Package ‘R2ucare’

July 11, 2022

License GPL (>= 2)

Title Goodness-of-Fit Tests for Capture-Recapture Models

Description Performs goodness-of-fit tests for capture-recapture models as described by Gimenez et al. (2018) <doi:10.1111/2041-210X.13014>. Also contains several functions to process capture-recapture data.

Version 1.0.2

URL https://github.com/oliviergimenez/R2ucare

Depends R (>= 3.3.0)

Suggests knitr, rmarkdown, testthat

Imports stringr, RMark, stats, utils

Encoding UTF-8

RoxygenNote 7.2.0

VignetteBuilder knitr

BugReports https://github.com/oliviergimenez/R2ucare/issues

NeedsCompilation no

Author Olivier Gimenez [aut, cre] (<https://orcid.org/0000-0001-7001-5142>),
Jean-Dominique Lebreton [ctb],
Remi Choquet [ctb],
Roger Pradel [ctb]

Maintainer Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>

Repository CRAN

Date/Publication 2022-07-11 08:10:12 UTC

R topics documented:

coefficients of mixture models

deviance mixture

expected values of tables

goodness of fit test

group data
coef_mixtures

Estimation of multinomial mixture distributions parameters

Description

This function performs maximum likelihood inference for multinomial mixture distributions.

Usage

coef_mixtures(Mp, Np)

Arguments

Mp a matrix of mixtures (a row matrix if a vector)
Np a matrix of bases (a row matrix if a vector)
Value

This function returns a list of maximum likelihood estimates for the cells of a mixture distribution:
- P matrix of cell probabilities estimates for mixtures
- PI matrix of mixture probabilities
- GAM matrix of cell probabilities estimates for bases

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

References

Description

This function calculates the deviance of multinomial mixture distributions.

Usage

deviance_mixture(x, M, N, s, n, nbmel)

Arguments

x
value to which the deviance is to be evaluated
M
a vector of mixtures (see coef_mixtures.R)
N
a vector of bases (see coef_mixtures.R)
s
number of bases
n
number of cell probabilities
nbmel
number of mixtures

Value

This function returns the value of the deviance for mixture distributions.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

References

expval_table Expected values in a contingency table

Description
This function calculates expected values for a rxc contingency table.

Usage
expval_table(M)

Arguments
M a matrix of observed probabilities

Value
A matrix of expected values.

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

gof_test Goodness-of-fit test for contingency tables

Description
This function carries out goodness-of-fit tests for contingency tables from the power-divergence family.

Usage
gof_test(lambda, observes, theoriques)

Arguments
lambda parameter defining the statistic to be used: lambda = -0.5 is for the Freeman-Tuckey statistic, lambda = 0 for the G2 statistic, lambda = 2/3 for the Cressie-Read statistic and lambda = 1 for the classical Chi-square statistic
observes vector of observed probabilities
theoriques vector of theoretical/expected probabilities

Value
This function returns the value of the goodness-of-fit statistic.
`group_data` 5

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

group_data

Group individual capture-recapture data in encounter histories

Description

This function pools together individuals with the same encounter capture-recapture history.

Usage

```r
group_data(X, effX)
```

Arguments

- `X`
 matrix of capture-recapture histories
- `effX`
 vector with numbers of individuals with that particular capture-recapture history

Value

matrix with grouped capture-recapture histories and counts in the last column

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
# Generate fake capture-recapture dataset
X = matrix(round(runif(300)), nrow=100)
freq=rep(1,100)
cbind(X,freq)

# Generate fake capture-recapture dataset
X = matrix(round(runif(300)), nrow=100)
freq=rep(1,100)
cbind(X,freq)

# Group data
group_data(X,freq)
```
group_data_gen

Group individual capture-recapture data in encounter histories along specific column(s)

Description

This function pools together individuals with the same encounter capture-recapture history along specified directions given by columns.

Usage

```r
group_data_gen(X, effX, s)
```

Arguments

- **X**: matrix of capture-recapture histories
- **effX**: vector with numbers of individuals with that particular capture-recapture history
- **s**: scalar or vector of columns along which the grouping should be done

Value

matrix with grouped capture-recapture histories and counts in the last column

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

ind_test_22

Test of independence for 2x2 contingency tables

Description

This function tests independence in 2x2 contingency tables

Usage

