Package ‘R2ucare’

April 13, 2017

Maintainer Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>
License GPL (>= 2)
Title Goodness-of-Fit Tests for Capture-Recapture Models
Author Olivier Gimenez, Jean-Dominique Lebreton, Remi Choquet, Roger Pradel
Description Performs goodness-of-fit tests for capture-recapture models. Also contains several functions to process capture-recapture data.
Version 1.0.0
URL https://github.com/oliviergimenez/R2ucare
Depends R (>= 3.3.0)
Suggests knitr, rmarkdown
Imports stringr, RMark, stats, utils
Encoding UTF-8
LazyData true
RoxygenNote 5.0.1.9000
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-13 00:09:48 UTC

R topics documented:

coef_mixtures . 2
deviance_mixture . 3
expval_table . 4
gof_test . 4
 group_data . 5
 group_data_gen . 6
 ind_test_22 . 6
 ind_test_rc . 7
 inv_logit_gen . 8
coef_mixtures

Description
This function performs maximum likelihood inference for multinomial mixture distributions.

Usage
coef_mixtures(Mp, Np)

Arguments
Mp a matrix of mixtures (a row matrix if a vector)
Np a matrix of bases (a row matrix if a vector)

Value
This function returns a list of maximum likelihood estimates for the cells of a mixture distribution:
P matrix of cell probabilities estimates for mixtures
PI matrix of mixture probabilities
GAM matrix of cell probabilities estimates for bases
Deviance of multinomial mixture distributions

Description

This function calculates the deviance of multinomial mixture distributions.

Usage

deviance_mixture(x, M, N, s, n, nbmel)

Arguments

x value to which the deviance is to be evaluated
M a vector of mixtures (see coef_mixtures.R)
N a vector of bases (see coef_mixtures.R)
s number of bases
n number of cell probabilities
nbmel number of mixtures

Value

This function returns the value of the deviance for mixture distributions.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

References

expval_table Expected values in a contingency table

Description
This function calculates expected values for a rxc contingency table.

Usage
expval_table(M)

Arguments
M a matrix of observed probabilities

Value
A matrix of expected values.

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

gof_test Goodness-of-fit test for contingency tables

Description
This function carries out goodness-of-fit tests for contingency tables from the power-divergence family.

Usage
gof_test(lambda, observes, theoriques)

Arguments
lambda parameter defining the statistic to be used: lambda = -0.5 is for the Freeman-Tuckey statistic, lambda = 0 for the G2 statistic, lambda = 2/3 for the Cressie-Read statistic and lambda = 1 for the classical Chi-square statistic
observes vector of observed probabilities
theoriques vector of theoretical/expected probabilities

Value
This function returns the value of the goodness-of-fit statistic.
Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

group_data

Group individual capture-recapture data in encounter histories

Description

This function pools together individuals with the same encounter capture-recapture history.

Usage

```r
group_data(X, effX)
```

Arguments

- `X`: matrix of capture-recapture histories
- `effX`: vector with numbers of individuals with that particular capture-recapture history

Value

matrix with grouped capture-recapture histories and counts in the last column

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
# Generate fake capture-recapture dataset
X = matrix(round(runif(300)), nrow=100)
freq = rep(1, 100)
cbind(X, freq)
group_data(X, freq)
```
group_data_gen

Group individual capture-recapture data in encounter histories along specific column(s)

Description

This function pools together individuals with the same encounter capture-recapture history along specified directions given by columns.

Usage

```r
group_data_gen(x, effX, s)
```

Arguments

- `x` matrix of capture-recapture histories
- `effX` vector with numbers of individuals with that particular capture-recapture history
- `s` scalar or vector of columns along which the grouping should be done

Value

matrix with grouped capture-recapture histories and counts in the last column

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

ind_test_22

Test of independence for 2x2 contingency tables

Description

This function tests independence in 2x2 contingency tables

Usage

