Package ‘QTOCen’

October 12, 2022

Type Package

Title Quantile-Optimal Treatment Regimes with Censored Data

Version 0.1.1

Author Yu Zhou [cre, aut].
Lan Wang [ctb]

Maintainer Yu Zhou <zhu0269@umn.edu>

Description Provides methods for estimation of mean-and quantile-
optimal treatment regimes from censored data.
Specifically, we have developed distinct functions for three types of right censor-
ing for static treatment using quantile criterion: (1) independent/random censoring, (2) treatment-
dependent random censoring, and (3) covariates-dependent random censoring. It also in-
cludes a function to estimate quantile-optimal dynamic treatment regimes for independent cen-
sored data. Finally, this package also includes a simulation data generative model of a dy-
namic treatment experiment proposed in literature.

License GPL (>= 2)

LazyData TRUE

Imports survival, rgenoud (>= 5.8), quantreg (>= 5.18), stats,
grDevices, methods, Rdpack, MatrixModels

RdMacros Rdpack

Depends R (>= 3.3), utils

RoxygenNote 6.1.1

Suggests parallel, stringr, testthat, faraway, quantoptr (>= 0.1.3),
survminer

NeedsCompilation no

Encoding UTF-8

Repository CRAN

Date/Publication 2019-06-04 12:10:10 UTC
R topics documented:

- `Bnk_func` ... 2
- `est_mean_ipwe` ... 3
- `est_quant_ipwe` ... 4
- `est_quant_TwoStg_ipwe` ... 6
- `Gene_Mean_CenIPWE` .. 9
- `Gene_Quantile_CenIPWE` .. 10
- `Gene_Quantile_CenIPWE_DTR` 12
- `IPWE_mean_IndCen` ... 15
- `IPWE_Qopt_DepCen_general` 17
- `IPWE_Qopt_DepCen_trt` ... 18
- `IPWE_Qopt_DTR_IndCen` .. 20
- `IPWE_Qopt_IndCen` ... 22
- `LocalKM` .. 24
- `simJLSDdata` .. 25
- `tauhat_func` .. 26

Index 28

Bnk_func

Generate biquadratic kernel weights for a univariate variable

Description

This is the biquadratic kernel function, that weights observations by their distances to the target observation.

Usage

```
Bnk_func(x0k, Xk, bw.bnk)
```

Arguments

- `x0k` Numeric scalar. One univariate covariate value of interest from one observation.
- `Xk` Numerical vector. The vector of the same covariate from observations
- `bw.bnk` The bandwidth scalar parameter.

Value

This function returns a list of kernel weights with the same length of input `Xk`.

Note

This function is widely used for generating kernel weights for nonparametrically estimating conditional survival functions. See Section 2.3 of (Wang and Wang 2009).
est_mean_ipwe

References

Examples

`Bnk_func(x0k=0, Xk=c(-5:5), bw.bnk=10)`

est_mean_ipwe

Estimate the marginal mean response of a linear static treatment regime

Description

Assume we have binary treatment options for each subject in the target population. This function evaluates a given treatment regime by the estimated marginal mean response. We assume the space of treatment regimes are linear decision functions indexed by parametric coefficients.

This R function is an empirical value function in the literature of optimal treatment regime estimation. Since the goal here is to maximize population’s marginal mean response, this function, which estimates the performance of a set of parameters in terms of the marginal mean, is the objective function in a nonparametric policy-search method.

The user facing application which utilizes this function is `IPWE_mean_IndCen`.

Usage

`est_mean_ipwe(beta, x, censor_y, delta, ph, a, ghat, check_complete = TRUE)`

Arguments

- `beta` Numeric vector. A set of parameter that indexes the regime.
- `x` Numeric Matrix. The baseline covariates from all observed data.
- `censor_y` Numeric vector. The censored survival times from all observed data, i.e. censor_y = min(Y, C)
- `delta` Numeric vector. The censoring indicators from all observed data. We use 1 for uncensored, 0 for censored.
- `ph` Numeric vector. The estimated propensity score of being assigned treatment A=1 by the original data generation mechanism for all observed data.
- `a` Numeric vector. The vector of observed treatment level for all observed data. Treatment levels should be coded as 0/1.
est_quant_ipwe

Description

Assume we have binary treatment options for each subject in the target population. This function evaluates a given treatment regime by the estimated marginal mean response. We assume the space of treatment regimes are linear decision functions indexed by parametric coefficients.

Examples

```r
generateData <- function(n) {
  x1 <- runif(n, min=-0.5, max=0.5)
  x2 <- runif(n, min=-0.5, max=0.5)
  error <- rnorm(n, sd= 1)
  ph <- rep(0.5,n)
  a <- rbinom(n = n, size = 1, prob=ph)
  c <- 1.5 + + runif(n = n, min=0, max=2)
  cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
  censor_y <- pmin(cmplt_y, c)
  delta <- as.numeric(c > cmplt_y)
  return(data.frame(x1=x1, x2=x2, a=a, censor_y = censor_y, delta=delta))
}
n <- 100
data <- generateData(n)

# here the value for argument ghat uses 0.5 vector for brevity.
mean_hat <- est_mean_ipwe(c(-1,0,2), x=cbind(1, data$x1, data$x2),
  censor_y = data$censor_y, delta = data$delta, ph = rep(0.5,n),
  a = data$a, ghat = rep(0.5,n))
```
This R function is an empirical value function in the literature of optimal treatment regime estimation. Since the goal here is to maximize population’s marginal quantile, this function, which estimates the perfomance of a set of parameters in terms of marginal quantile, is the objective function in a nonparametric policy-search method.