```r
ind_test_22(M, threshold = 2, rounding = 3)
```

Arguments

- **M**: is a 2x2 contingency table
- **threshold**: is a threshold for low expected numbers; default is 2
- **rounding**: is the level of rounding for outputs; default is 3
ind_test_rc

Value

This function returns a vector with statistic of quadratic chi2 or inv chi2 corresponding to pvalue of Fisher test, p-value of quadratic chi2 test or Fisher test for low numbers, signed test and test performed (Chi-square, Fisher or None).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

ind_test_rc

Test of independence for rxc contingency tables

Description

This function tests independence in rxc contingency tables

Usage

ind_test_rc(M, threshold = 2, rounding = 3)

Arguments

M is an r by c table of non-negative integers
threshold is a threshold for low expected numbers; default is 2
rounding is the level of rounding for outputs; default is 3

Value

This function returns a vector with statistic of quadratic chi2 or inv chi2 corresponding to pvalue of Fisher test, p-value of quadratic chi2 test or Fisher test for low numbers, degree of freedom and test performed (Chi-square, Fisher or None).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel
inv_logit_gen

Inverse generalized logit link

Description
This function computes the inverse (or reciprocal) of the generalized logit link function.

Usage
```
inv_logit_gen(petitv)
```

Arguments
- *petitv*: vector of values to be transformed

Value
- *ev*: vector of transformed values

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

marray

m-array: table of first recaptures

Description
This function calculates the m-array, the number of released and never seen again individuals; deals with more than 1 group.

Usage
```
marray(X, freq)
```

Arguments
- *X*: a matrix of encounter histories over K occasions
- *freq*: is a vector with the number of individuals having the corresponding encounter history

Value
This function returns a list with R the number of released individuals (K-1 x g matrix), m the m-array (K-1 x K-1 x g array) with upper triangle filled only and never the number of individuals never recaptured (K-1 x g matrix).
multimarray

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c('Male', 'Female')))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

get female data
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]

get number of released individuals (R),
the m-array (m) and
the number of individuals never seen again (never)
marray(dip.fem.hist, dip.fem.freq)

multimarray Multistate m-array

Description
This function calculates the m-array for multistate capture-recapture data, the number of released and never seen again individuals.

Usage
multimarray(X, freq)

Arguments

X a matrix of encounter histories over K occasions
freq is a vector with the number of individuals having the corresponding encounter history

Value
This function returns a matrix in which R the number of released individuals is in the first column, the number of individuals never recaptured (K-1) is in the last column and m the m-array (K-1 x K-1) with upper triangle filled only is in sandwich between these two vectors.
Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

build m-array
multimarray(geese.hist, geese.freq)

overall_CJS

Overall goodness-of-fit test for the Cormack-Jolly-Seber model

Description

This function performs the overall goodness-of-fit test for the Cormack-Jolly-Seber model. It is obtained as the sum of the 4 components Test3.SR, Test3.SM, Test2.CT and Test2.CL.

Usage

overall_CJS(X, freq, rounding = 3)

Arguments

X is a matrix of encounter histories
freq is a vector of the number of individuals with the corresponding encounter history
rounding is the level of rounding for outputs; default is 3

Value

This function returns a data.frame with the value of the test statistic, the degrees of freedom and the p-value of the test.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel
Examples

```r
# read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c('Male', 'Female')))

# Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

# split the dataset in males/females
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == 'Male')
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