```r
ind_test_22(M, threshold = 2, rounding = 3)
```

Arguments

- `M` is a 2x2 contingency table
- `threshold` is a threshold for low expected numbers; default is 2
- `rounding` is the level of rounding for outputs; default is 3
Value

This function returns a vector with statistic of quadratic chi2 or inv chi2 corresponding to p-value of Fisher test, p-value of quadratic chi2 test or Fisher test for low numbers, signed test and test performed (Chi-square, Fisher or None).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

ind_test_rc

Test of independence for rxc contingency tables

Description

This function tests independence in rxc contingency tables

Usage

`ind_test_rc(M, threshold = 2, rounding = 3)`

Arguments

- `M` is an r by c table of non-negative integers
- `threshold` is a threshold for low expected numbers; default is 2
- `rounding` is the level of rounding for outputs; default is 3

Value

This function returns a vector with statistic of quadratic chi2 or inv chi2 corresponding to p-value of Fisher test, p-value of quadratic chi2 test or Fisher test for low numbers, degree of freedom and test performed (Chi-square, Fisher or None).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel
inv_logit_gen

Inverse generalized logit link

Description

This function computes the inverse (or reciprocal) of the generalized logit link function.

Usage

```r
inv_logit_gen(petiv)
```

Arguments

- `petiv`: vector of values to be transformed

Value

- `ev`: vector of transformed values

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

marray

m-array: table of first recaptures

Description

This function calculates the m-array, the number of released and never seen again individuals; deals with more than 1 group.

Usage

```r
marray(X, freq)
```

Arguments

- `X`: a matrix of encounter histories over K occasions
- `freq`: is a vector with the number of individuals having the corresponding encounter history

Value

This function returns a list with:
- `R`: the number of released individuals (K-1 x g matrix),
- `m`: the m-array (K-1 x K-1 x g array) with upper triangle filled only and never the number of individuals never recaptured (K-1 x g matrix).
Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples
read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2cure")
dipper = read_inp(dipper, group_df=data.frame(sex=c('Male','Female')))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

get female data
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]

get number of released individuals (R),
the m-array (m) and
the number of individuals never seen again (never)
marray(dip.fem.hist, dip.fem.freq)

multimarray

Multistate m-array

Description
This function calculates the m-array for multistate capture-recapture data, the number of released and never seen again individuals.

Usage
multimarray(X, freq)

Arguments
X a matrix of encounter histories over K occasions
freq is a vector with the number of individuals having the corresponding encounter history

Value
This function returns a matrix in which R the number of released individuals is in the first column, the number of individuals never recaptured (K-1) is in the last column and m the m-array (K-1 x K-1) with upper triangle filled only is in sandwich between these two vectors.
Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

```r
# Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

# Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

# build m-array
multimarray(geese.hist, geese.freq)
```

overall_CJS
Overall goodness-of-fit test for the Cormack-Jolly-Seber model

Description

This function performs the overall goodness-of-fit test for the Cormack-Jolly-Seber model. It is obtained as the sum of the 4 components Test3.SR, Test3.SM, Test2.CT and Test2.CL.

Usage

```r
overall_CJS(X, freq, rounding = 3)
```

Arguments

- `X` is a matrix of encounter histories
- `freq` is a vector of the number of individuals with the corresponding encounter history
- `rounding` is the level of rounding for outputs; default is 3

Value

This function returns a data.frame with the value of the test statistic, the degrees of freedom and the p-value of the test.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel
Examples

read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read.inp(dipper, group.df = data.frame(sex = c("Male", "Female")))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

split the dataset in males/females
mask = (dip.group == "Female")
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == "Male")
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

for females
overall_CJS(dip.fem.hist, dip.fem.freq)

overall_JMV

Description

This function performs the overall goodness-of-fit test for the Jolly-Move model. It is obtained as the sum of the 5 components Test3G.SR, Test3G.SM, Test3G.WBW A, TestM.ITEC, TestM.LTEC. To perform the goodness-of-fit test for the Arnason-Schwarz model, both the Arnason-Schwarz (AS) and the Jolly-Move models need to be fitted to the data (to our knowledge, only E-SURGE can fit the JMV model). Assuming the overall goodness-of-fit test for the JMV model has produced the value stat_jmv for the test statistic, get the deviance (say dev_as and dev_jmv) and number of estimated parameters (say dof_as and dof_jmv) for both the AS and JMV models. Then, finally, the p-value of the goodness-of-fit test for the AS model is obtained as 1 - pchisq(stat_as, dof_as) where stat_as = stat_jmv + (dev_as - dev_jmv) and dof_as = dof_jmv + (dof_jmv - dof_as)

Usage

overall_JMV(X, freq, rounding = 3)

Arguments

X is a matrix of encounter histories
freq is a vector of the number of individuals with the corresponding encounter history
rounding is the level of rounding for outputs; default is 3
Value

This function returns a data.frame with the value of the test statistic, the degrees of freedom and the p-value of the test.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
## Not run:
# read in Geese dataset
library(RMark)
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = convert.inp(geese)

geese.hist = matrix(as.numeric(unlist(strsplit(geese$chL, "'"))), nrow=nrow(geese), byrow=TRUE)
geese.freq = geese$freq

# encounter histories and number of individuals with corresponding histories
X = geese.hist
freq = geese.freq

# load R2ucare package
library(R2ucare)

# perform overall gof test
overall_jmv(X, freq)

## End(Not run)
```