The user facing application which utilizes this function is IPWE_Qopt_IndCen.

Usage

```r
est_quant_ipwe(beta, sign_beta1, x, censor_y, delta, epsi, a, tau,
        check_complete = TRUE, Penalty.level = 0)
```

Arguments

- **beta**: Numerical vector. Exclude the coefficient for the first nontrivial covariate. So if there are k covariates, the length of beta should equal k+1-1=k because the intercept needs one coefficient as well.
- **sign_beta1**: logical. FALSE if the coefficient for the first continuous variable is fixed to be negative one; TRUE if positive one.
- **x**: Numeric Matrix. The baseline covariates from all observed data.
- **censor_y**: Numeric vector. The censored survival times from all observed data, i.e. censor_y = min(Y, C)
- **delta**: Numeric vector. The censoring indicators from all observed data. We use 1 for uncensored, 0 for censored.
- **epsi**: the product of (1) the probability of being assigned the observed treatment level through the original treatment assignment mechanism and (2) the conditional survival probability of the censoring variable at censor_y.
- **a**: Numeric vector. The vector of observed treatment level for all observed data. Treatment levels should be coded as 0/1.
- **tau**: a value between 0 and 1. This is the quantile of interest.
- **check_complete**: logical. Since this value estimation method is purely nonparametric, we need at least one unit in collected data such that the observed treatment assignment is the same what the regime parameter suggests. If check_complete is TRUE. It will check if any observation satisfies this criterion. When none observation satisfies, a message is printed to console to raise users awareness that the input regime parameter beta does not agree with any observed treatment level assignment. Then a sufficiently small number is returned from this function, to keep the genetic algorithm running smoothly.
- **Penalty.level**: the level that determines which objective function to use. Penalty.level = 0 indicates no regularization; Penalty.level = 1 indicates the value function estimation minus the means absolute average coefficient is the output, which is useful trick to achieve uniqueness of estimated optimal TR when resolution of input response is low.
Examples

GenerateData <- function(n)
{
 x1 <- runif(n, min=-0.5,max=0.5)
 x2 <- runif(n, min=-0.5,max=0.5)
 error <- rnorm(n, sd= 1)
 ph <- rep(0.5,n)
 a <- rbinom(n = n, size = 1, prob=ph)
 c <- 1.5 + + runif(n = n, min=0, max=2)
 cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
 censor_y <- pmin(cmplt_y, c)
 delta <- as.numeric(c > cmplt_y)
 return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}

n <- 100
data <- GenerateData(n)

here the value for argument epsi uses 0.5 vector for brevity in notation.
quant_hat <- est_quant_ipwe(beta=c(-1,2), sign_beta1=TRUE, x=cbind(1, data$x1, data$x2),
censor_y = data$censor_y, delta = data$delta, tau=0.5,
epsi = rep(0.5,n), a = data$a)

Description

Assume we have binary treatment options for two sequential stages with a fixed time duration between them. This means for each subject in the target population if the censored survival time or the time-to-event is beyond the timepoint of the second treatment.

This function evaluates a given dynamic treatment regime and returns the estimated marginal quantile response.

We assume the space of two-stage treatment regimes is a cartesian product of two single-stage linear treatment regime space.

The user facing function that applies this function is IPWE_Qopt_DTR_IndCen.

Usage

est_quant_TwoStg_ipwe(n, beta, sign_beta1.stg1, sign_beta1.stg2, txVec1,
 txVec2_na_omit, s_Diff_Time, nvars.stg1, nvars.stg2, p.data1, p.data2,
censor_y, delta, ELG, w_di_vec, tau, check_complete = TRUE,
Penalty.level = 0)
Arguments

- **n** the sample size
- **beta** the vector of coefficients indexing a two-stage treatment regime
- **sign_beta1.stg1** Is sign of the coefficient for the first non-intercept variable for the first stage known? Default is NULL, meaning user does not have contraint on the sign; FALSE if the coefficient for the first continuous variable is fixed to be -1; TRUE if 1. We can make the search space discrete because we employ $|\beta_1| = 1$ scale normalization.
- **sign_beta1.stg2** Default is NULL. Similar to sign_beta1.stg1.
- **txVec1** the vector of treatment received at the first stage
- **txVec2_na_omit** the vector of second stage treatment for patients who indeed second stage treatment
- **s_Diff_Time** the length of time between the first stage treatment and the second stage treatment
- **nvars.stg1** number of coeffients for the decision rule of the first stage
- **nvars.stg2** number of coeffients for the decision rule of the second stage
- **p.data1** the design matrix to be used for decision in stage one
- **p.data2** the design matrix to be used for decision in stage two
- **censor_y** Numeric vector. The censored survival times from all observed data, i.e. $\text{censor}_y = \min(Y, C)$
- **delta** Numeric vector. The censoring indicators from all observed data. We use 1 for uncensored, 0 for censored.
- **ELG** the boolean vector of whether patients get the second stage treatment
- **w_di_vec** the inverse probability weight for two stage experiments
- **tau** a value between 0 and 1. This is the quantile of interest.
- **check_complete** logical. Since this value estimation method is purely nonparametric, we need at least one unit in collected data such that the observed treatment assignment is the same what the regime parameter suggests. If check_complete is TRUE. It will check if any observation satisfies this criterion. When none observation satisfies, a message is printed to console to raise users awareness that the input regime parameter beta does not agree with any observed treatment level assignment. Then a sufficiently small number is returned from this function, to keep the genetic algorithm running smoothly.
- **Penalty.level** the level that determines which objective function to use. Penalty.level = 0 indicates no regularization; Penalty.level = 1 indicates the value function estimation minus the means absolute average coefficient is the output, which is useful trick to achieve uniqueness of estimated optimal TR when resolution of input response is low.
Examples

