Package ‘QuClu’

May 26, 2022

Type Package
Title Quantile-Based Clustering Algorithms
Version 1.0.1
Date 2022-05-26
Author Christian Hennig, Cinzia Viroli and Laura Anderlucci
Maintainer Laura Anderlucci <laura.anderlucci@unibo.it>
License GPL-2 | GPL-3
Encoding UTF-8
RoxygenNote 7.2.0
Imports stats
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-26 16:40:02 UTC

R topics documented:

alg.CS .. 2
alg.CU ... 3
alg.VS ... 4
alg.VU ... 5
kquantiles ... 7

Index 9
Description

This function allows to run the CS (Common theta and Scaled variables through lambda_j) version of the quantile-based clustering algorithm.

Usage

\[\text{alg.CS}(\text{data, } k = 2, \text{ eps } = 1e^{-08}, \text{ it.max } = 100, \text{ B } = 30, \text{ lambda } = \text{ rep}(1, p)) \]

Arguments

data: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

k: The number of clusters. The default is k=2.

eps: The relative convergence tolerances for objective function. The default is set to 1e-8.

it.max: A number that gives integer limits on the number of the CS algorithm iterations. By default, it is set to 100.

B: The number of times the initialization step is repeated; the default is 30.

lambda: The initial value for lambda_j, the variable scaling parameters. By default, lambdas are set to be equal to 1.

Details

Algorithm CS: Common theta and Scaled variables via lambda_j. A common value of theta is taken but variables are scaled through lambda_j.

Value

A list containing the following elements:

c1: A vector whose [i]th entry is classification of observation i in the test data.

qq: A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.

theta: The estimated common theta.

Vseq: The values of the objective function V at each step of the algorithm.

V: The final value of the objective function V.

lambda: A vector containing the scaling factor for each variable.

References

Examples

```r
out <- alg.CS(iris[,,-5],k=3)
out$theta
out$qq
out$lambda

table(out$cl)
```

alg.CU

CU quantile-based clustering algorithm

Description

This function allows to run the CU (Common theta and Unscaled variables) version of the quantile-based clustering algorithm.

Usage

```
alg.CU(data, k = 2, eps = 1e-08, it.max = 100, B = 30)
```

Arguments

- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `k` The number of clusters. The default is k=2.
- `eps` The relative convergence tolerances for objective function. The default is set to 1e-8.
- `it.max` A number that gives integer limits on the number of the CU algorithm iterations. By default, it is set to 100.
- `B` The number of times the initialization step is repeated; the default is 30.

Details

Algorithm CU: Common theta and Unscaled variables. A common value of theta for all the variables is assumed. This strategy directly generalizes the conventional k-means to other moments of the distribution to better accommodate skewness in the data.

Value

A list containing the following elements:

- `method` The chosen parameterization, CU, Common theta and Unscaled variables
- `k` The number of clusters.
- `cl` A vector whose \[i\]th entry is classification of observation \(i\) in the test data.
- `qq` A matrix whose \([h,j]\)th entry is the theta-quantile of variable \(j\) in cluster \(h\).
theta
A vector whose [j]th entry is the percentile theta for variable j.

Vseq
The values of the objective function V at each step of the algorithm.

V
The final value of the objective function V.

lambda
A vector containing the scaling factor for each variable.

References

Examples

```r
out <- alg.CU(iris[,-5],k=3)
out$theta
out$qq

table(out$cl)
```

alg.VS

\textit{VS quantile-based clustering algorithm}

Description

This function allows to run the VS (Variable-wise theta_j and Scaled variables through lambda_j) version of the quantile-based clustering algorithm.

Usage

```r
alg.VS(data, k = 2, eps = 1e-08, it.max = 100, B = 30, lambda = rep(1, p))
```

Arguments

data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

k
The number of clusters. The default is k=2.

eps
The relative convergence tolerances for objective function. The default is set to 1e-8.

it.max
A number that gives integer limits on the number of the VS algorithm iterations. By default, it is set to 100.

B
The number of times the initialization step is repeated; the default is 30.

lambda
The initial value for lambda_j, the variable scaling parameters. By default, lambdas are set to be equal to 1.
alg.VU

Details

Algorithm VS: Variable-wise theta_j and Scaled variables via lambda_j. A different theta for every single variable is estimated to better accommodate different degree of skeweness in the data and variables are scaled through lambda_j.

