Package ‘PtProcess’

November 16, 2017

Version 3.3-13
Date 2017-11-17
Title Time Dependent Point Process Modelling
Author David Harte
Maintainer David Harte <d.s.harte@gmail.com>
Description Fits and analyses time dependent marked point process models with an emphasis on earthquake modelling. For a more detailed introduction to the package, see the topic "Pt-Process". A list of recent changes can be found in the topic "Change Log".

Suggests parallel
LazyData no
License GPL (>= 2)
URL http://www.statsresearch.co.nz/dsh/sslib/
NeedsCompilation no
Repository CRAN
Date/Publication 2017-11-16 21:50:15 UTC

R topics documented:

PtProcess-package .. 2
Change Log ... 5
distribution .. 9
dpareto ... 13
etas_gif ... 18
gif ... 20
linksrn ... 22
linksrm_convert ... 24
linksrm_gif .. 25
logLik ... 28
makeSOCKcluster .. 30
marks ... 31
mpp ... 33
Description

This topic gives an introductory overview to the package PtProcess. Links are given to follow up topics where more detail can be found.

Introduction

This package contains routines for the fitting of time dependent point process models, particularly marked processes with “jumps”. These models have particular application to earthquake data. A detailed theoretical background to these and other point process models can be found in Daley & Vere-Jones (2003, 2008). An overview of the package structure is given by Harte (2010).

The direction of the development of the package has been influenced by our research on the application of point process models to seismology. The package was originally written for S-PLUS, being part of the Statistical Seismology Library (Harte, 1998; Brownrigg & Harte, 2005). The package ptproc by Peng (2002, 2003) analyses multi-dimensional point process models, and the package spatstat by Baddeley et al (2005, 2005a, 2008) analyses spatial point processes.

The topic Changes lists recent changes made to the package. Version 3 of the package has some major changes from Version 2, and code for Version 2 will not work in Version 3 without modification. Some examples giving the old code and the required new code are given in the topic Changes. Changes made in Version 3 enable one to fit a more general class of model.

Classes of Point Process Models Analysed

The classes of models currently fitted by the package are listed below. Each are defined within an object that contains the data, current parameter values, and other model characteristics.

Marked Point Process Model: is described under the topic mpp. This model can be simulated or fitted to data by defining the required model structure within an object of class "mpp".

Linked Stress Release Model: is described under the topic linksrm. This model is slightly peculiar, and doesn’t fit naturally in the mpp framework.
Main Tasks Performed by the Package

The main tasks performed by the package are listed below. These can be achieved by calling the appropriate generic function.

Simulation: can be performed by the function `simulate`.
Parameter Estimation: can be achieved by using the function `negloglik`.
Model Residuals: can be calculated with the function `residuals`.
Model Summary: can be extracted with the function `summary`.
Log-Likelihood: can be calculated with the function `logLik`.
Ground Intensity Plot: can be performed by the function `plot`.

The method function conforms to the following naming convention, for example, the function `logLik.mpp` provides the method to calculate the log-likelihood for `mpp` objects. The function code can be viewed by entering `PtProcess:::logLik.mpp` on the `R` command line.

If you want to modify such a function, `dump` the code to your local directory, modify in a text editor, then use `source` at the beginning of your program script, but after `library(PtProcess)`. Your modified version will then be used in preference to the version in the `PtProcess` package.

Organisation of Topics in the Package

Cited References: anywhere in the manual are only listed within this topic.

General Documentation: topics summarising general structure are indexed under the keyword “documentation” in the Index.

Acknowledgements

The package is based on an S-PLUS package which was commenced at Victoria University of Wellington in 1996. Contributions and suggestions have been made by many, including: Mark Bebbington, Ray Brownrigg, Edwin Choi, Robert Davies, Michael Eglinton, Dongfeng Li, Li Ma, Alistair Merrifield, Andrew Tokeley, David Vere-Jones, Wenzheng Yang, Leon Young, Irina Zhdanova and Jiancang Zhuang.

References

Change Log

Changes Made to the Package

Description

This page contains a listing of recent changes made to functions, and known general problems.

Recent Changes

1. Version 3 contains major changes, and code that worked in Version 2 will no longer work in Version 3. The models included in Version 2 are also contained in Version 3, but the framework has been extended so that the original models can now contain a variety of mark distributions. This has been achieved by giving a more general structure and utilising the object orientated aspects of the R language. *Examples are given below that show how models were defined in Version 2 and how the corresponding models are now defined in Version 3.* (28 Apr 2008)

2. Naming changes to the *cif* functions. In Version 2, these were referred to as “conditional intensity functions”, which is really a slightly more general class. In keeping with Daley & Vere-Jones (2003) we now call them ground intensity functions, with a suffix of “gif”. Further, the dot has been replaced by an underscore, e.g. `etas.cif` to `etas_gif`. This is to lessen the possibility of future conflicts with object orientated naming conventions in the R language. (28 Apr 2008)

3. Arguments `evalNpts` and `tNplus` in the ground intensity functions have been renamed to `evalpts` and `tplus`, respectively. This is to lessen the possibility of future conflicts with object orientated naming conventions in the R language. (28 Apr 2008)

4. `loglik`: the log-likelihood calculated in package Versions before Version 3 did not have the sum over the mark density term (see topic `logLik`, under “Details”). This term can also be excluded in this Version of the package by placing `NULL` for the mark density in the `mpp` object, see example below. (28 Apr 2008)

5. Version 2 had a framework to assign prior densities to the estimated parameters. This has not been retained in Version 3. However, some of the features like holding a parameter at a fixed value, and restricting it to an open or closed interval can be achieved in Version 3; see `negloglik` for further details. (28 Apr 2008)

6. `neglogLik`: the format of this function has been changed to be consistent with that in package *HiddenMarkov*. Argument `updatep` renamed as `pmap`. (07 Aug 2008)

7. `simulate`: manual page revised to include more information about controlling the length of the simulated series. (18 Nov 2008)
8. **mpp**: example modified due to warning messages caused by negative $\lambda_g(t|H_t)$. (18 Nov 2008)
9. **marks**: manual page revised to include more information. (18 Nov 2008)
10. **mpp**: fuller description to argument marks on manual page. (19 Nov 2008)
11. **Phuket**: new dataset added. (4 Dec 2008)
12. **linksrm.gif, marks**: remove some LaTeX specific formatting to be compatible with R 2.9.0. (26 Jan 2009)
13. **Phuket**: clarify magnitude scale used in the dataset. (11 Jul 2009)
14. Attribute type is no longer required on the **gif** functions, removed. (7 Oct 2009)
15. **logLik, negloglik**: Parallel processing support, using package **snow**, has been added. (8 Oct 2009)
16. **plot**: Correct hyperlink to generic plot function. (10 Oct 2009)
17. **etas_normal0**: New function. Test version of a spatial ETAS conditional intensity function. (12 Oct 2009)
18. **logLik**: Fixed bug when using parallel processing on only two nodes. (22 Oct 2009)
20. **logLik.mpp, summary.mpp**: Changed to **inherits** to determine class. (27 Jan 2010)
21. **Phuket**: Additional data, until the beginning of 2009, have been added. The magnitude is now the maximum of the body wave and surface wave magnitudes, m_b and M_s, respectively. Earlier it was simply m_b. (01 Feb 2010)
22. **simulate.linksrm, simulate.mpp, logLik.mpp**: Inconsistency in nomenclature between “mark” and “marks”, will standardise on the plural. (07 May 2010)
23. **simulate.mpp**: Two bugs:
 use <- (data[, "time"] < TT[1]) changed to use <- (data[, "time"] <= TT[1]),
 and else data <- data[use, c("time", "magnitude")]
 changed to else data <- data[use,]. (18 Jun 2010)
24. **etas_normal0**: Errors in some terms involving beta. (18 Jun 2010)
26. **simulate.mpp**: Bug fix on 18 June 2010 induced another bug:
 data <- rbind(data, newevent) changed to
 data <- rbind(data[, names(newevent)], newevent). (11 Dec 2010)
27. Implement very basic NAMESPACE. (5 Nov 2011)
29. **logLik.mpp**: Enable one to specify the relative CPU speeds of the nodes when parallel processing. (9 Dec 2011)
30. **mpp** and **etas_normal0**: Restrict the number of iterations in examples on manual pages to minimise time during package checks. (13 Dec 2011)
31. **residuals** and **linksrm**: Include example using cusum of residuals on manual page. (15 Dec 2011)
32. **dpareto, dtappareto, ltappareto** (etc): Include parameter consistency checks. (6 Jan 2014)
33. **etas.gif**: Documentation example error: `marks=list(rmagn_mark, rmagn_mark)` should be `marks=list(dmagn_mark, NULL)`. (23 Jan 2014)

34. **linksrm.gif**: Function deleted, alternative discussed on manual page of **linksrm.gif**. (19 Mar 2014)

36. **logLik.mpp**: Call to `clusterApply` changed to `snow::clusterApply`. (20 Aug 2014)

37. **logLik.mpp**: The package **snow** has been superseded by **parallel**. Change **snow** to **parallel**, also in file ‘DESCRIPTION’. (15 Oct 2014)

38. **makeSOCKcluster**: This function is in **snow** but not in **parallel**. This function points to the closest equivalent in **parallel**, **makePSOCKcluster**. **makeSOCKcluster** will eventually become deprecated. Was added to the export list in file ‘NAMESPACE’ too. (15 Oct 2014)

39. **logLik.mpp, neglogLik**: Update consistent with changes from **snow** to **parallel**. (17 Oct 2014)

40. **logLik.mpp**: Change `require(parallel)` to `requireNamespace("parallel")`. (21 Jan 2015)

41. Added to NAMESPACE:

   ```
   importFrom(graphics, plot)
   importFrom(stats, dexp, integrate, logLik, pnorm, qexp, rexp, runif, simulate, ts)
   ```

 (03 Jul 2015)

42. **PtProcess**: Add DOI to some references, rename topic to appear first in table of contents. (16 Oct 2015)

43. **plot.mpp**: Activate argument `ylim`. (17 Aug 2016)

44. **etas.normalP**: This has been removed. Adding a spatial dimension requires more generality in other package functions like **logLik.mpp**. For a reasonable amount of generality, it requires the addition of new model class, currently under development. (01 Sep 2016)

45. **simulate.mpp**: Did not allow argument `marks = list(NULL, NULL)` in **mpp** object. `simulate.mpp` now tests to see if **NULL** marks. (17 Nov 2017)

46. **fourier.gif**: Example added on manual page with **NULL** marks. (17 Nov 2017)

Future Development

1. Currently spatial versions of the ETAS model are being written and tested.

2. In the model object, allow one to alternatively specify the name of the gif function.

3. Function **linksrm.gif**: Use of St1 and St2. Is there a tidier way? Also utilise this feature in **srm.gif**.

4. Want a generic function, possibly called forecast, to produce probability forecasts. This would be based on simulating empirical probability distributions.