Note: the preprocessing steps prior to calling est_quant_TwoStg_ipwe()
are wrapped up in IPWE_Qopt_DTR_IndCen().
w_di_vec is the inverse probability weight for two stage experiments
We recommend users to use function IPWE_Qopt_DTR_IndCen() directly.
Below is a simple customized calculation of the weight that only works
for this example
##

library(survival)
Simulate data
n=200
s_Diff_Time = 1
D <- simJLSDdata(n, case="a")

give regime classes
regimeClass.stg1 <- as.formula(a0~x0)
regimeClass.stg2 <- as.formula(a1~x1)

extract columns that matches each stage's treatment regime formula
p.data1 <- model.matrix(regimeClass.stg1, D)
p.data2 would only contain observations with non-null value.
p.data2 <- model.matrix(regimeClass.stg2, D)

txVec1 <- D[, "a0"]
get none-na second stage treatment levels in data
txVec2 <- D[, "a1"]
txVec2_na_omit <- txVec2[which(!is.na(txVec2))]

Eligibility flag
ELG <- (D$censor_y > s_Diff_Time)

Build weights
D$deltaC <- 1 - D$delta
survfit_all <- survfit(Surv(censor_y, event = deltaC)-1, data=D)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
D$ghat <- survest(D$censor_y)
g_s_Diff_Time <- survest(s_Diff_Time)
D$w_di_vec <- rep(-999, n)
for(i in 1:n){
 if (!ELG[i]) {
 D$w_di_vec[i] <- 0.5 * D$ghat[i]}
 else {
 D$w_di_vec[i] <- 0.5* D$ghat[i] * 0.5
 }
}

qhat <- est_quant_TwoStg_ipwe(n=n, beta=c(2.5,2.8),
 sign_beta1.stg1 = FALSE, sign_beta1.stg2=FALSE,
 txVec1=txVec1, txVec2_na_omit=txVec2_na_omit, s_Diff_Time=1,
Gene_Mean_CenIPWE

A low-level function for the generic optimization step in estimating Mean-optimal treatment regime for censored data

Description

This function supports the IPWE_mean_IndCen function. It does the genetic algorithm based method with inverse probability weighting for censored data. In the future, if more complicated applications/scenarios is sought after for mean optimality, users may create their own wrapper function based on Gene_Mean_CenIPWE.

Usage

Gene_Mean_CenIPWE(data_aug, ph, p_level, regimeClass, Domains = NULL, cluster = FALSE, s.tol = 1e-04, it.num = 8, pop.size = 3000)

Arguments

data_aug a data.frame of the observed data after preprocessing. It should include be augmented with two new columns: ph for the estimated propensity scores and ghat for the estimated conditional survival probabilities.

ph propensity score estimates. For example, if the treatment is denoted by A, then ph should be P(A=1|X)

p_level printing level

regimeClass a formula indicating the form of treatment regimes

Domains default is NULL. Otherwise, the object should be a nvars x 2 matrix used as the space of parameters, which will be supplied to rgenoud::genoud.

cluster default is FALSE. This can also be an object of the 'cluster' class returned by one of the makeCluster commands in the parallel package or a vector of machine names so rgenoud::genoud can setup the cluster automatically.

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals for the first generation in the genetic algorithm (rgenoud::genoud).
Examples

```r
GenerateData <- function(n)
{
  x1 <- runif(n, min=-0.5,max=0.5)
  x2 <- runif(n, min=-0.5,max=0.5)
  error <- rnorm(n, sd= 1)
  ph <- rep(0.5,n)
  a <- rbinom(n = n, size = 1, prob=ph)
  c <- 1.5 + runif(n = n, min=0, max=2)
  cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
  censor_y <- pmin(cmplt_y, c)
  delta <- as.numeric(c > cmplt_y)
  return(data.frame(x1=x1, x2=x2, a=a, censor_y = censor_y, delta=delta))
}

n <- 100
data <- GenerateData(n)
```

preprocessing
```r
data_aug <- data
data_aug$ph <- rep(mean(data$a), n)
data_aug$deltaC <- 1 - data_aug$delta
library(survival)
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=data_aug)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
data_aug$ghat <- survest(data_aug$censor_y)
```

estimate the mean-optimal treatment regime
```r
meanopt_fit <- Gene_Mean_CenIPWE(data=data_aug, ph = data_aug$ph, p_level=1, regimeClass=a~x1*x2)
```

Gene_Quantile_CenIPWE

A low-level function for the generic optimization step in estimating Quanlitie-optimal treatment regime for censored data

Description

This function supports several user facing functions for Quantile-optimal treatment regime estimation, namely

- `IPWE_Qopt_IndCen()`, `IPWE_Qopt_DTR_IndCen()`, `IPWE_Qopt_DepCen_trt()`, and `IPWE_Qopt_DepCen_general()`.

It implements the genetic algorithm based policy-search method with inverse probability weighting for censored data, such that the estimator is cube root consistent under the assumption that the propensity score model and the model for the survival distribution of the censoring time variable are both correct.