Value

A list containing the following elements:

- `method` The chosen parameterization, VS, Variable-wise theta_j and Scaled variables
- `k` The number of clusters.
- `cl` A vector whose [i]th entry is classification of observation i in the test data.
- `qq` A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.
- `theta` A vector whose [j]th entry is the percentile theta for variable j.
- `Vseq` The values of the objective function V at each step of the algorithm.
- `V` The final value of the objective function V.
- `lambda` A vector containing the scaling factor for each variable.

References

Examples

```r
gal.VS(iris[,,-5],k=3)
go$theta
go$qq
go$lambda
table(go$cl)
```

Description

This function allows to run the VU (Variable-wise theta_j and Unscaled variables) version of the quantile-based clustering algorithm.

Usage

`alg.VU(data, k = 2, eps = 1e-08, it.max = 100, B = 30)`
Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

k The number of clusters. The default is k=2.

eps The relative convergence tolerances for objective function. The default is set to 1e-8.

it.max A number that gives integer limits on the number of the VU algorithm iterations. By default, it is set to 100.

B The number of times the initialization step is repeated; the default is 30.

Details

Algorithm VU: Variable-wise theta_j and Unscaled variables. A different theta for every single variable is estimated to better accommodate different degree of skeweness in the data.

Value

A list containing the following elements:

method The chosen parameterization, VU, Variable-wise theta_j and Unscaled variables

k The number of clusters.

c1 A vector whose [i]th entry is classification of observation i in the test data.

qq A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.

theta A vector whose [j]th entry is the percentile theta for variable j.

Vseq The values of the objective function V at each step of the algorithm.

V The final value of the objective function V.

lambda A vector containing the scaling factor for each variable.

References

Examples

```r
out <- alg.VU(iris[-5], k=3)
out$theta
out$qq

table(out$c1)
```
kquantiles
Quantile-based clustering algorithm

Description

This function allows to run the k-quantile clustering algorithm, allowing for different constraints: common theta and unscaled variables (CU), common theta and scaled variables (CS), variable-wise theta and unscaled variables (VU) and the variable-wise theta and scaled variables (VS).

Usage

```r
kquantiles(
  data,
  k = 2,
  method = "VS",
  eps = 1e-08,
  it.max = 100,
  B = 30,
  lambda = NULL
)
```

Arguments

- `data`: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `k`: The number of clusters. The default is $k=2$.
- `method`: The chosen constrained method. The options are: CU (Common theta and Unscaled variables), CS (Common theta and Scaled variables), VU (Variable-wise theta and Unscaled variables), VS (Variable-wise theta and Scaled variables). The default is the unconstrained method, VS.
- `eps`: The relative convergence tolerances for objective function. The default is set to $1e-8$.
- `it.max`: A number that gives integer limits on the number of the algorithm iterations. By default, it is set to 100.
- `B`: The number of times the initialization step is repeated; the default is 30.
- `lambda`: The initial value for lambda_j, the variable scaling parameters, for models CS and VS. By default, lambdas are set to be equal to 1.

Details

Algorithm CU: Common theta and Unscaled variables. A common value of theta for all the variables is assumed. Algorithm CS: Common theta and Scaled variables via lambda_j. A common value of theta is taken but variables are scaled through lambda_j. Algorithm VU: Variable-wise theta_j and Unscaled variables. A different theta for every single variable is estimated to better
accomodate different degree of skeweness in the data. Algorithm VS: Variable-wise theta_j and Scaled variables via lambda_j. A different theta for every single variable is estimated to better accomodate different degree of skeweness in the data and variables are scaled through lambda_j.

Value

A list containing the following elements:

- method: The chosen parameterization.
- k: The number of clusters.
- cl: A vector whose [i]th entry is classification of observation i in the test data.
- qq: A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.
- theta: A vector whose [j]th entry is the percentile theta for variable j.
- Vseq: The values of the objective function V at each step of the algorithm.
- V: The final value of the objective function V.
- lambda: A vector containing the scaling factor for each variable.

References

Examples

```r
out <- kquantiles(iris[, -5], k=3, method="VS")
out$theta
out$qq

table(out$cl)
```

Index

alg.CS, 2
alg.CU, 3
alg.VS, 4
alg.VU, 5

kquantiles, 7