5. Want a function like **linksrm_convert** to map between the two main parametrisations of the ETAS model.

6. Add general forms of the truncated exponential and gamma distributions as marks for the magnitude of the event.

7. A tidy way to pass the values of the gif function into the mark distributions, if required.
References

Cited references are listed on the PtProcess manual page.

Examples

```r
# SRM: magnitude is iid exponential with bvalue=1
# simulate and calculate the log-likelihood

TT <- c(0, 1000)
bvalue <- 1
params <- c(-1.5, 0.01, 0.8, bvalue*log(10))

# --- Old Method ---
# x <- pp.sim(NULL, params[1:3], srm.cif, TT, seed=5, magn.sim=1)
# print(pp.LL(x, srm.cif, params[1:3], TT))
# [1] -601.3941

# --- New Method, no mark density ---
x1 <- mpp(data=NULL, gif=srm.gif,
    marks=list(NULL, rexp_mark),
    params=params,
    gmap=expression(params[1:3]),
    mmap=expression(params[4]),
    TT=TT)
x1 <- simulate(x1, seed=5)
print(logLik(x1))

# An advantage of the object orientated format is that it
# simplifies further analysis, e.g. plot intensity function:
plot(x1)
# plot the residual process:
plot(residuals(x1))
```

```r
# SRM: magnitude is iid exponential with bvalue=1
# simulate then estimate parameters from data

# --- Old Method ---
# TT <- c(0, 1000)
# bvalue <- 1
# params <- c(-2.5, 0.01, 0.8)
#
# x <- pp.sim(NULL, params, srm.cif, TT, seed=5, magn.sim=1)
#
# posterior <- make.posterior(x, srm.cif, TT)
#
# neg.posterior <- function(params){
#    x <- -posterior(params)
#    if (is.infinite(x) | is.na(x)) return(1e15)
#    else return(x)
# }
```
General Notes on Distribution Fitting

This page contains general notes about fitting probability distributions to datasets.

Details

We give examples of how the maximum likelihood parameters can be estimated using standard optimisation routines provided in the R software (\texttt{nlm} and \texttt{optim}). We simply numerically maximise
the sum of the logarithms of the density evaluated at each of the data points, i.e. log-likelihood function. In fact, by default, the two mentioned optimizers find the minimum, and hence we minimise the negative log-likelihood function.

Both optimization routines require initial starting values. The optimisation function optim uses a grid search technique, and is therefore more robust to poor starting values. The function nlm uses derivatives and the Hessian to determine the size and direction of the next step, which is generally more sensitive to poor initial values, but faster in the neighbourhood of the solution. One possible strategy is to start with optim and then use its solution as a starting value for nlm. This is done below in the example for the tapered Pareto distribution.

The function nlm numerically calculates the Hessian and derivatives, by default. If the surface is very flat, the numerical error involved may be larger in size than the actual gradient. In this case the process will work better if analytic derivatives are supplied. This is done in the tapered Pareto example below. Alternatively, one could simply use the Newton-Raphson algorithm (again, see the tapered Pareto example below).

We also show that parameters can be constrained to be positive (or negative) by transforming the parameters with the exponential function during the maximisation procedure. Similarly, parameters can be restricted to a finite interval by using a modified logit transform during the maximisation procedure. The advantage of using these transformations is that the entire real line is mapped onto the positive real line or the required finite interval, respectively; and further, they are differentiable and monotonic. This eliminates the “hard” boundaries which are sometimes enforced by using a penalty function when the estimation procedure strays into the forbidden region. The addition of such penalty functions causes the function that is being optimised to be non-differentiable at the boundaries, which can cause considerable problems with the optimisation routines.

Examples

```r
# Random number generation method
RNGkind("Mersenne-Twister", "Inversion")
set.seed(5)

# Exponential Distribution

# simulate a sample
p <- 1
x <- rexp(n=1000, rate=p)

# Transform to a log scale so that -infty < log(p) < infty.
# Hence no hard boundary, and p > 0.
# If LL is beyond machine precision, LL <- 1e20.

neg.LL <- function(logp, data){
  x <- -sum(log(dexp(data, rate=exp(logp))))
  if (is.infinite(x)) x <- 1e20
  return(x)
}

p0 <- 5
logp0 <- log(p0)
z <- nlm(neg.LL, logp0, print.level=0, data=x)
```
distribution

```
print(exp(z$estimate))

# Compare to closed form solution
print(exp(z$estimate)-1/mean(x))

#--------------------------------------------------------------
# Normal Distribution
# simulate a sample
x <- rnorm(n=1000, mean=0, sd=1)

neg.LL <- function(p, data){
x <- -sum(log(dnorm(data, mean=p[1], sd=exp(p[2]))))
if (is.infinite(x)) x <- 1e20
return(x)
}
p0 <- c(2, log(2))
z <- nlm(neg.LL, p0, print.level=0, data=x)
p1 <- c(z$estimate[1], exp(z$estimate[2]))
print(p1)

# Compare to closed form solution
print(p1 - c(mean(x), sd(x)))

#--------------------------------------------------------------
# Gamma Distribution
# shape > 0 and rate > 0
# use exponential function to ensure above constraints
# simulate a sample
x <- rgamma(n=2000, shape=1, rate=5)

neg.LL <- function(p, data){
    # give unreasonable values a very high neg LL, i.e. low LL
    if (any(exp(p) > 1e15)) x <- 1e15
    else{
        x <- -sum(log(dgamma(data, shape=exp(p[1]), rate=exp(p[2]))))
        if (is.infinite(x)) x <- 1e15
    }
    return(x)
}
p0 <- c(2, 2)
z <- optim(p0, neg.LL, data=x)
print(exp(z$par))

z <- nlm(neg.LL, p0, print.level=0, data=x)
print(exp(z$estimate))

#--------------------------------------------------------------
# Beta Distribution
# shape1 > 0 and shape2 > 0
```
distribution

use exponential function to ensure above constraints

simulate a sample
x <- rbeta(n=5000, shape1=0.5, shape2=0.2)

exclude those where x=0
x <- x[x!=1]

eff.LL <- function(p, data)
 -sum(log(dbeta(data, shape1=exp(p[1]), shape2=exp(p[2]))))

p0 <- log(c(0.1, 0.1))
z <- optim(p0, eff.LL, data=x)
print(exp(z$par))

z <- nlm(eff.LL, p0, typsize=c(0.01, 0.01), print.level=0, data=x)
print(exp(z$estimate))

#-------------------------------
Weibull Distribution
shape > 0 and scale > 0
use exponential function to ensure above constraints

simulate a sample
x <- rweibull(n=2000, shape=2, scale=1)

eff.LL <- function(p, data)
 -sum(log(dweibull(data, shape=exp(p[1]), scale=exp(p[2]))))

p0 <- log(c(0.1, 0.1))
z <- optim(p0, eff.LL, data=x)
print(exp(z$par))

#--------------------------
Pareto Distribution
lambda > 0
use exponential function to enforce constraint

simulate a sample
x <- rpareto(n=2000, lambda=2, a=1)

eff.LL <- function(p, data){
 # give unreasonable values a very high neg LL, i.e. low LL
 if (exp(p) > 1e15) x <- 1e15
 else x <- -sum(log(dpareto(data, lambda=exp(p), a=1)))
 if (is.infinite(x)) x <- 1e15
 return(x)
}

p0 <- log(0.1)
z <- nlm(eff.LL, p0, print.level=0, data=x)
print(exp(z$estimate))
#---
Tapered Pareto Distribution
lambda > 0 and theta > 0

simulate a sample
x <- rt appareto(n=2000, lambda=2, theta=4, a=1)

neg.LL <- function(p, data){
 x <- -lt appareto(data, lambda=p[1], theta=p[2], a=1)
 attr(x, "gradient") <- -attr(x, "gradient")
 attr(x, "hessian") <- -attr(x, "hessian")
 return(x)
}

use optim to get approx initial value
p0 <- c(3, 5)
z1 <- optim(p0, neg.LL, data=x)
p1 <- z1$par
print(p1)
print(neg.LL(p1, x))

nlm with analytic gradient and hessian
z2 <- nlm(neg.LL, p1, data=x, hessian=TRUE)
p2 <- z2$estimate
print(z2)

Newton Raphson Method
p3 <- p1
iter <- 0
repeat{
 LL <- lt appareto(data=x, lambda=p3[1], theta=p3[2], a=1)
p3 <- p3 - as.numeric(solve(attr(LL,"hessian")) %*% matrix(attr(LL,"gradient"), ncol=1))
 iter <- iter + 1
 if (((max(abs(attr(LL,"gradient"))) < 1e-8) | (iter > 100)) break
}
print(iter)
print(LL)
print(p3)

dpareto Pareto and Tapered Pareto Distributions

Description

Density, cumulative probability, quantiles and random number generation for the Pareto and tapered Pareto distributions with shape parameter \(\lambda \), tapering parameter \(\theta \) and range \(a \leq x < \infty \); and log-likelihood of the tapered Pareto distribution.
Usage

dpareto(x, lambda, a, log=FALSE)
ppareto(q, lambda, a, lower.tail=TRUE, log.p=FALSE)
qupareto(p, lambda, a, lower.tail=TRUE, log.p=FALSE)
rrpareto(n, lambda, a)

dtappareto(x, lambda, theta, a, log=FALSE)
ltappareto(data, lambda, theta, a)
ptappareto(q, lambda, theta, a, lower.tail=TRUE, log.p=FALSE)
qtappareto(p, lambda, theta, a, lower.tail=TRUE, log.p=FALSE,
tol=1e-8)
rtappareto(n, lambda, theta, a)

ltappareto(data, lambda, theta, a)

Arguments

- **x**, q: vector of quantiles.
- **p**: vector of probabilities.
- **data**: vector of sample data.
- **n**: number of observations to simulate.
- **lambda**: shape parameter, see Details below.
- **theta**: tapering parameter, see Details below.
- **a**: the random variable takes values on the interval \(a \leq x < \infty \). This is a scalar and is assumed to be a constant for all values in a given function call.
- **log, log.p**: logical; if TRUE, probabilities \(p \) are given as \(\log(p) \).
- **lower.tail**: logical; if TRUE (default), probabilities are \(\Pr\{X \leq x\} \), otherwise, \(\Pr\{X > x\} \).
- **tol**: convergence criteria for the Newton Raphson algorithm for solving the quantiles of the tapered Pareto distribution.