Usage

```r
Gene_Quantile_CenIPWE(data_aug, tau, p_level, regimeClass,
  cluster = FALSE, s.tol = 1e-04, it.num = 8, pop.size = 5000,
  Domains = NULL, sign.beta1 = NULL, Penalty.level = 0)
```
Arguments

data_aug a data.frame of the observed data after preprocessing. It should include be augmented with a new column: epsi for the composite weights.
tau a value between 0 and 1. This is the quantile of interest.
p_level choose between 0,1,2,3 to indicate different levels of output from the genetic function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug).
regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass = a*x1+x2, and then this function will search the class of treatment regimes of the form
\[d(x) = I(\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0) \]. Polynomial arguments are also supported.
cluster default is FALSE, meaning do not use parallel computing for the genetic algorithm(GA).
s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.
it.num the maximum GA iteration number
pop.size an integer with the default set to be 3000. This is roughly the number individuals for the first generation in the genetic algorithm (rgenoud::genoud).
Domains default is NULL. Otherwise, the object should be a nvars *2 matrix used as the space of parameters, which will be supplied to rgenoud::genoud.
sign_beta1 logical. FALSE if the coefficient for the first continuous variable is fixed to be negative one; TRUE if positive one.
Penalty.level the level that determines which objective function to use. Penalty.level = 0 indicates no regularization; Penalty.level = 1 indicates the value function estimation minus the means absolute average coefficient is the output, which is useful trick to achieve uniqueness of estimated optimal TR when resolution of input response is low.

Examples

GenerateData <- function(n)
{
 x1 <- runif(n, min=-0.5,max=0.5)
 x2 <- runif(n, min=-0.5,max=0.5)
 error <- rnorm(n, sd= 1)
 ph <- rep(0.5,n)
 a <- rbinom(n = n, size = 1, prob=ph)
 c <- 1.5 + + runif(n = n, min=0, max=2)
 cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
 censor_y <- pmin(cmplt_y, c)
 delta <- as.numeric(c > cmplt_y)
 return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}
n <- 100
data <- GenerateData(n)
preprocessing
data_aug <- data
data_aug$ph <- rep(mean(data$a), n)
data_aug$deltaC <- 1 - data_aug$delta
library(survival)
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=data_aug)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
data_aug$ghat <- survest(data_aug$censor_y)
data_aug$epsi <- (data_aug$ph * data_aug$a + (1 - data_aug$ph) * (1 - data_aug$a)) * data_aug$ghat

estimate the median-optimal treatment regime
quantopt_fit <- Gene_Quantile_CenIPWE(data_aug=data_aug,tau=0.5,
 p_level=1, regimeClass=a~x1+x2^2,
 sign_beta1=FALSE)

Gene_Quantile_CenIPWE_DTR

A low-level function for the generic optimization step in estimating
dynamic Quantile-optimal treatment regime for censored data

Description

This function supports wrapper functions for two stage Quantile-optimal treatment regime estimation, namely IPWE_Qopt_DTR_IndCen.

Usage

Gene_Quantile_CenIPWE_DTR(data, max, tau, regimeClass.stg1,
 regimeClass.stg2, s_Diff_Time, txVec1, txVec2, nvars.stg1, nvars.stg2,
 p.data1, p.data2, sign_beta1.stg1, sign_beta1.stg2, p_level, cluster,
 s.tol, it.num, pop.size, Domains1 = NULL, Domains2 = NULL,
 Penalty.level = 0)

Arguments

data raw data.frame
max Maximization (TRUE) or Minimizing (FALSE). Determines if genoud minimizes or maximizes the objective function.
tau a quantile level of interest
regimeClass.stg1 the class of treatment regimes for stage one
regimeClass.stg2 the class of treatment regimes for stage two
s_Diff_Time the length of time between the first stage treatment and the second stage treatment

txVec1 the vector of treatment received at the first stage

txVec2 the vector of treatment received at the second stage, it expects entries to be NA for patients who did not receive the second treatment

nvars.stg1 number of coefficients for the decision rule of the first stage

nvars.stg2 number of coefficients for the decision rule of the second stage

p.data1 the design matrix to be used for decision in stage one

p.data2 the design matrix to be used for decision in stage two

sign_beta1.stg1 Is sign of the coefficient for the first non-intercept variable for the first stage known? Default is NULL, meaning user does not have constraint on the sign; FALSE if the coefficient for the first continuous variable is fixed to be -1; TRUE if 1. We can make the search space discrete because we employ $|\beta_1| = 1$ scale normalization.

sign_beta1.stg2 Default is NULL. Similar to sign_beta1.stg1.

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug).

cluster default is FALSE, meaning do not use parallel computing for the genetic algorithm(GA).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number individuals for the first generation in the genetic algorithm (rgenoud::genoud).

Domains1 This is optional. If not NULL, please provide the two-column matrix for the searching range of coefficients in stage one. The coefficient taking value of positive/negative one should not be included.

Domains2 This is optional. If not NULL, please provide the two-column matrix for the searching range of coefficients in stage two. The coefficient taking value of positive/negative one should not be included.

Penalty.level the level that determines which objective function to use. Penalty.level = 0 indicates no regularization; Penalty.level = 1 indicates the value function estimation minus the means absolute average coefficient is the output, which is useful trick to achieve uniqueness of estimated optimal TR when resolution of input response is low.