# for females
overall_CJS(dip.fem.hist, dip.fem.freq)
```

overall_JMV
Overall goodness-of-fit test for the Jolly-Move model

Description

This function performs the overall goodness-of-fit test for the Jolly-Move model. It is obtained as the sum of the 5 components Test3G.SR, Test3G.SM, Test3G.WBW A, TestM.ITEC, TestM.LTEC. To perform the goodness-of-fit test for the Arnason-Schwarz model, both the Arnason-Schwarz (AS) and the Jolly-Move models need to be fitted to the data (to our knowledge, only E-SURGE can fit the JMV model). Assuming the overall goodness-of-fit test for the JMV model has produced the value stat_jmv for the test statistic, get the deviance (say dev_as and dev_jmv) and number of estimated parameters (say dof_as and dof_jmv) for both the AS and JMV models. Then, finally, the p-value of the goodness-of-fit test for the AS model is obtained as 1 - pchisq(stat_as, dof_as) where stat_as = stat_jmv + (dev_as - dev_jmv) and dof_as = dof_jmv + (dof_jmv - dof_as)

Usage

`overall_JMV(X, freq, rounding = 3)`

Arguments

- `X` is a matrix of encounter histories
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `rounding` is the level of rounding for outputs; default is 3
Value

This function returns a data.frame with the value of the test statistic, the degrees of freedom and the p-value of the test.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
# read in Geese dataset
library(RMark)
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = convert.inp(geese)

geese.hist = matrix(as.numeric(unlist(strsplit(geese$ch, '/'))),nrow=nrow(geese),byrow=TRUE)
geese.freq = geese$freq

# encounter histories and number of individuals with corresponding histories
X = geese.hist
freq = geese.freq

# load R2ucare package
library(R2ucare)

# perform overall gof test
overall_JMV(X, freq)
```

pool2K

Pooling algorithm

Description

This function pools columns of a 2xK contingency table (if needed, ie if low numbers present)

Usage

`pool2K(M, low = 2)`

Arguments

- `M` is a 2 by K contingency table (or a K by 2 table)
- `low` is a threshold for low expected numbers; default is 2 (if this argument is big enough, the table is pooled down to 2 x 2; if this argument is 0, the table is not pooled)
Value

This function returns a matrix with the pooled contingency table.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Description

This function pools rows and columns of a rxc contingency table according to Pradel et al. (2003).

Usage

pooling_ct(table)

Arguments

table is a rxc contingency table

Value

This function returns a matrix with the pooled contingency table.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

References

pooling_mixtures
Pooling algorithm (multisite goodness-of-fit tests)

Description

This function pools rows and columns of a rxc bases and mixture table according to Pradel et al. (2003). It provides the components of TestM in the multisite goodness-of-fit tests.

Usage

```r
pooling_mixtures(nk, nj, a, mixandbases)
```

Arguments

- `nk`: number of mixtures
- `nj`: number of bases
- `a`: number of sites/states
- `mixandbases`: matrix with mixtures and bases

Value

This function returns a matrix with the pooled table.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Rémi Choquet, Jean-Dominique Lebreton, Anne-Marie Reboulet, Roger Pradel

References

read_headed
Read capture-recapture data with Headed format used by program E-SURGE

Description

This function reads in capture-recapture dataset with the Headed format. It ignores all forms of censorship for now, and drops continuous covariates because no goodness-of-fit test exists for such models.

Usage

```r
read_headed(file)
```
Arguments

- **file**: text file with Headed format

Value

- list with first component the matrix of encounter histories, second components the vector of number of individuals with corresponding histories and, if relevant, third component vector/matrix with group(s)

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>

Examples

```r
# read in Dipper dataset
dipper = system.file("extdata", "ed.txt", package = "R2ucare")
read_headed(dipper)
# read in Geese dataset
geese = system.file("extdata", "geese.txt", package = "R2ucare")
read_headed(geese)
```

Description

This function reads in capture-recapture dataset with the Input format. It is a wrapper for the function convert.inp from package RMark. It drops continuous covariates because no goodness-of-fit test exists for such models.

Usage

- `read_inp(file, group.df = NULL)`

Arguments

- **file**: text file with Input format (extension .inp)
- **group.df**: dataframe with grouping variables; contains a row for each group defined in the input file row1=group1, row2=group2 etc. Names and number of columns in the dataframe is set by user to define grouping variables in RMark dataframe

Value

- list with first component the matrix of encounter histories, second components the vector of number of individuals with corresponding histories and, if relevant, third component vector/matrix with group(s)
reconstitution

Description

This function reformat the outputs of multinomial mixture distributions parameters.