Details

For all functions except \(ltappareto \), arguments lambda and theta can either be scalars or vectors of the same length as \(x, p, \) or \(q \). If a scalar, then this value is assumed to hold over all cases. If a vector, then the values are assumed to have a one to one relationship with the values in \(x, p, \) or \(q \). The argument \(a \) is a scalar.

In the case of \(ltappareto \), all data are assumed to be drawn from the same distribution and hence lambda, theta and \(a \) are all scalars.

Let \(Y \) be an exponential random variable with parameter \(\lambda > 0 \). Then the distribution function of \(Y \) is

\[
F_Y(y) = \Pr\{Y < y\} = 1 - \exp(-\lambda y),
\]

and the density function is

\[
f_Y(y) = \lambda \exp(-\lambda y).
\]

Further, the mean and variance of the distribution of \(Y \) is \(1/\lambda \) and \(1/\lambda^2 \), respectively.
Now transform Y as

$$X = a \exp(Y),$$

where $a > 0$. Then X is a Pareto random variable with shape parameter λ and distribution function

$$F_X(x) = \Pr\{X < x\} = 1 - \left(\frac{a}{x}\right)^\lambda,$$

where $a \leq x < \infty$, and density function

$$f_X(x) = \frac{\lambda a}{a} \left(\frac{a}{x}\right)^{\lambda+1}.$$

We simulate the Pareto deviates by generating exponential deviates, and then transforming as described above.

As above, let X be Pareto with shape parameter λ, and define $W - a$ to be exponential with parameter $1/\theta$, i.e.

$$\Pr\{X > x\} = \left(\frac{a}{x}\right)^\lambda$$

and

$$\Pr\{W > w\} = \exp\left(\frac{a - w}{\theta}\right),$$

where $a \leq w < \infty$. Say we sample one independent value from each of the distributions X and W, then

$$\Pr\{X > z \& W > z\} = \Pr\{X > z\} \Pr\{W > z\} = \left(\frac{a}{z}\right)^\lambda \exp\left(\frac{a - z}{\theta}\right).$$

We say that Z has a tapered Pareto distribution if it has the above distribution, i.e.

$$F_Z(z) = \Pr\{Z < z\} = 1 - \left(\frac{a}{z}\right)^\lambda \exp\left(\frac{a - z}{\theta}\right).$$

The above relationship shows that a tapered Pareto deviate can be simulated by generating independent values of X and W, and then letting $Z = \min(X, W)$. This minimum has the effect of “tapering” the tail of the Pareto distribution.

The tapered Pareto variable Z has density

$$f_Z(z) = \left(\frac{\lambda}{z} + \frac{1}{\theta}\right) \left(\frac{a}{z}\right)^\lambda \exp\left(\frac{a - z}{\theta}\right).$$

Given a sample of data z_1, z_2, \cdots, z_n, we write the log-likelihood as

$$\log L = \sum_{i=1}^n \log f_Z(z_i).$$

Hence the gradients are calculated as

$$\frac{\partial \log L}{\partial \lambda} = \theta \sum_{i=1}^n \frac{1}{\lambda \theta + z_i} - \sum_{i=1}^n \log(z_i/a).$$
and
\[
\frac{\partial \log L}{\partial \theta} = -\frac{1}{\theta} \sum_{i=1}^{n} \frac{z_i}{\lambda \theta + z_i} - \frac{1}{\theta^2} \sum_{i=1}^{n} (a - z_i).
\]

Further, the Hessian is calculated using
\[
\frac{\partial^2 \log L}{\partial \lambda^2} = -\theta^2 \sum_{i=1}^{n} \frac{1}{(\lambda \theta + z_i)^2},
\]
\[
\frac{\partial^2 \log L}{\partial \theta^2} = \frac{1}{\theta^2} \sum_{i=1}^{n} \frac{z_i(2\lambda \theta + z_i)}{(\lambda \theta + z_i)^2} - \frac{2}{\theta^3} \sum_{i=1}^{n} (a - z_i),
\]
and
\[
\frac{\partial^2 \log L}{\partial \theta \partial \lambda} = \frac{\partial^2 \log L}{\partial \lambda \partial \theta} = \sum_{i=1}^{n} \frac{z_i}{(\lambda \theta + z_i)^2}.
\]

See the section “Seismological Context” (below), which outlines its application in Seismology.

Value

dpareto and dtpareto give the densities; ppareto and ptpareto give the distribution functions; qpareto and qtpareto give the quantile functions; and rpareto and rtpareto generate random deviates.

ltappareto returns the log-likelihood of a sample using the tapered Pareto distribution. It also calculates, using analytic expressions (see “Details”), the derivatives and Hessian which are attached to the log-likelihood value as the attributes “gradient“ and “hessian“, respectively.

Seismological Context

The Gutenberg-Richter (GR) Law says that if we plot the base 10 logarithm of the number of events with magnitude greater than \(M \) (vertical axis) against \(M \) (horizontal axis), there should be a straight line. This is equivalent to magnitudes having an exponential distribution.

Assume that the magnitude cutoff is \(M_0 \), and let \(Y = M - M_0 \). Given that \(Y \) has an exponential distribution with parameter \(\lambda \), it follows that
\[
\log_{10} (1 - F_Y(y)) = -\frac{\lambda y}{\log_e 10}.
\]

The coefficient \(\lambda/(\log_e 10) \) is often referred to as the \(b \)-value, and its negative value is the slope of the line in the GR plot.

Now define \(S \) as
\[
S = 10^{\gamma(M-M_0)} = 10^{\gamma Y}.
\]

When \(\gamma = 0.75 \), \(S \) is the “stress”; and when \(\gamma = 1.5 \), \(S \) is the “seismic moment”. Still assuming that \(Y \) is exponential with parameter \(\lambda \), then \(Y^\gamma \log_e 10 \) is also exponential with parameter \(\lambda/(\gamma \log_e 10) \). Hence, by noting that \(S \) can be rewritten as
\[
S = \exp\{Y^\gamma \log_e 10\},
\]

it is seen that \(S \) is Pareto with parameter \(\lambda/(\gamma \log_e 10) \), and \(1 \leq S < \infty \).
While the empirical distribution of magnitudes appears to follow an exponential distribution for smaller events, it provides a poor approximation for larger events. This is because it is not physically possible to have events with magnitudes much greater than about 9.5. Consequently, the tail of the Pareto distribution will also be too long. Hence the tapered Pareto distribution provides a more realistic description.

See Also

See `dexp` for the exponential distribution. Generalisations of the exponential distribution are the gamma distribution `dgamma` and the Weibull distribution `dweibull`.

See the topic `distribution` for examples of estimating parameters.

Examples

```r
# Simulate and plot histogram with density for Pareto Distribution
a0 <- 2
lambda0 <- 2
x <- rpareto(1000, lambda=lambda0, a=a0)
x0 <- seq(a0, max(x)+0.1, length=100)
hist(x, freq=FALSE, breaks=x0, xlim=range(x0),
     main="Pareto Distribution")
points(x0, dpareto(x0, lambda=lambda0, a=a0), type="l", col="red")

# Calculate probabilities and quantiles for Pareto Distribution
a0 <- 2
lambda0 <- 2
prob <- ppareto(seq(a0, 8), lambda=lambda0, a=a0)
quan <- qpareto(prob, lambda=lambda0, a=a0)
print(quan)

# Simulate and plot histogram with density for tapered Pareto Distribution
a0 <- 2
lambda0 <- 2
theta0 <- 3
x <- rtappareto(1000, lambda=lambda0, theta=theta0, a=a0)
x0 <- seq(a0, max(x)+0.1, length=100)
hist(x, freq=FALSE, breaks=x0, xlim=range(x0),
     main="Tapered Pareto Distribution")
points(x0, dtappareto(x0, lambda=lambda0, theta=theta0, a=a0), type="l", col="red")

# Calculate probabilities and quantiles for tapered Pareto Distribution
a0 <- 2
lambda0 <- 2
theta0 <- 3
prob <- ptappareto(seq(a0, 8), lambda=lambda0, theta=theta0, a=a0)
```
etas_gif

Ground Intensity for ETAS Model

Description

This function calculates the value of the ground intensity of a time-magnitude Epidemic Type Aftershock Sequence (ETAS) model. Spatial coordinates of the events are not taken into account.

Usage

```r
etas_gif(data, evalpts, params, TT=NA, tplus=FALSE)
```

Arguments

- `data` a data frame containing the event history, where each row represents one event. There must be columns named "time", usually the number of days from some origin; and "magnitude" which is the event magnitude less the magnitude threshold, i.e. \(M_i - M_0 \).
- `evalpts` a vector, matrix or data.frame. If a vector, the elements will be assumed to represent the required evaluation times. Other objects must include a column named "time" that can be referred to as evalpts[,"time"], at which the intensity function will be evaluated.
- `params` vector of parameter values in the following order: \((\mu, A, \alpha, c, p) \).
- `TT` vector of length 2, being the time interval over which the integral of the ground intensity function is to be evaluated.
- `tplus` logical, \(\lambda_g(t|\mathcal{H}_t) \) is evaluated as \(\lambda_g(t^+|\mathcal{H}_t) \) if TRUE, else \(\lambda_g(t^-|\mathcal{H}_t) \).
Details

The ETAS model was proposed by Ogata (1988, 1998, 1999) for the modelling of earthquake mainshock-aftershock sequences. The form of the ground intensity function used here is given by

\[\lambda_g(t|\mathcal{H}_t) = \mu + A \sum_{i: t_i < t} e^{\alpha(M_i-M_0)} \left(1 + \frac{t - t_i}{c}\right)^{-p}, \]

where \(t_i \) denotes the event times and the summation is taken over those \(i \) such that \(t_i < t \).

Value

Two usages are as follows.

\begin{verbatim}
etas_gif(data, evalpts, params, tplus=FALSE) etas_gif(data, evalpts=NULL, params, TT)
\end{verbatim}

The first usage returns a vector containing the values of \(\lambda_g(t) \) evaluated at the specified points. In the second usage, it returns the value of the integral.

Function Attributes

- rate is "decreasing".

References

Cited references are listed on the PtProcess manual page.

See Also

General details about the structure of ground intensity functions are given in the topic gif.

Examples

Tangshan: ground intensity and magnitude time plots

data(Tangshan)
p <- c(0.007, 2.3, 0.98, 0.008, 0.94)
bvalue <- 1
TT <- c(0, 4018)

x <- mpp(data=Tangshan,
 gif=etas_gif,
 marks=list(dexp_mark, NULL),
 params=p,
 gmap=expression(params),
 mmap=expression(bvalue*log(10)),
 TT=TT)

par.default <- par(mfrow=c(1,1), mar=c(5.1, 4.1, 4.1, 2.1))
par(mfrow=c(2,1), mar=c(4.1, 4.1, 0.5, 1))
plot(x, log=TRUE, xlab="")

plot(Tangshan$time, Tangshan$magnitude+4, type="h",
xlim=c(0, 4018),
xlab="Days Since 1 January 1974", ylab="Magnitude")

par(par.default)

gif

General Notes on Ground Intensity Functions

Description

This page contains general notes about the required structure of ground intensity functions (including those that are not conditional on their history) to be used with this package.