Examples

library(survival)
Simulate data
n=200
s_Diff_Time = 1
D <- simJLSDdata(n, case="a")

give regime classes
regimeClass.stg1 <- as.formula(a0~x0)
regimeClass.stg2 <- as.formula(a1~x1)

extract columns that matches each stage's treatment regime formula
p.data1 <- model.matrix(regimeClass.stg1, D)
p.data2 would only contain observations with non-null value.
p.data2 <- model.matrix(regimeClass.stg2, D)

txVec1 <- D[, "a0"]
txVec2 <- D[, "a1"]

Eligibility flag
ELG <- (D$censor_y > s_Diff_Time)

Build weights
D$deltaC <- 1 - D$delta
survfit_all <- survfit(Surv(censor_y, event = deltaC)~1, data=D)
survest <- stepfun(survfit_all$time, c(1, survfit_all$surv))
D$ghat <- survest(D$censor_y)
g_s_Diff_Time <- survest(s_Diff_Time)
D$w_di_vec <- rep(-999, n)
for(i in 1:n){
 if (!ELG[i]) {
 D$w_di_vec[i] <- 0.5 * D$ghat[i]
 } else {
 D$w_di_vec[i] <- 0.5 * D$ghat[i] * 0.5
 }
}

fit1 <- Gene_Quantile_CenIPWE_DTR(data=D, max=TRUE,
tau=0.3,
regimeClass.stg1 = regimeClass.stg1,
regimeClass.stg2 = regimeClass.stg2,
s_Diff_Time = s_Diff_Time,
txVec1 = txVec1,
txVec2 = txVec2,
nvars.stg1=2,
nvars.stg2=2,
p.data1=p.data1,
p.data2=p.data2,
sign_beta1.stg1=FALSE,
sign_beta1.stg2=NULL,
p_level=1,
cluster=FALSE,
s.tol=1e-6,
it.num=5,
pop.size=6000,
Estimate the mean-optimal treatment regime for data with independently censored response

Description

This function estimates the Mean-optimal Treatment Regime with censored response. The implemented function only works for scenarios in which treatment is binary and the censoring time is independent of baseline covariates, treatment group and all potential survival times.

Usage

\[
\text{IPWE_mean_IndCen}(\text{data, regimeClass, moPropen = "BinaryRandom", }
\text{Domains = NULL, cluster = FALSE, p_level = 1, s.tol = 1e\text{-}04, }
\text{it.num = 8, pop.size = 3000})
\]

Arguments

data: a data.frame, containing variables in the moPropen and RegimeClass and also the response variables, namely censor_y as the censored response, and delta as the censoring indicator.

regimeClass: a formula specifying the class of treatment regimes to search, e.g. if regimeClass = a\text{*}x1+x2, and then this function will search the class of treatment regimes of the form
\[
d(x) = I(\beta_0 + \beta_1x_1 + \beta_2x_2 > 0).
\]

Polynomial arguments are also supported.

moPropen: The propensity score model for the probability of receiving treatment level 1. When moPropen equals the string "BinaryRandom", the proportion of observations receiving treatment level 1 in the sample will be plugged in as an estimate of the propensity. Otherwise, this argument should be a formula/string, based on which this function will fit a logistic regression on the treatment level, e.g. a1\text{*}x1.

Domains: default is NULL. Otherwise, the object should be a nvars *2 matrix used as the space of parameters, which will be supplied to rgenoud::genoud. nvars is the total number of parameters.

cluster: default is FALSE, meaning do not use parallel computing for the genetic algorithm(GA).
IPWE_mean_IndCen

p_level choose between 0,1,2,3 to indicate different levels of output from the genetic function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug).
s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.
it.num the maximum GA iteration number
pop.size an integer with the default set to be 3000. This is roughly the number individuals for the first generation in the genetic algorithm (rgenoud::genoud).

Value

This function returns an object with 6 objects:

- coefficients the estimated parameter indexing the mean-optimal treatment regime. Since we focus the space of linear treatment regimes, the estimated decision rule cannot be uniquely identified without scale normalized. In this package, we normalized by $|\beta_1| = 1$, which was proposed in Horowitz (Horowitz 1992).
- hatQ the estimated optimal marginal mean response
- moPropen log of the input argument of moPropen
- regimeClass log of the input argument of regimeClass
- data_aug Training data with additional columns used in the algorithm. Note that data_aug is used for plotting of survival function of the censoring time
- survfitCensorTime the estimated survival function of the censoring time

References

Examples

GenerateData <- function(n)
{
 x1 <- runif(n, min=-0.5,max=0.5)
 x2 <- runif(n, min=-0.5,max=0.5)
 error <- rnorm(n, sd= 1)
 ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
 a <- rbinom(n = n, size = 1, prob=ph)
 c <- 1.5 + + runif(n = n, min=0. max=2)
 cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
 censor_y <- pmin(cmplt_y, c)
 delta <- as.numeric(c > cmplt_y)
 return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}

n <- 400
D <- GenerateData(n)
fit1 <- IPWE_mean_IndCen(data = D, regimeClass = a~x1+x2)

Estimate Quantile-optimal Treatment Regime for covariates-dependent random censoring data

Description

This function estimates the Quantile-optimal Treatment Regime for a given quantile level of interest under the assumption that the distribution of censoring time is independent of the set of potential survival times given a set of baseline covariates and treatment actually received. More specifically, we do stratification by treatment first and then used kernel smoothing to estimate local survival function of censoring time for each treatment group.