Usage

reconstitution(x, s, n, nbmel)

Arguments

x vector with cell probabilities estimates for mixtures and bases, along with mixture probabilities
s number of bases
n number of cell probabilities
nbmel number of mixtures

Value

This function returns a list of maximum likelihood estimates for the cells of a mixture distribution with:

- P matrix of cell probabilities estimates for mixtures
- PI matrix of mixture probabilities
- GAM matrix of cell probabilities estimates for bases

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet
repmat

Replicate and tile a matrix

Description

This function creates a large matrix consisting of an m-by-n tiling of copies of X. The dimensions of the returned matrix are nrow(X)*m x ncol(X)*n. This is the equivalent of the repmat MATLAB function.

Usage

```r
cmat(X, m, n)
```

Arguments

- `X` matrix to be replicated
- `m` row dimension of replication
- `n` column dimension of replication

Value

A replicated matrix of X with dimensions nrow(X)*m x ncol(X)*n.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>

test2cl

Test2.CL

Description

This function performs Test2.CL

Usage

```r
test2cl(X, freq, verbose = TRUE, rounding = 3)
```

Arguments

- `X` is a matrix of encounter histories with K occasions
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `verbose` controls the level of the details in the outputs; default is TRUE for all details
- `rounding` is the level of rounding for outputs; default is 3
Value

This function returns a list with first component the overall test and second component a data.frame with 5 columns for components i (2:K-3) (in rows) of test2.cli following Pradel 1993 (in Lebreton and North, Birkhauser Verlag): component, degree of freedom, statistic of the test, p-value, test performed.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c("Male","Female")))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

split the dataset in males/females
mask = (dip.group == "Female")
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == "Male")
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

for males
X = dip.mal.hist
freq = dip.mal.freq
res.males = test2cl(X,freq)
res.males

Description

This function performs Test2.CT

Usage

test2ct(X, freq, verbose = TRUE, rounding = 3)
Arguments

- **X** is a matrix of encounter histories with K occasions
- **freq** is a vector of the number of individuals with the corresponding encounter history
- **verbose** controls the level of the details in the outputs; default is TRUE for all details
- **rounding** is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with 5 columns for components i (2:K-2) (in rows) of test2.Cti: component, degree of freedom, statistic of the test, p-value, signed test, test performed.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

```r
# read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df = data.frame(sex = c('Male', 'Female')))

# Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

# split the dataset in males/females
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == 'Male')
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

# for females
X = dip.fem.hist
freq = dip.fem.freq
res.females = test2ct(X, freq)
res.females
```

Description

This function performs Test3G.SM
Usage

\texttt{test3Gsm(X, freq, verbose = TRUE, rounding = 3)}

Arguments

- \texttt{X} is a matrix of encounter histories with \(K\) occasions
- \texttt{freq} is a vector of the number of individuals with the corresponding encounter history
- \texttt{verbose} controls the level of the details in the outputs; default is TRUE for all details
- \texttt{rounding} is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with occasion, site, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez \textless{}olivier.gimenez@cefe.cnrs.fr\textgreater{}, Roger Pradel, Rémi Choquet

Examples

Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

perform Test.3.GSm
test3Gsm(geese.hist, geese.freq)

\begin{verbatim}

test3Gsr

Test3G.SR

\end{verbatim}

Description

This function performs Test3G.SR

Usage

\texttt{test3Gsr(X, freq, verbose = TRUE, rounding = 3)}
Arguments

- **X** is a matrix of encounter histories with K occasions
- **freq** is a vector of the number of individuals with the corresponding encounter history
- **verbose** controls the level of the details in the outputs; default is TRUE for all details
- **rounding** is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with occasion, site, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Rémi Choquet, Roger Pradel

Examples

```r
# Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

# Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

# perform Test3.GSR
test3Gsr(geese.hist,geese.freq)
```

Description

This function performs Test3.GWBWA

Usage

`test3Gwbwa(X, freq, verbose = TRUE, rounding = 3)`
Value

This function returns a list with first component the overall test and second component a data.frame with occasion, site, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
# Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

# Get encounter histories and number of individuals with corresponding histories
goose.hist = goose$encounter_histories
goose.freq = goose$sample.size

# perform Test.3GWBWA
test3Gwbwa(goose.hist,goose.freq)
```

test3sm
Test3.SM

Description

This function performs Test3.SM

Usage