Forms of Usage

The usage of a ground intensity function takes two forms, one to evaluate the gif at specified evalpts, or to evaluate the integral of the gif on the interval TT, each shown below, respectively.

\[
gif(data, evalpts, params, tplus=FALSE)
gif(data, NULL, params, TT)
\]

Arguments

All ground intensity functions should be defined to contain the following arguments, in the order below, even though they may not be required (see Details below).

- **data** a data frame containing the history of the process, denoted below as \(\mathcal{H}_t \). It should contain all variables that are required to evaluate the gif function, though can contain others too. No history is represented as NULL.

- **evalpts** a object containing the values at which the gif function is to be evaluated, consistent with what is required by the gif function.

- **params** vector containing values of the parameters required by the gif function.

- **TT** vector of length 2, being the time interval over which the integral of the ground intensity function is to be evaluated.

- **tplus** logical, \(\lambda_g(t|\mathcal{H}_t) \) is evaluated as \(\lambda_g(t^+|\mathcal{H}_t) \) if TRUE, else \(\lambda_g(t^-|\mathcal{H}_t) \). It is important if a “jump” occurs at \(t \).

Details

Note that the gif functions not only evaluate values of \(\lambda_g(t_i|\mathcal{H}_t) \), but also the integral. The value of the ground intensity function is returned at each time point specified in evalpts when TT=NA. If TT is not missing, the integral between TT[1] and TT[2] of the ground intensity function is calculated. In this last situation, anything assigned to the argument evalpts will have no effect.

At the moment, we have the following types of processes: those jump processes that are conditional on their history (**etas_gif**, **srm_gif**, **linksrm_gif**), and non-homogeneous Poisson processes that
are not conditional on their history (simple.gif). Another case is where we have a collection of point like “regions” (or lattice nodes), each with their own ground intensity function, but where each is also dependent on what is happening in the other regions (linksrm.gif).

Functions have been given an attribute “rate”, taking the values of “bounded”, “decreasing” or “increasing”. This is used within the simulation function simulate.mpp which uses the thinning method. This method requires a knowledge of the maximum of $\lambda_g(t|\mathcal{H}_t)$ in a given interval. The argument tplus is also used by the simulation routine, where it is necessary to determine the value of the intensity immediately after a simulated event.

Value

The returned value is either $\lambda_g(t_i|\mathcal{H}_t)$, where the t_i are specified within evalpts; or

$$\int \lambda_g(t|\mathcal{H}_t)dt$$

where the limits of the integral are specified by the function argument TT.

Function Attributes

Each function should have some of the following attributes if it is to be used in conjunction with residuals.mpp or simulate.mpp:

- **rate** must be specified if the default method for simulate.mpp is to be used. Takes the values “bounded”, “decreasing” or “increasing”; see Details.
- **regions** an expression giving the number of regions; required with linksrm.gif.

See Also

etas.gif, expfourier.gif, exppoly.gif, fourier.gif, linksrm.gif, poly.gif, simple.gif, srm.gif

Examples

```r
# Ogata's Data: ground intensity function
# evaluate lambda_g(t) at certain times

data(Ogata)

p <- c(0.02, 0.77, 0.47, 0.002, 1.25)
times <- sort(c(seq(0, 800, 0.5), Ogata$times))
TT <- c(0, 800)

plot(times, log(etas.gif(Ogata, times, params=p)), type="l",
ylab=expression(paste(log, "\(\lambda_g\)(t)")),
xlab=expression(t), xlim=TT)

# Evaluate the integral
# The first form below is where the arguments are in their
default positions, the 2nd is where they are not, hence
# their names must be specified
```
print(etas.gif(Ogata, NULL, p, TT))
or
print(etas.gif(Ogata, params=p, TT=TT))

linksrm

Linked Stress Release Model Object

Description

Creates a point process model object with class "linksrm".

Usage

`linksrm(data, gif, marks, params, gmap, mmap, TT)`

Arguments

- **data**
 - a `data.frame` containing the history of the process, denoted below as H_t. It should contain all variables that are required to evaluate the `gif` function and the mark distribution, though can contain others too. No history is represented as `NULL`.

- **gif**
 - ground intensity function. At this stage, this can only be `linksrm_gif` or modifications of that function; see “Details” below.

- **marks**
 - mark distribution. See topic `marks` for further details.

- **params**
 - numeric vector of all model parameters.

- **gmap**
 - `expression`, maps the model parameters (params) into the parameter sub-space of the ground intensity function; see “Details” below.

- **mmap**
 - `expression`, maps the model parameters (params) into the parameter sub-space of the mark distribution; see “Details” below.

- **TT**
 - vector of length 2, being the time interval over which the integral of the ground intensity function is to be evaluated.

Details

The linked stress release model has a slightly peculiar structure which makes it difficult to fit into the `mpp` class. While the region should be thought of as a mark, it is completely defined by the function `linksrm_gif`, and hence from the programming perspective the region mark is really tied in with the `gif` function. Hence at the moment, the linked stress release model is treated as a special case. There may be other models that could be grouped into this class.
Examples

\begin{verbatim}
p <- c(-1.5, -1.5, 0.01, 0.03, 2, -0.5, 0.2, 1, 1*\log(10), 3)
TT <- c(0, 1000)

rexptrunc_mark <- function(ti, data, params){
 x <- rexp(n=1, params[1])
 x[x > params[2]] <- params[2]
 names(x) <- "magnitude"
 return(x)
}

x <- linksrm(data=NULL,
 gif=linksrm_gif,
 marks=list(NULL, rexptrunc_mark),
 params=p,
 gmap=expression(params[1:8]),
 mmap=expression(params[9:10]),
 TT=TT)

x <- simulate(x, seed=5)
print(logLik(x))

estimate parameters
temp_map <- function(y, p){
 # map only gif parameters into model object
 y$params[1:8] <- p
 return(y)
}

weight <- c(0.1, 0.1, 0.005, 0.005, 0.1, 0.1, 0.1, 0.1)

see manual page for linksrm_gif for modifications to
make calculations faster

for testing, restrict to 5 iterations
z <- nlm(negloglik, p[1:8], object=x, pmap=temp_map,
 hessian=TRUE, gradtol=1e-08, steptol=1e-10,
 print.level=2, iterlim=5, typsize=weight)

param.names <- c("a1", "a2", "b1", "b2", "c11", "c12", "c21", "c22")
param.est <- as.data.frame(param.est, sqrt(diag(solve(z$hessian))))

print(param.est)

place parameter estimates into model object
x <- temp_map(x, z$estimate)

plot ground intensity function
par.default <- par(mfrow=c(2,1), mar=c(4.1, 4.1, 0.5, 1))
x$gif <- linksrm_gif
plot(x, 1, xlab="")
\end{verbatim}
Parameter Conversion for Linked Stress Release Model

Description

Converts parameter values between two different parameterisations (described in Details below) of the linked stress release model.

Usage

linksrm_convert(params, abc=TRUE)

Arguments

params a vector of parameter values of length \(n^2 + 2n\), where \(n\) is the number of regions in the model.

abc logical. If TRUE (default), then the input value of params is that of the abc parameterisation. See Details for further explanation.

Details

If \(abc \equiv \text{TRUE}\), the conditional intensity for the \(i\)th region is assumed to have the form

\[
\lambda_i(t) = \exp \left\{ a_i + b_i \left[t - \sum_{j=1}^{n} c_{ij} S_j(t) \right] \right\}
\]

with \(\text{params} = (a_1, \ldots, a_n, b_1, \ldots, b_n, c_{11}, c_{12}, c_{13}, \ldots, c_{nn})\).
If abc == FALSE, the conditional intensity for the \(i\)th region is assumed to have the form

\[
\lambda_g(t, i \mid \mathcal{H}_i) = \exp \left\{ \alpha_i + \nu_i \left[\rho_i t - \sum_{j=1}^{n} \theta_{ij} S_j(t) \right] \right\}
\]

where \(\theta_{ii} = 1\) for all \(i, n = \sqrt{\text{length}(\text{params}) + 1} - 1\), and params

\[
= (\alpha_1, \ldots, \alpha_n, \nu_1, \ldots, \nu_n, \rho_1, \ldots, \rho_n, \theta_{12}, \theta_{13}, \ldots, \theta_{1n}, \theta_{21}, \theta_{23}, \ldots, \theta_{n,n-1}).
\]

Value

A list object with the following components is returned:

- **params** vector as specified in the function call.
- **a** vector of length \(n\) as in the abc parameterisation.
- **b** vector of length \(n\) as in the abc parameterisation.
- **c** \(n\) by \(n\) matrix as in the abc parameterisation.
- **alpha** vector of length \(n\) as in the alternative parameterisation.
- **nu** vector of length \(n\) as in the alternative parameterisation.
- **rho** vector of length \(n\) as in the alternative parameterisation.
- **theta** \(n\) by \(n\) matrix with ones on the diagonal as in the alternative parameterisation.

See Also

- `linksrm_gif`

Description

Calculates the value of the ground intensity of a Linked Stress Release Model (LSRM). This model allows for multiple linked regions, where the stress can be transferred between the regions.

Usage

```
linksrm_gif(data, evalpts, params, TT=NA, tplus=FALSE, eta=0.75)
```
Arguments

- **data** a data frame containing the event history, where each row represents one event. There must be columns named "time", usually the number of days from some origin; "magnitude" which is the event magnitude less the magnitude threshold, i.e. \(M_k - M_0 \); and "region" which are consecutively numbered starting at 1.

- **evalpts** a matrix or data.frame. It must include two columns named "time" and "region" that can be referred to as evalpts[, "time"] and evalpts[, "region"], respectively. The function will be evaluated at these points.

- **params** vector of parameters of length \(n^2 + 2n \), where \(n \) is the number of regions, for the proposed LSRM in the following order:

\[(a_1, \ldots, a_n, b_1, \ldots, b_n, c_{11}, c_{12}, c_{13}, \ldots, c_{nn})\]

- **tt** vector of length 2, being the time interval over which the integral of the ground intensity function is to be evaluated.

- **tplus** logical, \(\lambda_g(t, i | H_t) \) is evaluated as \(\lambda_g(t^+, i | H_t) \) if TRUE, else \(\lambda_g(t^-, i | H_t) \).

- **eta** a scalar used in the stress calculations, see Details below.