Usage

```
IPWE_Qopt_DepCen_general(data, regimeClass, tau, Domains = NULL, bw, moPropen = "BinaryRandom", DepCens = NULL, UseTrueG = FALSE, trueG_value = NULL, cluster = FALSE, p_level = 1, s.tol = 1e-05, it.num = 8, pop.size = 5000)
```

Arguments

- `data`: raw data.frame
- `regimeClass`: the class of treatment regimes. e.g., 'txname ~ x1+x2'.
- `tau`: the quantile of interest
- `Domains`: default is NULL.
- `bw`: the bandwidth of local KM model (e.g. see Wang-wang 2008)
- `moPropen`: an optional string for the working model of treatment assignment
- `DepCens`: an optional vector of baseline variable names that the censoring variable depends on. Note that the treatment variable is always treated as dependent with the censoring time. If unspecified (DepCens=NULL), then all variables on the right side of regimeClass are used for DepCens
- `UseTrueG`: logical. Whether the true survival probability of each patient is provided.
- `trueG_value`: default is NULL. IF UseTrueG=FALSE, trueG_value should be NULL.
- `cluster`: default is FALSE. This can also be an object of the 'cluster' class returned by one of the makeCluster commands in the parallel package or a vector of machine names so rgenoud::genoud can setup the cluster automatically.
- `p_level`: print level
- `s.tol`: tolerance level
- `it.num`: the maximum iteration number
- `pop.size`: the initial population size
Examples

GenerateData <- function(n)
{
 x1 <- runif(n, min=-0.5,max=0.5)
 x2 <- runif(n, min=-0.5,max=0.5)
 error <- rnorm(n, sd= 1)
 ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
 a <- rbinom(n = n, size = 1, prob=ph)
 c <- 1.5 + + runif(n = n, min=0, max=2)
 cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
 censor_y <- pmin(cmplt_y, c)
 delta <- as.numeric(c > cmplt_y)
 return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}

n <- 400
data <- GenerateData(n)
fit1 <- IPWE_Qopt_DepCen_general(data = data, regimeClass = a~x1+x2, moPropen = a~x1+x2,
 tau = 0.2, bw = 20/n,
 pop.size=3000, it.num = 3)

%不幸的是，这段代码似乎没有提供足够的信息来解释或使用它。%}

IPWE_Qopt_DepCen_trt

Estimate the Quantile-opt Treatment Regime under the assumption that the censoring time's distribution only depends on treatment level

Description

Here we assume the censoring variable is independent of covariates and potential outcomes given the treatment assignment. For example, if evidence shows that patients at certain treatment level are prone to experience censoring earlier.

Usage

IPWE_Qopt_DepCen_trt(data, regimeClass, tau, moPropen = "BinaryRandom",
 cluster = FALSE, p_level = 1, s.tol = 1e-04, it.num = 8,
 pop.size = 6000)

Arguments

data raw data.frame
regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass = a~x1+x2, and then this function will search the class of treatment regimes of the form

\[d(x) = I(\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0) \]

Polynomial arguments are also supported.
tau

the quantile of interest

moPropen
The propensity score model for the probability of receiving treatment level 1. When moPropen equals the string "BinaryRandom", the proportion of observations receiving treatment level 1 in the sample will be plugged in as an estimate of the propensity. Otherwise, this argument should be a formula/string, based on which this function will fit a logistic regression on the treatment level. e.g. a1~x1.

cluster
default is FALSE, meaning do not use parallel computing for the genetic algorithm(GA).

p_level
choose between 0,1,2,3 to indicate different levels of output from the genetic function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug).

s.tol
tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.

it.num
the maximum GA iteration number

pop.size
an integer with the default set to be 3000. This is roughly the number individuals for the first generation in the genetic algorithm (rgenoud::genoud).

Details

data is a dataframe that contains: a(observed treatment assignment), censor_y, and delta

Examples

GenerateData_DepCen_trt <- function(n)
{
 x1 <- runif(n, min=-0.5,max=0.5)
 x2 <- runif(n, min=-0.5,max=0.5)
 error <- rnorm(n, sd= 1)
 ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
 a <- rbinom(n = n, size = 1, prob=ph)
 c <- 1 + 1*a + runif(n = n, min=0, max=2)
 # distribution of 'c' depends on treatment level 'a'
 cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
 censor_y <- pmin(cmplt_y, c)
 delta <- as.numeric(c > cmplt_y)
 return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}

n <- 400
data <- GenerateData_DepCen_trt(n)
fit1 <- IPWE_Qopt_DepCen_trt(data = data, regimeClass = a~x1+x2, moPropen = a~x1+x2,
 tau = 0.2)
Function to estimate the two-stage quantile-optimal dynamic treatment regime for censored data: the independent censoring Case

Description

This function implements the estimator of two-stage quantile-optimal treatment regime with censored outcome by inverse probability of weighting, which is proposed in Chapter 3 of (Zhou 2018). We assume the censoring is independent of everything else, including the treatment covariates, and potential outcomes.

Specifically, we do grid search on the sign of the coefficient for the first non-intercept variables in stage 1 and stage 2 and apply genetic algorithm on the remaining coefficients simultaneously. So if stage one has d1 covariates excluding the intercept, stage two has d2, the resulting coefficient has dimension d1+d2+2.

Usage

```
IPWE_Qopt_DTR_IndCen(data, tau, regimeClass.stg1, regimeClass.stg2,
                    s_Diff_Time = 1, moPropen1 = "BinaryRandom",
                    moPropen2 = "BinaryRandom", sign_beta1.stg1 = NULL,
                    sign_beta1.stg2 = NULL, Penalty.level = 0, s.tol = 1e-06,
                    it.num = 4, max = TRUE, Domains1 = NULL, Domains2 = NULL,
                    cluster = FALSE, p_level = 1, pop.size = 10000)
```

Arguments

- `data` a data.frame, containing variables in the `moPropen` and `RegimeClass` and also the response variables, namely `censor_y` as the censored response, and `delta` as the censoring indicator.