```r
test3sm(X, freq, verbose = TRUE, rounding = 3)
```

Arguments

- `X` is a matrix of encounter histories with K occasions
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `verbose` controls the level of the details in the outputs; default is TRUE for all details
- `rounding` is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with 5 columns for components i (2:K-1) (in rows) of test3.smi: component, degree of freedom, statistic of the test, p-value, test performed.
Examples

```r
# read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read.inp(dipper, group.df=data.frame(sex=c('Male','Female')))

# Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

# split the dataset in males/females
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == 'Male')
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

# for females
res.females = test3sm(dip.fem.hist, dip.fem.freq)
res.females
```

test3sr

Test3.SR

Description

This function performs Test3.SR

Usage

```r
test3sr(X, freq, verbose = TRUE, rounding = 3)
```

Arguments

- `X` is a matrix of encounter histories with K occasions
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `verbose` controls the level of the details in the outputs; default is TRUE for all details
- `rounding` is the level of rounding for outputs; default is 3
Value

This function returns a list with first component the overall test and second component a data.frame with 4 columns for components \(i(2:K-1)\) (in rows) of test3.sri: component, statistic of the test, p-value, signed test, test performed.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

```r
# read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c("Male","Female")))

# Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

# split the dataset in males/females
mask = (dip.group == "Female")
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == "Male")
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

# Test3SR for males
res.males = test3sr(dip.mal.hist, dip.mal.freq)
res.males
```

testMitec

TestM.ITEC

Description

This function performs TestM.ITEC

Usage

`testMitec(X, freq, verbose = TRUE, rounding = 3)`

Arguments

- `X` is a matrix of encounter histories with \(K\) occasions
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `verbose` controls the level of the details in the outputs; default is TRUE for all details
- `rounding` is the level of rounding for outputs; default is 3
Value

This function returns a list with first component the overall test and second component a data.frame with occasion, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Rémi Choquet, Roger Pradel

Examples

```r
# Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

# Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

testMltec(geese.hist, geese.freq)
```

Description

This function performs TestM.LTEC

Usage

```r
testMltec(X, freq, verbose = TRUE, rounding = 3)
```

Arguments

- `X` is a matrix of encounter histories with K occasions
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `verbose` controls the level of the details in the outputs; default is TRUE for all details
- `rounding` is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with occasion, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).
ungroup_data

Ungroup encounter capture-recapture data in individual histories

Description

This function splits encounter histories in as many individual histories as required.

Usage

ungroup_data(X, effX)

Arguments

X matrix of encounter capture-recapture histories
effX vector with numbers of individuals with that particular encounter history

Value

matrix with ungrouped capture-recapture histories and counts in the last column (should be 1s)

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

Generate fake capture-recapture dataset
X = matrix(round(runif(9)),nrow=3)
freq=c(4,3,-8)
cbind(X,freq)
ungroup_data(X,freq)
Index

* package
 coef_mixtures, 2
deviance_mixture, 3
expval_table, 4
gof_test, 4
group_data, 5
group_data_gen, 6
ind_test_22, 6
ind_test_rc, 7
inv_logit_gen, 8
marray, 8
multimarray, 9
overall_CJS, 10
overall_JMV, 11
pool2K, 12
pooling_ct, 13
pooling_mixtures, 14
read_headed, 14
read_inp, 15
reconstitution, 16
repmat, 17
test2cl, 17
test2ct, 18
test3Gsm, 19
test3Gsr, 20
test3Gwbwa, 21
test3sm, 22
test3sr, 23
testMitec, 24
testMltec, 25
ungroup_data, 26

coef_mixtures, 2
deviance_mixture, 3
expval_table, 4
gof_test, 4
group_data, 5

group_data_gen, 6
ind_test_22, 6
ind_test_rc, 7
inv_logit_gen, 8
marray, 8
multimarray, 9
overall_CJS, 10
overall_JMV, 11
pool2K, 12
pooling_ct, 13
pooling_mixtures, 14
read_headed, 14
read_inp, 15
reconstitution, 16
repmat, 17
test2cl, 17
test2ct, 18
test3Gsm, 19
test3Gsr, 20
test3Gwbwa, 21
test3sm, 22
test3sr, 23
testMitec, 24
testMltec, 25
ungroup_data, 26