Details

The ground intensity for the \(i \)th region is assumed to have the form

\[
\lambda_g(t, i | H_t) = \exp \left\{ a_i + b_i \left[t - \sum_{j=1}^{n} c_{ij} S_j(t) \right] \right\}
\]

with \(\text{params} = c(a_1, \ldots, a_n, b_1, \ldots, b_n, c_{11}, c_{12}, c_{13}, \ldots, c_{nn}) \); and

\[
S_j(t) = \sum_{k} 10^{\eta(M_k - M_0)},
\]

where the summation is taken over those events in region \(j \) with time \(t_k < t \). This model has been discussed by Bebbington & Harte (2001, 2003). The default value of \(\eta = \eta = 0.75 \).

Value

Two usages are as follows.

- \(\text{linksrn_gif}(\text{data}, \text{evalpts}, \text{params}, \text{tplus}=\text{FALSE}, \text{eta}=0.75) \)
- \(\text{linksrn_gif}(\text{data}, \text{evalpts}=\text{NULL}, \text{params}, \text{TT}, \text{eta}=0.75) \)

The first usage returns a vector containing the values of \(\lambda_g(t, i) \) evaluated at the specified "time-region" points. In the second usage, it returns a vector containing the value of the integral for each region.

Function Attributes

- rate is "increasing".
- regions is expression(sdfqrt(length(params) + 1) - 1).
Modify Function to Decrease Calculation Time

The function linksrm_gif calculates the stress reduction matrices \(\text{st1} \) and \(\text{stR} \) every time that the function is called. Ideally, these should be calculated once and be included within the model object. Currently, the structure of the model object is not sufficiently flexible. However, the user can create a new function to calculate \(\text{st1} \) and \(\text{stR} \) once. This will only work if the event history is not changing between successive calls (e.g. parameter estimation). However, in a simulation, the history changes with the addition of each new event, and in this situation \(\text{st1} \) and \(\text{stR} \) need to be calculated with every function call.

The modified function, as described below, will write the objects \(\text{st1} \) and \(\text{stR} \) to a temporary database (position 2 in the search path). Consequently, it cannot be defined within the package itself because this violates the CRAN rules. The function linksrm_gif contains markers indicating the beginning and ending of the parts where \(\text{st1} \) and \(\text{stR} \) are calculated. The modified function is made by editing the function linksrm_gif. We firstly deparse the function linksrm_gif (i.e. put the contents into a character vector). We initially create a temporary database called PtProcess.tmp in which to write \(\text{st1} \) and \(\text{stR} \). We then search for the line numbers that mark the beginning and ending of the parts where \(\text{st1} \) and \(\text{stR} \) are calculated. We replace the beginning of each with a conditional statement so that the contents are only run if these two objects do not already exist. We then parse the lines of code in the character vector back into a function, and call this new function linksm1_gif. The same thing can be achieved by dumping linksrm_gif to a text file and editing manually.

```r
# define linksrm1_gif by modifying linksrm_gif

# put function linksrm_gif into a character vector
tmp <- deparse(linksrm_gif)

# remove "if (FALSE)" lines
linenum <- grep("if \((\text{FALSE})\)\", tmp)
tmp <- tmp[-linenum]

# attach new database at pos=2 in search path called PtProcess.tmp
linenum <- grep("attach new database to search path\", tmp)
tmp[linenum] <- "if (!any(search()=="PtProcess.tmp\")) attach(NULL,
pos=2L, name="PtProcess.tmp\", warn.conflicts=TRUE)"

# calc St1 if St1 does not exist
linenum <- grep("this loop calculates St1\", tmp)
tmp[linenum] <- "if (!exists("St1\", mode = "numeric\")\}{
  linenum <- grep("assign statement for St1\", tmp)
tmp[linenum] <- "assign("St1\", St1, pos="PtProcess.tmp\")"
  linenum <- grep("end loop St1\", tmp)
tmp[linenum] <- "}"

# calc St2 if St2 does not exist
linenum <- grep("this loop calculates St2\", tmp)
tmp[linenum] <- "if (!exists("St2\", mode = "numeric\")\}{
  linenum <- grep("assign statement for St2\", tmp)"
```


logLik

logLik(object, SNOWcluster=NULL, ...)

Arguments

object an object with class "mpp" or "linksrm".
SNOWcluster an object of class "cluster" created by the package parallel; default is NULL. Enables parallel processing if not NULL. See “Parallel Processing” below for further details.
... other arguments.

Description

Calculates the log-likelihood of a point process. Provides methods for the generic function logLik.

Usage

S3 method for class 'mpp'
logLik(object, SNOWcluster=NULL, ...)
S3 method for class 'linksrm'
logLik(object, ...)

References

Cited references are listed on the PtProcess manual page.

See Also

General details about the structure of ground intensity functions are given in the topic gif.

Warning: The function linksrm1_gif checks to see whether the matrices \texttt{St1} and \texttt{St2} exist. If so, these existing matrices are used, and new ones are not calculated. Therefore when using linksrm1_gif for parameter estimation, one must check for the existence of such matrices, and delete upon starting to fit a new model:

```r
if (exists("St1")) rm(St1)
if (exists("St2")) rm(St2)
```

or detach the database as detach(2). The objects \texttt{St1} and \texttt{St2} will exist for the duration of the current R session, so should be deleted when no longer required.
Value

Value of the log-likelihood.

Parallel Processing

Parallel processing can be enabled to calculate the term $\sum \log \lambda_g(t_i|\mathcal{H}_t)$. Generally, the amount of computational work involved in calculating $\lambda_g(t|\mathcal{H}_t)$ is much greater if there are more events in the process history prior to t than in the case where there are fewer events. Given m nodes, the required evaluation points are divided into m groups, taking into account the amount of “history” prior to each event and the CPU speed of the node (see below).

We have assumed that communication between nodes is fairly slow, and hence it is best to allocate the work in large chunks and minimise communication. If the dataset is small, then the time taken to allocate the work to the various nodes may in fact take more time than simply using one processor to perform all of the calculations.

The required steps in initiating parallel processing are as follows.

```r
# load the "parallel" package
library(parallel)

# define the SNOW cluster object, e.g. a SOCK cluster
# where each node has the same R installation.
cl <- makeSOCKcluster(c("localhost", "horoeka.localdomain", "horoeka.localdomain", "localhost"))

# A more general setup: Totara is Fedora, Rimu is Debian:
# Use 2 processors on Totara, 1 on Rimu:
totara <- list(host="localhost",
               rscript="/usr/lib/R/bin/Rscript",
               snowlib="/usr/lib/R/library")

rimu <- list(host="rimu.localdomain",
               rscript="/usr/lib/R/bin/Rscript",
               snowlib="/usr/local/lib/R/site-library")
cl <- makeCluster(list(totara, totara, rimu), type="SOCK")

# NOTE: THE STATEMENTS ABOVE WERE APPROPRIATE FOR THE snow PACKAGE.
# I HAVE NOT YET TESTED THEM USING THE parallel PACKAGE.

# Relative CPU speeds of the nodes can be added as an attribute
# Say rimu runs at half the speed of totara
# (default assumes all run at same speed)
attr(cl, "cpu.spd") <- c(1, 1, 0.5)

# then define the required model object, e.g. see topic "mpp"
# say the model object is called x

# then calculate the log-likelihood as
print(logLik(x, SNOWcluster=cl))
```
stop the R jobs on the slave machines
stopCluster(cl)

Note that the communication method does not need to be SOCKS; see the parallel package documentation, topic makeCluster, for other options. Further, if some nodes are on other machines, the firewalls may need to be tweaked. The master machine initiates the R jobs on the slave machines by communicating through port 22 (use of security keys are needed rather than passwords), and subsequent communications use random ports. This port can be fixed, see makeCluster.

Examples

```R
# SRM: magnitude iid exponential with bvalue=1

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

# calculate log-likelihood excluding the mark density term
x1 <- mpp(data=NULL,
            gif=srm_gif,
            marks=list(NULL, rexp_mark),
            params=params,
            gmap=expression(params[1:3]),
            mmap=expression(params[4]),
            TT=TT)
x1 <- simulate(x1, seed=5)
print(logLik(x1))

# calculate log-likelihood including the mark density term
x2 <- mpp(data=x1$data,
            gif=srm_gif,
            marks=list(dexp_mark, rexp_mark),
            params=params,
            gmap=expression(params[1:3]),
            mmap=expression(params[4]),
            TT=TT)
print(logLik(x2))

# contribution from magnitude marks
print(sum(dexp(x1$data$magnitude, rate=bvalue*log(10), log=TRUE)))
```

Description

Package snow has become deprecated and replaced by parallel. Some functions in snow used by package PtProcess do not appear in parallel under the same name. Below are transition functions to map some functions in snow to the most comparable functions in parallel. These transition functions will ultimately be deprecated.
marks

Usage

makeSockCluster(names, ...)

Arguments

names character vector of node names.
...
... cluster option specifications.

Details

makeSockCluster calls makePSOCKcluster.

marks Mark Distributions

Description

Contains densities and random number generators for some example mark distributions. The mark distributions can be multi-dimensional. Users can write their own functions, and general rules are given under “Details”.

Usage

dexp_mark(x, data, params)
rexp_mark(ti, data, params)

Arguments

ti scalar, time of an event.
x a data.frame of mark values at given times, often a subset of the history.
data a data.frame containing the history of the process, denoted below as \mathcal{H}_t.
params numeric vector of parameters.

Details

The example functions listed under “Usage” calculate the logarithm of the (mark) density and simulate earthquake magnitudes assuming an exponential distribution that is independent of the history of the process. This corresponds to the Gutenberg-Richter law. They assume that the history contains a variable named “magnitude”.

All mark densities and random number generators must have the three arguments as shown in the examples above. Multi-parameter distributions have their parameters specified as a vector in the params argument. Other ancillary data or information can be passed into the function non-formally, though one needs to be careful about possible conflict with names of other objects.
Value

Mark density functions must return a vector with length being equal to the number of rows in x. Each element contains the logarithm of the joint density of the marks corresponding to each time (row) in x.

The random number generator simulates each mark for a single value of ti. It must return a list of simulated marks corresponding to the specified time ti. Further, the list must have its elements named the same as those in the history. Note that each component in the list will be of length one. A list is used (rather than a vector) because it allows marks to be character as well as numeric.

Example 1

This is an example where the density of the magnitude distribution is dependent on the value of the ground intensity function (assumed to be etas.gif), and in this case, the history of the process.

