, 6

 effects_ProbitSpatial, 7

 fitted.ProbitSpatial, 8

 generate_W, 8, 19

 Katrina, 2, 9

 names.ProbitSpatial, 12

 optim, 16, 17
 optimize, 17

 predict.ProbitSpatial, 13
 ProbitSpatial (ProbitSpatial-package), 2
 ProbitSpatial-class, 14
 ProbitSpatial-package, 2
 ProbitSpatialFit, 15, 19

 residuals.ProbitSpatial, 18

 sim_binomial_probit, 9, 18
 summary.ProbitSpatial, 20