- `tau` a value between 0 and 1. This is the quantile of interest.

- `regimeClass.stg1` a formula specifying the class of treatment regimes for the first stage. For details of the general formulation of a linear treatment regime see `regimeClass` in `IPWE_Qopt_IndCen`.

- `regimeClass.stg2` a formula specifying the class of treatment regimes for the second stage

- `s_Diff_Time` Numeric. The fixed length of time between the first stage treatment and the second stage treatment

- `moPropen1` the first stage propensity score model. Default is "BinaryRandom".

- `moPropen2` the second stage propensity score model. Default is "BinaryRandom".

- `sign_beta1.stg1` Is sign of the coefficient for the first non-intercept variable for the first stage known? Default is NULL, meaning user does not have contraint on the sign; FALSE if the coefficient for the first continuous variable is fixed to be -1; TRUE if 1. We can make the search space discrete because we employ $|\beta_1| = 1$ scale normalization.
sign_beta1.stg2
Default is NULL. Similar to sign_beta1.stg1.

Penalty.level
0: stop if the marginal quantiles cannot be further optimized; 1: continue the search among treatment regimes with with same value for the TR with the smallest intended proportion of treatment.

s.tol
tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.

it.num
the maximum GA iteration number

max
logical. TRUE if the goal is maximization of the quantile. FALSE is the goal is minimization of the quantile.

Domains1
This is optional. If not NULL, please provide the two-column matrix for the searching range of coefficients in stage one. The coefficient taking value of positive/negative one should not be included.

Domains2
This is optional. If not NULL, please provide the two-column matrix for the searching range of coefficients in stage two. The coefficient taking value of positive/negative one should not be included.

cluster
default is FALSE, meaning do not use parallel computing for the genetic algorithm(GA).

p_level
choose between 0,1,2,3 to indicate different levels of output from the genetic function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug).

pop.size
an integer with the default set to be 3000. This is roughly the number individuals for the first generation in the genetic algorithm (rgenoud::genoud).

Details
In our setting, if a subject was censored or had experienced the event of interest before s_Diff_Time units of time had elapsed after the first stage of treatment, s/he would not be eligible to receive a second stage treatment.

Author(s)
Yu Zhou, <zhou0269@umn.edu>

References

Examples
D <- simJLSDdata(400, case="a")
fit_2stage <- IPWE_Qopt_DTR_IndCen(data=D, tau= 0.3, regimeClass.stg1 = a0~x0, regimeClass.stg2 = a1~x1, sign_beta1.stg1 = FALSE, sign_beta1.stg2 = FALSE)
IPWE_Qopt_IndCen

Function to estimate the quantile-optimal treatment regime: the independent censoring Case

Description

This function implements the estimation method proposed in Chapter 2 of (Zhou 2018). It estimates the quantile-optimal treatment regime for a given quantile level of interest from a single-stage clinical randomized experiment or a single-stage observational study under the independent censoring assumption. In other words, we estimate the parameters indexing the quantile-optimal treatment regime.

Our assumption of independent censoring means the distribution of the censoring time is the same conditional on baseline covariates, treatment group and the two potential survival times.

Usage

IPWE_Qopt_IndCen(data, regimeClass, tau, moPropen = "BinaryRandom", Domains = NULL, cluster = FALSE, p_level = 1, s.tol = 1e-04, it.num = 8, pop.size = 6000, sign_beta1 = NULL, Penalty.level = 0)

Arguments

data a data.frame, containing variables in the moPropen and RegimeClass and also the response variables, namely censor_y as the censored response, and delta as the censoring indicator.

regimeClass a formula specifying the class of treatment regimes to search, e.g. if regimeClass = a~x1+x2, and then this function will search the class of treatment regimes of the form
\[d(x) = I(\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0). \]
Polynomial arguments are also supported.

tau a value between 0 and 1. This is the quantile of interest.

moPropen The propensity score model for the probability of receiving treatment level 1. When moPropen equals the string "BinaryRandom", the proportion of observations receiving treatment level 1 in the sample will be plugged in as an estimate of the propensity. Otherwise, this argument should be a formula/string, based on which this function will fit a logistic regression on the treatment level. e.g. a1~x1.

Domains default is NULL. Otherwise, the object should be a nvars *2 matrix used as the space of parameters, which will be supplied to rgenoud::genoud.
cluster default is FALSE, meaning do not use parallel computing for the genetic algorithm (GA).

p_level choose between 0, 1, 2, 3 to indicate different levels of output from the genetic function. Specifically, 0 (minimal printing), 1 (normal), 2 (detailed), and 3 (debug).

s.tol tolerance level for the GA algorithm. This is input for parameter solution.tolerance in function rgenoud::genoud.

it.num the maximum GA iteration number

pop.size an integer with the default set to be 3000. This is roughly the number of individuals for the first generation in the genetic algorithm (rgenoud::genoud).

sign_beta1 logical. Default is NULL. FALSE if the coefficient for the first continuous variable is fixed to be negative one; TRUE if positive one.

Penalty.level 0: stop if the marginal quantiles cannot be further optimized; 1: continue the search among treatment regimes with with same value for the TR with the smallest intended proportion of treatment.

Details

The input argument data is the dataframe that contains:

1. a observed treatment assignment
2. censor_y the censored response variable
3. delta the censoring indicator

The naming of these three columns should be strict.

Note that this function currently only works for scenarios in which treatment is binary.