The history is assumed to contain a variable named "magnitude". In this mark distribution, it is assumed that after large events, there is a deficit of smaller magnitude events with more larger magnitude events. It has seven parameters with parameters \(p_1, \ldots, p_5 \) relating to etas.gif. It assumes that the magnitude distribution is gamma (\texttt{GammaDist}), with a shape parameter given by

\[
\text{shape} = 1 + \sqrt{\lambda_g(t|H_t)} p_7,
\]

where \(p_7 (p_7 > 0) \) is a free estimable parameter, and parameter \(p_6 \) is the scale parameter. Hence when \(\lambda_g(t|H_t) \) is small, the magnitude distribution returns to an approximate exponential distribution with an approximate rate of \(p_6 \) (i.e. Gutenberg Richter law).

```r
dexample1_mark <- function(x, data, params){
  lambda <- etas.gif(data, x[,"time"], params=params[1:5])
  y <- dgamma(x[,"magnitude"], rate=params[6], shape=1+sqrt(lambda)+params[7], log=TRUE)
  return(y)
}
rexample1_mark <- function(ti, data, params){
  # Gamma distribution
  # exponential density when params[7]=0
  lambda <- etas.gif(data, ti, params=params[1:5])
  y <- rgamma(1, shape=1+sqrt(lambda)+params[7], rate=params[6])
  return(list(magnitude=y))
}
```

Example 2

This an example of a 3-D mark distribution. Each component is independent of each other and the history, hence the arguments \(\text{ti} \) and \(\text{data} \) are not utilised in the functions. The history is assumed to contain the three variables "magnitude", "longitude" and "latitude". The event magnitudes are assumed to have an exponential distribution with rate \(\text{params[1]} \), and the longitudes and latitudes to have normal distributions with means \(\text{params[2]} \) and \(\text{params[3]} \), respectively.
```r
dexample2_mark <- function(x, data, params)
  return(dexp(x[, "magnitude"], rate=params[1], log=TRUE) +
         dnorm(x[, "longitude"], mean=params[2], log=TRUE) +
         dnorm(x[, "latitude"], mean=params[3], log=TRUE))

rexample2_mark <- function(ti, data, params)
  return(list(magnitude=rexp(1, rate=params[1]),
              longitude=rnorm(1, mean=params[2]),
              latitude=rnorm(1, mean=params[3])))
```

Description

Creates a marked point process model object with class "mpp".

Usage

```r
mpp(data, gif, marks, params, gmap, mmap, TT)
```

Arguments

- **data**: a `data.frame` containing the history of the process, denoted below as H_t. It should contain all variables that are required to evaluate the `gif` function and the mark distribution, though can contain others too. No history is represented as `NULL`.

- **gif**: ground intensity function. See topic `gif` for further details.

- **marks**: a `list` containing the mark distribution. The first component (i.e. `marks[[1]]`) is the mark density and the second (i.e. `marks[[2]]`) is the random number generator. If either of these functions are not required, the particular component can be set to `NULL`. See topic `marks` for further details.

- **params**: numeric vector of **all** model parameters.

- **gmap**: `expression`, maps the model parameters (params) into the parameter sub-space of the ground intensity function; see “Details” below.

- **mmap**: `expression`, maps the model parameters (params) into the parameter sub-space of the mark distribution; see “Details” below.

- **TT**: vector of length 2, being the time interval over which the integral of the ground intensity function is to be evaluated.
Details

Let \(\lambda_g(t|H_t) \) denote the ground intensity function and \(f(y|H_t) \) denote the joint mark densities, where \(y \in Y \). The log-likelihood of a marked point process is given by

\[
\log L = \sum_i \log \lambda_g(t_i|H_{t_i}) + \sum_i \log f(y_i|H_{t_i}) - \int \lambda_g(t|H_t) dt,
\]

where the summation is taken over those events contained in the interval \((T[1], T[2])\), and the integral is also taken over that interval. However, all events in the data frame data before \(t \), even those before \(T[1] \), form the history of the process \(H_t \). This allows an initial period for the process to reach a “steady state” or “equilibrium”. The parameter spaces of the ground intensity function and mark distribution are not necessarily disjoint, and can have common parameters. Hence, when the model parameters are estimated, these relationships must be known, and are specified by the arguments gmap and mmap. The mapping expressions can also contain arithmetic expressions. The \(i \)th element in the params argument is addressed in the expressions as params(i).

Examples

data(Tangshan)

increment magnitudes a fraction so none are zero
Tangshan[, "magnitude"] <- Tangshan[, "magnitude"] + 0.01

dmagn_mark <- function(x, data, params){
 # Gamma distribution
 # exponential density when params[7]=0
 # See topic "marks" for further discussion
 lambda <- etas_gif(data, x[, "time"], params=params[1:5])
 y <- dgamma(x[, "magnitude"], shape=1+sqrt(lambda)*params[7], rate=params[6], log=TRUE)
 return(y)
}

TT <- c(0, 4018)
params <- c(0.0067, 1.1025, 1.0794, 0.0169, 0.9506, 1.9159, 0.4704)
params <- c(0.007, 1.1, 1.06, 0.02, 0.95, 1.92, 0.47)

x <- mpp(data=Tangshan,
 gif=etas_gif,
 marks=list(dmagn_mark, NULL),
neglogLik

```r
params=params,
gmap=expression(params[1:5]),
mmap=expression(params[1:7]),
TT=TT)

allmap <- function(y, p){
  # one to one mapping, all p positive
  y$params <- exp(p)
  return(y)
}

# Parameters must be positive. Transformed so that nlm
# can use entire real line (no boundary problems, see
# topic "neglogLik" for further explanation).
# Argument "iterlim" has been restricted to 2 to avoid
# excessive time in package checks, set much larger to
# ensure convergence.
z <- nlm(negloglik, log(params), object=x, pmap=allmap,
        print.level=2, iterlim=2, typsize=abs(params))

x1 <- allmap(x, z$estimate)

# print parameter estimates
print(x1$params)

print(logLik(x))
print(logLik(x1))
plot(x1, log=TRUE)
```

neglogLik

Negative Log-Likelihood

Description

Calculates the log-likelihood multiplied by negative one. It is in a format that can be used with the functions `nlm` and `optim`.

Usage

```r
neglogLik(params, object, pmap = NULL, SNOWcluster=NULL)
```

Arguments

- `params` a vector of revised parameter values.
- `object` an object of class "mpp".
- `pmap` a user provided function mapping the revised parameter values `params` into the appropriate locations in `object`. If `NULL` (default), an untransformed one to one mapping is used.
- `SNOWcluster` an object of class "cluster" created by the package `parallel`; default is `NULL`. Enables parallel processing if not `NULL`. See `logLik` for further details.
Details

This function can be used with the two functions `nlm` and `optim` (see “Examples” below) to maximise the likelihood function of a model specified in object. Both `nlm` and `optim` are minimisers, hence the “negative” log-likelihood. The topic `distribution` gives examples of their use in the relatively easy situation of fitting standard probability distributions to data assuming independence.

The maximisation of the model likelihood function can be restricted to be over a subset of the model parameters. Other parameters will then be fixed at the values stored in the model object. Let Θ_0 denote the full model parameter space, and let Θ denote the parameter sub-space ($\Theta \subseteq \Theta_0$) over which the likelihood function is to be maximised. The argument `params` contains values in Θ, and `pmap` is assigned a function that maps these values into the full model parameter space Θ_0. See “Examples” below.

The mapping function assigned to `pmap` can also be made to impose restrictions on the domain of the parameter space Θ so that the minimiser cannot jump to values such that $\Theta \nsubseteq \Theta_0$. For example, if a particular parameter must be positive, one can work with a transformed parameter that can take any value on the real line, with the model parameter being the exponential of this transformed parameter. Similarly a modified logit like transform can be used to ensure that parameter values remain within a fixed interval with finite boundaries. Examples of these situations can be found in the topic `distribution` and the “Examples” below.

Value

Value of the log-likelihood times negative one.

See Also

`nlm`, `optim`

Examples

```r
# SRM: magnitude is iid exponential with bvalue=1
# maximise exponential mark density too

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
  gif=srm_gif,
  marks=list(dexp_mark, rexp_mark),
  params==params,
  gmap=expression(params[1:3]),
  mmap=expression(params[4]),
  TT=TT)
x <- simulate(x, seed=5)

allmap <- function(y, p){
  # map all parameters into model object
  # transform exponential param so it is positive
  y$params[1:3] <- p[1:3]
y$params[4] <- exp(p[4])
}
```


```r
return(y)
}

params <- c(2.1, 0.01, 0.8, log10(bvalue*log10(10)))

z <- nlm(negloglik, params, object=x, pmap=allmap,
          print.level=2, iterlim=500, typsize=abs(params))
print(z$estimate)

# these should be the same:
print(exp(z$estimate[4]))
print(1/mean(x$data$magnitude))
```

NthChina

Historical Earthquakes of North China

Description

Usage

data(NthChina)

Format

A data frame with 65 rows, each representing an earthquake event, with the following variables:

- **time** number of years since 1480 AD.
- **latitude** number of degrees north.
- **longitude** number of degrees east.
- **magnitude** number of magnitude units *above* 6.
- **region** 1, 2, 3, or 4; being the region of the event.

References

Cited references are listed on the PtProcess manual page.
Ogata

Ogata’s ETAS Test Data

Description

A data frame containing the test data from Utsu and Ogata’s (1997) software contained in the file testetas.dat. The first column is named “time”, and the second column is named “magnitude”.

Usage

data(Ogata)

Format

A data frame with 100 rows (earthquake events) in the time interval (0, 800). It contains the following variables:

- **time**: number of time units since time zero.
- **magnitude**: number of magnitude units above 3.5.

References

Cited references are listed on the PtProcess manual page.

Examples

data(Ogata)
plot(Ogata$time, Ogata$magnitude + 3.5, type="h")

Phuket

Phuket Earthquake and Aftershock Sequence

Description

The Phuket earthquake occurred on 26 December 2004 at 00:58:53.45 GMT. The Phuket data frame contains this event and its aftershock sequence.

Usage

data(Phuket)
Format

This data frame contains the following columns:

- **latitude** number of degrees north.
- **longitude** number of degrees east.
- **depth** depth of event in kilometres.
- **mb** body wave magnitude (m_b) rounded to one decimal place.
- **Ms** surface wave magnitude (M_s) rounded to one decimal place.
- **magnitude** event magnitude ($\max(m_b, M_s)$) rounded to one decimal place.
- **year** year of event (numeric vector).
- **month** month of event, 1 . . . 12 (numeric vector).
- **day** day of event, 1 . . . 31 (numeric vector).
- **hour** hour of event, 0 . . . 23 (numeric vector).
- **minute** minute of event, 0 . . . 59 (numeric vector).
- **second** second of event, 0 . . . 59 (numeric vector).
- **time** number of days (and fractions) from midnight on 1 January 2004.