References

Examples

GenerateData <- function(n)
{
 x1 <- runif(n, min=-0.5, max=0.5)
 x2 <- runif(n, min=-0.5, max=0.5)
 error <- rnorm(n, sd=1)
 ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5+1*(x1+x2))
 a <- rbinom(n = n, size = 1, prob=ph)
 c <- 1 + 1*a + runif(n = n, min=0, max=2)
 cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
 censor_y <- pmin(cmplt_y, c)
 delta <- as.numeric(c > cmplt_y)
LocalKM

Kernel-based Local Kaplan-Meier Estimator

Description
This is the local KM estimator customized for this library to run in batch mode. It returns the estimated conditional survival probabilities given a user specified set of covariate names that the survival time depends on, a.k.a $F(T > y_0 | x_0)$.

More specifically, for uncensored data points, we return $(1 - \tau_{\text{hat}}())$. If the observed data point is censored, then this function returns value -1 as a flag meaning we cannot.

Usage
LocalKM(D, bw, NamesCov)

Arguments
- **D**: a data.frame with column censor_y, column delta, and additional covaraites.
- **bw**: the bandwidth parameter
- **NamesCov**: the vector of column names in data.frame D such that the survival time depends on.

Value
A vector of estimated conditional survival probability evaluated at the observed actual survival time on the same individual.
Examples

```
GenerateData <- function(n)
{
  x1 <- runif(n, min=-0.5,max=0.5)
  x2 <- runif(n, min=-0.5,max=0.5)
  error <- rnorm(n, sd= 1)
  ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
  a <- rbinom(n = n, size = 1, prob=ph)
  c <- 1.5 + + runif(n = n, min=0, max=2)
  cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
  censor_y <- pmin(cmplt_y, c)
  delta <- as.numeric(c > cmplt_y)
  return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}

n <- 20
D <- GenerateData(n)
mean_hat <- LocalKM(D, 5, c("x1","x2"))
```

simJLSDdata

Function to generate simulation data from a sequentially randomized experiment designed in (Jiang et al. 2017)

Description

Function to generate simulation data from a sequentially randomized experiment designed in (Jiang et al. 2017)

Usage

```
simJLSDdata(n, case = "a", s_Diff_Time = 1, C_max = 5,
    Censored = TRUE, fix_x0_value = NULL)
```

Arguments

- `n`: sample size
- `case`: string. One of "a", "b", "c", corresponding to three models.
- `s_Diff_Time`: Numeric. Default is 1. This is the length of time between two stages of treatment.
- `C_max`: Numeric. Default is 5. This is the upper bound of the uniform distribution of the censoring time variable. Changing this value shifts the overall censoring rate easily.
- `Censored`: Boolean. Default is TRUE. Whether the data has censoring or not. If TRUE, all survival time would not be censored at all in the returned data.
- `fix_x0_value`: Numeric. Default is Null. If supplied, it will generate simulated data with a fixed value, `fix_x0_value`, of the univariate baseline covarate.
Details

This generative model is proposed in (Jiang et al. 2017), Section 5, the second example. It uniformly defined three sets of conditional distributions of the survival times given the observable covariates at each stage within the same framework.

All three models satisfy the independent censoring assumption.

Value

This function returns a data.frame with simulated subject trajectories.

- x0 the baseline covariate, always observable at relative time point 0;
- a0 the observed first-stage treatment level at relative time point 0;
- x1 an updated covariate observable to the relative time point s_Diff_Time, when the a second stage treatment is scheduled
- a1 the observed second-stage treatment level at relative time point s_Diff_Time.

References

Examples

dataA <- simJLSDdata(500, case="a")
dataB <- simJLSDdata(500, case="b")
dataC <- simJLSDdata(500, case="c")

tauhat_func

Kernel-based Local Kaplan-Meier Estimator for the Conditional Probability of the Survival Time

Description

This function estimates the value of

\[F(T \leq y_0 \mid x_0), \]

the conditional cumulative distribution function of a survival time \(T \) given covaraites vector \(x_0 \) at value \(y_0 \). This estimator is described in detail in (Wang and Wang 2009).

Usage

tauhat_func(y0, x0, z, x, delta, bw)
Arguments

- **y0** the vector of censored outcome of a single observation
- **x0** the vector of given covariate of a single observation
- **z** observed vector of response variable from observed data
- **x** the observed matrix of covariates, the dimension is # of observations by number of covariates. Note that the vector of ones should NOT be included in x.
- **delta** the vector of censoring indicators
- **bw** the scalar bandwidth parameter in kernel

Details

For cases with multivariate covariates, we adopted a product kernel. For example, in the bivariate case we use

\[K(x_1, x_2) = K_1(x_1)K_2(x_2), \]

where \(K_1 \) and \(K_2 \) are both biquadratic kernel functions.

References

Examples

```r
tauhat_func(y0=10, x0=c(2,3), z=c(10, 12, 11),
            x=matrix(c(1,1,2,2,3,3), nrow=3, byrow=TRUE),
            delta=c(1,1,0), bw=10)
```
Index

Bnk_func, 2
est_mean_ipwe, 3
est_quant_ipwe, 4
est_quant_TwoStg_ipwe, 6
Gene_Mean_CenIPWE, 9
Gene_Quantile_CenIPWE, 10
Gene_Quantile_CenIPWE_DTR, 12
IPWE_mean_IndCen, 3, 15
IPWE_Qopt_DepCen_general, 10, 17
IPWE_Qopt_DepCen_trt, 10, 18
IPWE_Qopt_DTR_IndCen, 6, 10, 20
IPWE_Qopt_IndCen, 5, 10, 20, 22
LocalKM, 4, 24
simJLSdata, 25
tauhat_func, 4, 24, 26