Details

The Phuket data frame contains those events (1248) from the PDE Catalogue, within the spatial region $89^\circ\text{E}–105^\circ\text{E}$ and $5^\circ\text{S}–16^\circ\text{N}$, with magnitude 5 or greater, occurring between midnight on 1 January 2004 and midnight on 1 January 2009 (1827 days later). The body wave magnitudes are determined by the amplitude of the initial primary wave, and these magnitudes tend to saturate for higher values. Consequently, the tabulated magnitude is taken as the maximum of the body wave magnitude (m_b) and surface wave magnitude (M_s).

Source

The data were extracted from the PDE (Preliminary Determination of Epicentres) catalogue provided by the US Geological Survey (ftp://hazards.cr.usgs.gov/pde/).

Examples

data(Phuket)
print(Phuket[1:10,])
Description

Provides methods for the generic function `plot`.

Usage

```r
## S3 method for class 'mpp'
plot(x, log=FALSE, ...)
## S3 method for class 'linksrm'
plot(x, region, log=FALSE, ...)
```

Arguments

- `x`: an object with class "mpp" or "linksrm".
- `region`: scalar, specifies the required region.
- `log`: plot \(\log \lambda_g(t|\mathcal{H}_t) \), default is FALSE.
- `...`: other arguments.

Examples

```r
data(Ogata)

p <- c(0.02, 70.77, 0.47, 0.002, 1.25)
TT <- c(0, 800)
bvalue <- 1

# Note that the plot function does not utilise the
# information about mark distributions, hence these
# arguments can be NULL

x <- mpp(data=Ogata,
          gif=etas_gif,
          marks=list(NULL, NULL),
          params=p,
          gmap=expression(params[1:5]),
          mmap=NULL,
          TT=TT)

plot(x, log=TRUE)
```
residuals

Residuals of a Point Process Model

Description

Provides methods for the generic function `residuals`.

Usage

```r
## S3 method for class 'mpp'
residuals(object, ...)
## S3 method for class 'linksrm'
residuals(object, ...)
```

Arguments

- `object` an object with class `mpp` or `linksrm`.
- `...` other arguments.

Details

Let t_i be the times of the observed events. Then the transformed times are defined as

$$
\tau_i = \int_0^{t_i} \frac{\lambda_g(t|H_i)}{\lambda(t|H_i)} dt.
$$

If the proposed point process model is correct, then the transformed time points will form a stationary Poisson process with rate parameter one. A plot of transformed time points versus the cumulative number of events should then roughly follow the straight line $y = x$. Significant departures from this line indicate a weakness in the model. Further details can be found in Ogata (1988) and Aalen & Hoem (1978).

See Baddeley et al (2005) and Zhuang (2006) for extensions of these methodologies.

Value

Returns a time series object with class "ts" in the case of `mpp`. In the case of `linksrm` a list is returned with the number of components being equal to the number of regions, and with each component being a time series object.

References

Cited references are listed on the PtProcess manual page.
simple_gif

Non-Homogeneous Poisson Processes

Examples

```r
TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)
x <- simulate(x, seed=5)

tau <- residuals(x)

plot(tau, ylab="Transformed Time", xlab="Event Number")
abline(a=0, b=1, lty=2, col="red")

# represent as a cusum
plot(tau - 1:length(tau), ylab="Cusum of Transformed Time", xlab="Event Number")
abline(h=0, lty=2, col="red")
```

Description

The functions listed here are intensity functions that are not conditional on the history of the process. Each has exactly the same “Usage” and calling format (see section “Value”) as the function simple_gif. They are: expfourier_gif, exppoly_gif, fourier_gif, poly_gif, and simple_gif.

Usage

```r
simple_gif(data, evalpts, params, TT=NA, tplus=FALSE)
```

Arguments

data

NULL or a data frame. The contents of this object are not used by these functions, though they retain this argument for consistency with other gif functions.

evalpts

a vector, matrix or data.frame. If a vector, the elements will be assumed to represent the required evaluation times. Other objects must include a column named "time" that can be referred to as evalpts[, "time"], at which the intensity function will be evaluated.

params

vector of parameter values as required by the particular intensity function, see

TT vector of length 2, being the time interval over which the integral of the intensity function is to be evaluated.

tplus logical, $\lambda_g(t \mid H_t)$ is evaluated as $\lambda_g(t^+ \mid H_t)$ if TRUE, else $\lambda_g(t^- \mid H_t)$. Included for compatibility with others conditional intensity functions.

Details

The models are parameterised as follows.

expfourier.gif The vector of parameters is

$$(p, a_0, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n)$$

and the intensity function is

$$\lambda_g(t) = \exp \left\{ a_0 + \sum_{j=1}^{n} a_j \cos \left(\frac{2j\pi t}{p} \right) + \sum_{j=1}^{n} b_j \sin \left(\frac{2j\pi t}{p} \right) \right\}.$$

The length of params is $2n + 2$, and determines the order of the fitted Fourier series. The numbers of specified sine and cosine coefficients must be the same. The integral is evaluated using numerical integration, using the R function `integrate`.

exppoly.gif The vector of parameters is $(b_0, b_1, b_2, \ldots, b_n)$ and the intensity function is

$$\lambda_g(t) = \exp \left\{ b_0 + \sum_{j=1}^{n} b_j t^j \right\}.$$

The length of params determines the order of the fitted polynomial. The integral is evaluated using numerical integration, using the R function `integrate`.

fourier.gif The Fourier intensity function is the same as expfourier.gif, except the intensity function omits the exponential, and the integration is performed explicitly.

poly.gif The polynomial intensity function is the same as exppoly.gif, except the intensity function omits the exponential, and the integration is performed explicitly.

simple.gif The intensity function is $\lambda_g(t) = a + bt^g$ and the vector of parameters is (a, b, g).

Value

Two usages are as follows.

```r
simple_gif(data, evalpts, params, tplus=FALSE)
simple_gif(data, evalpts=NULL, params, TT=NA)
```

The first usage returns a vector containing the values of $\lambda_g(t)$ evaluated at the specified points. In the second usage, it returns the value of the integral.

Function Attributes

`rate` is "bounded".
See Also

General details about the structure of conditional intensity functions are given in the topic `gif`.

Examples

```r
expfourier_gif(NULL, c(1,1,2,1.3), c(2,3,1,2,3,4), TT=NA)
# Evaluates: lambda_g(t) = exp(3 + 1*cos(2*pi*t/2) + 2*cos(4*pi*t/2) +
# 3*sin(2*pi*t/2) + 4*sin(4*pi*t/2))
# lambda_g(1.1) = 162.56331
# lambda_g(1.2) = 127.72599
# lambda_g(1.3) = 23.83979

expfourier_gif(NULL, NULL, c(2,3,1,2,3,4), TT=c(3,4))
# Let: lambda_g(t) = exp(3 + 1*cos(2*pi*t/2) + 2*cos(4*pi*t/2) +
# 3*sin(2*pi*t/2) + 4*sin(4*pi*t/2))
# Evaluates: integral_3^4 lambda_g(t) dt = 46.21920

#----------------------------------------------------------------------------------------
# Plot intensity function: lambda(t) = 3 + 3*sin(t)
# on interval (0, 6*pi), no marks

params <- c(2*pi, 3, 0, 3)
TT <- c(0, 6*pi)
x <- seq(TT[1], TT[2], length.out=500)

plot(x, fourier_gif(NULL, x, params, TT=NA),
     ylim=c(0, 6), type="l", axes=FALSE,
     xlab="t",
     ylab=expression(lambda(t) == 3 + 3*phantom(.)*plain(sin)*phantom(.)*t),
     main="Sinusoidal Intensity Function", font.main=1)
abline(h=params[2], lty=2, col="red")
box()
axis(2)
axis(1, at=0, labels=0)
axis(1, at=2*pi, labels=expression(2*pi))
axis(1, at=4*pi, labels=expression(4*pi))
axis(1, at=6*pi, labels=expression(6*pi))

# Now define a model object
# note NULL "marks" argument, see manual page for "mpp"

z <- mpp(data=NULL,
         gif=fourier_gif,
         marks=list(NULL, NULL),
         params=params,
         gmap=expression(params),
         mmap=NULL,
         TT=TT)

# Simulate event times
z <- simulate(z, seed=3, max.rate=6)
```
Plot simulated times on sine curve
x <- z$data$time
points(x, fourier_gif(NULL, x, params, TT=NA), col="blue", lwd=5)

Number of simulated events
print(nrow(z$data))

Estimate parameters based on simulated data
parmap <- function(y, p){
 # fix parameters 1 and 3
 y$params <- c(2*pi, p[1], 0, p[2])
 return(y)
}
initial <- c(3, 3)
y <- nlm(negloglik, initial, object=z, pmap=parmap,
 print.level=2, iterlim=20, stepmax=0.1)
print(y$estimate)

simulate

Simulate a Point Process

Description

Provides methods for the generic function simulate.

Usage

```r
## S3 method for class 'mpp'
simulate(object, nsim=1, seed=NULL, max.rate=NA,
  stop.condition=NULL, ...)
## S3 method for class 'linksrm'
simulate(object, nsim=1, seed=NULL, max.rate=NA,
  stop.condition=NULL, ...)
```

Arguments

- **object**: an object with class "mpp" or "linksrm".
- **nsim**: has no effect, and is only included for compatibility with the generic function simulate. See section “Length of Simulated Series” below for control information.
- **seed**: seed for the random number generator.
- **max.rate**: maximum rate, only used if the attribute of object$gif is "bounded". It is the maximum value of object$gif on the simulation interval object$TT.
- **stop.condition**: a function returning a logical value. It is called after the addition of each simulated event. The simulation continues until either object$TT[2] is exceeded or stoping.condition returns TRUE. See section “Length of Simulated Series” below for further information.
- **...**: other arguments.
Details

The thinning method (Ogata, 1981; Lewis & Shedler, 1979) is used to simulate a point process with specified ground intensity function. The method involves calculating an upper bound for the intensity function, simulating a value for the time to the next possible event using a rate equal to this upper bound, and then calculating the intensity at this simulated point; hence these “events” are simulated too frequently. The ratio of this rate with the upper bound is compared with a uniform random number to randomly determine whether the simulated time is retained or not (i.e. thinned).

The functions need to calculate an upper bound for the intensity function. The ground intensity functions will usually be discontinuous at event times, but may be monotonically increasing or decreasing at other times. The ground intensity functions have an attribute called rate with values of "bounded", "increasing" or "decreasing". This information is used to determine the required upper bounded.

The function simulate.linksrm is currently only used in conjunction with linksrm.gif, or a variation of that function. It expects the gif function to have an attribute called regions, which may be an expression, being the number of regions. The method used by the function simulate.linksrm also assumes that the function is “increasing” (i.e. rate, summed over all regions, apart from discontinuous jumps), hence a positive tectonic input over the whole system.

Value

The returned value is an object of the same class as object. It will contain all events prior to object$TT[1] in object$data and all subsequently simulated events. Variables (columns) in object$data will be restricted to "time" and those for which a mark is simulated.

Length of Simulated Series

The interval of time over which events are simulated is determined by object$TT. Simulation starts at object$TT[1] and stops at object$TT[2]. The “current” dataset will consist of all events prior to object$TT[1] in object, plus subsequently simulated events. A more complicated stopping condition can be formulated by using the argument stop.condition.

The argument stop.condition can be assigned a function that returns a logical value. The assigned function is a function of the “current” dataset. It is executed near the bottom of simulate.mpp (check by printing the function). Simulation will then continue until either the stopping condition has been met or the current time exceeds object$TT[2].

For example, we may want to simulate until the first earthquake with a magnitude of 8. Assume that the current dataset contains a variable with name "magnitude" (untransformed). We would then assign Inf to object$TT[2], and write this condition as a function:

```r
stop.cond <- function(data){
  n <- nrow(data)
  # most recent event is the nth
  return(data$magnitude[n] >= 8)
}
```

References

Cited references are listed on the PtProcess manual page.
srm_gif

Conditional Intensity for Stress Release Model

Description
This function calculates the value of the conditional intensity of a Stress Release Model (SRM). Spatial coordinates of the events are not taken into account.

Usage
srm_gif(data, evalpts, params, TT=NA, tplus=FALSE)

Arguments

- **data** a data frame containing the event history, where each row represents one event. There must be columns named “time”, usually the number of days from some origin; and “magnitude” which is the event magnitude less the magnitude threshold, i.e. $M_i - M_0$.
- **evalpts** a vector, matrix or data.frame. If a vector, the elements will be assumed to represent the required evaluation times. Other objects must include a column named "time" that can be referred to as evalpts[,“time"], at which the intensity function will be evaluated.
- **params** vector of parameters for the proposed SRM model in the order (a, b, c).
- **TT** vector of length 2, being the time interval over which the integral of the conditional intensity function is to be evaluated.
- **tplus** logical, $\lambda_g(t|\mathcal{H}_t)$ is evaluated as $\lambda_g(t^+|\mathcal{H}_t)$ if TRUE, else $\lambda_g(t^-|\mathcal{H}_t)$.

Examples

```r
tT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))
x <- mpp(data=NULL,
gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)
x <- simulate(x, seed=5)
y <- hist(x$data$magnitude, xlab="Magnitude", main="")

# overlay with an exponential density
mag <- seq(0, 3, length.out=100)
points(mag, nrow(x$data)*(y$breaks[2]-y$breaks[1])
    dexp(mag, rate=1/mean(x$data$magnitude)),
col="red", type="l")
```

Description

This function calculates the value of the conditional intensity of a Stress Release Model (SRM). Spatial coordinates of the events are not taken into account.

Usage

```r
srm_gif(data, evalpts, params, TT=NA, tplus=FALSE)
```

Arguments

- **data** a data frame containing the event history, where each row represents one event. There must be columns named “time”, usually the number of days from some origin; and “magnitude” which is the event magnitude less the magnitude threshold, i.e. $M_i - M_0$.
- **evalpts** a vector, matrix or data.frame. If a vector, the elements will be assumed to represent the required evaluation times. Other objects must include a column named "time" that can be referred to as evalpts[,“time"], at which the intensity function will be evaluated.
- **params** vector of parameters for the proposed SRM model in the order (a, b, c).
- **TT** vector of length 2, being the time interval over which the integral of the conditional intensity function is to be evaluated.
- **tplus** logical, $\lambda_g(t|\mathcal{H}_t)$ is evaluated as $\lambda_g(t^+|\mathcal{H}_t)$ if TRUE, else $\lambda_g(t^-|\mathcal{H}_t)$.
Details

Vere-Jones (1978) proposed the stress release model, being a stochastic version of elastic rebound theory (Reid, 1910). The SRM assumes a deterministic increase in stress over time, and a stochastic release through earthquake events. The conditional intensity function is

\[\lambda_g(t) = \exp\{a + b[t - cS(t)]\}, \]

where

\[S(t) = \sum_i 10^{0.75(M_i - M_0)} \]

and the summation is taken over those \(i \) such that \(t_i < t \), where \(t_i \) denotes the event times.

Value

Two usages are as follows.

\begin{verbatim}
 srm_gif(data, evalpts, params, tplus=FALSE)
 srm_gif(data, evalpts=NULL, params, TT)
\end{verbatim}

The first usage returns a vector containing the values of \(\lambda_g(t) \) evaluated at the specified points. In the second usage, it returns the value of the integral.

Function Attributes

\texttt{rate} is "increasing".

Problems and Inconsistencies

Runs much slower than \texttt{linksrm_gif}. Should set up matrices \texttt{St1} and \texttt{St2} as in \texttt{linksrm_gif}.

References

Cited references are listed on the \texttt{PtProcess} manual page.

See Also

General details about the structure of conditional intensity functions are given in the topic \texttt{gif}.

Examples

\begin{verbatim}
Treating North China as one region

data(NthChina)
p <- c(-2.46, 0.0113, 0.851)
times <- seq(0, 517, 0.5)
par.default <- par(mfrow=c(2,1), mar=c(4.1, 4.1, 0.5, 1))
plot(times+1480, srm_gif(NthChina, times, params=p), type="l",
 ylab=expression(Lambda[g](t)),
 xlab="", xlim=c(1480, 2000))
plot(NthChina$time+1480, NthChina$magnitude+6, type="h",
\end{verbatim}
Description

Provides methods for the generic function `summary`.

Usage

```r
## S3 method for class 'mpp'
summary(object, ...)

## S3 method for class 'linksrm'
summary(object, ...)
```

Arguments

- `object`: an object with class "mpp" or "linksrm".
- `...`: other arguments.

Value

A list object with a reduced number of components, mainly the parameter values.

Examples

```r
TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
          gif=srm_gif,
          marks=list(NULL, rexp_mark),
          params=params,
          gmap=expression(params[1:3]),
          mmap=expression(params[4]),
          TT=TT)
x <- simulate(x, seed=5)
print(summary(x))
```
Description

The Tangshan earthquake occurred on 28 July 1976 at 03:42:53, with a magnitude of 7.9. The Tangshan data frame contains those events (455) from the Beijing Catalogue, within 100 km of the epicentre and with magnitude 4 or greater, from the beginning of 1974 to the end of 1984.

Usage

data(Tangshan)

Format

This data frame contains the following columns:

- **latitude**: number of degrees north.
- **longitude**: number of degrees east.
- **magnitude**: number of magnitude units above 4.
- **year**: year of event (numeric vector).
- **month**: month of event, 1 ... 12 (numeric vector).
- **day**: day of event, 1 ... 31 (numeric vector).
- **hour**: hour of event, 0 ... 23 (numeric vector).
- **minute**: minute of event, 0 ... 59 (numeric vector).
- **second**: second of event, 0 ... 59 (numeric vector).
- **time**: number of days (and fractions) from the beginning of 1974.

Source

These data originate from the Beijing Catalogue which is administered by the China Seismological Bureau, Beijing.

Examples

data(Tangshan)
print(Tangshan[1:10,])
Index

*Topic **classes**
 - linksrm, 22
 - mpp, 33

*Topic **datagen**
 - simulate, 45

*Topic **datasets**
 - NthChina, 37
 - Ogata, 38
 - Phuket, 38
 - Tangshan, 50

*Topic **distribution**
 - dpareto, 13
 - marks, 31

*Topic **documentation**
 - Change Log, 5
 - distribution, 9
 - gif, 20
 - PtProcess-package, 2

*Topic **iteration**
 - makeSOCKcluster, 30

*Topic **methods**
 - loglik, 28
 - plot, 40
 - residuals, 41
 - simulate, 45
 - summary, 49

*Topic **models**
 - etas_gif, 18
 - linksrm_convert, 24
 - linksrm_gif, 25
 - simple_gif, 42
 - srm_gif, 47

*Topic **optimize**
 - neglogLik, 35

*Topic **programming**
 - makeSOCKcluster, 30

Changes (Change Log), 5

data.frame, 18, 22, 26, 31, 33, 42, 47

deparse, 27
dexp, 17
dexp_mark (marks), 31
dgamma, 17
distribution, 9, 17, 36
dpareto, 6, 13
dtappareto, 6

dtappareto (dpareto), 13
dump, 3
dweibull, 17

etas_gif, 7, 18, 20, 21
expfourier_gif, 21
expfourier_gif (simple_gif), 42
exppoly_gif, 21
exppoly_gif (simple_gif), 42
expression, 22, 33, 34

fourier_gif, 7, 21
fourier_gif (simple_gif), 42

GammaDist, 32
gif, 6, 19, 20, 28, 33, 42, 44, 48

inherits, 6
integrate, 43

linksrm, 2, 6, 22, 28, 40, 41, 45, 49
linksrm_convert, 7, 24
linksrm_gif, 6, 7, 20–22, 25, 25, 46, 48
list, 32, 33
loglik, 3, 5, 6, 28, 28, 35
logLik.mpp, 3, 6, 7
ltappareto, 6
ltappareto (dpareto), 13

makeCluster, 30
makePSOCKcluster, 7, 31

c, 34
Change Log, 5
Changes, 2
makeSOCKcluster, 7, 30, 31
marks, 6, 22, 31, 33
matrix, 18, 26, 42, 47
mpp, 2, 3, 5–7, 22, 28, 33, 35, 40, 41, 45, 49
neglogLik, 3, 5–7, 35
nlm, 9, 10, 35, 36
NthChina, 37
NULL, 33
Ogata, 38
optim, 9, 10, 35, 36
parse, 27
Phuket, 6, 38
plot, 3, 6, 40, 40
plot.mpp, 7
poly_gif, 21
poly_gif(simple_gif), 42
ppareto(dpareto), 13
ptappareto(dpareto), 13
PtProcess, 7, 8, 19, 28, 37, 38, 41, 46, 48
PtProcess (PtProcess-package), 2
PtProcess-package, 2
qpareto(dpareto), 13
qtappareto(dpareto), 13
residuals, 3, 6, 41, 41
residuals.mpp, 21
rexp_mark(marks), 31
rpareto(dpareto), 13
rtappareto(dpareto), 13
simple_gif, 21, 42
simulate, 3, 5, 45, 45
simulate.linksrm, 6
simulate.mpp, 6, 7, 21
source, 3
srm_gif, 7, 20, 21, 47
summary, 3, 49, 49
summary.mpp, 6
Tangshan, 50
ts, 41
vector, 18, 42, 47