Description

This function pools columns of a 2xK contingency table (if needed, ie if low numbers present)

Usage

pool2K(M, low = 2)

Arguments

- **M** is a 2 by K contingency table (or a K by 2 table)
- **low** is a threshold for low expected numbers; default is 2 (if this argument is big enough, the table is pooled down to 2 x 2; if this argument is 0, the table is not pooled)
pooling_ct

Value

This function returns a matrix with the pooled contingency table.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

pooling_ct

Pooling algorithm (multisite goodness-of-fit tests)

Description

This function pools rows and columns of a rxc contingency table according to Pradel et al. (2003).

Usage

`pooling_ct(table)`

Arguments

- **table** is a rxc contingency table

Value

This function returns a matrix with the pooled contingency table.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

References

pooling_mixtures

Pooling algorithm (multisite goodness-of-fit tests)

Description
This function pools rows and columns of a rxc bases and mixture table according to Pradel et al. (2003). It provides the components of TestM in the multisite goodness-of-fit tests.

Usage

```r
pooling_mixtures(nk, nj, a, mixandbases)
```

Arguments
- `nk`: number of mixtures
- `nj`: number of bases
- `a`: number of sites/states
- `mixandbases`: matrix with mixtures and bases

Value
This function returns a matrix with the pooled table.

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Rémi Choquet, Jean-Dominique Lebreton, Anne-Marie Reboulet, Roger Pradel

References

read_headed

Read capture-recapture data with Headed format used by program E-SURGE

Description
This function reads in capture-recapture dataset with the Headed format. It ignores all forms of censorship for now, and drops continuous covariates because no goodness-of-fit test exists for such models.

Usage

```r
read_headed(file)
```
read_inp

Arguments

```plaintext
file text file with Headed format
```

Value

list with first component the matrix of encounter histories, second components the vector of number of individuals with corresponding histories and, if relevant, third component vector/matrix with group(s)

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>

Examples

```r
# read in Dipper dataset
dipper = system.file("extdata", "ed.txt", package = "R2ucare")
read_headed(dipper)
# read in Geese dataset
geese = system.file("extdata", "geese.txt", package = "R2ucare")
read_headed(geese)
```

Description

This function reads in capture-recapture dataset with the Input format. It is a wrapper for the function `convert.inp` from package RMark. It drops continuous covariates because no goodness-of-fit test exists for such models.

Usage

```
read_inp(file, group.df = NULL)
```

Arguments

```plaintext
file text file with Input format (extension .inp)
group.df dataframe with grouping variables; contains a row for each group defined in the input file. `row1=group1, row2=group2` etc. Names and number of columns in the dataframe is set by user to define grouping variables in RMark dataframe
```

Value

list with first component the matrix of encounter histories, second components the vector of number of individuals with corresponding histories and, if relevant, third component vector/matrix with group(s)
reconstitution

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>

Examples

```r
# read in Dipper dataset
dipper = system.file("extdata","ed.inp", package = "R2ucare")
read_inp(dipper, group.df=data.frame(sex=c('Male','Female')))

# read in Geese dataset
geese = system.file("extdata","geese.inp", package = "R2ucare")
read_inp(geese)
```

Description

This function reformat the outputs of multinomial mixture distributions parameters.

Usage

```r
reconstitution(x, s, n, nbmel)
```

Arguments

- `x` vector with cell probabilities estimates for mixtures and bases, along with mixture probabilities
- `s` number of bases
- `n` number of cell probabilities
- `nbmel` number of mixtures

Value

This function returns a list of maximum likelihood estimates for the cells of a mixture distribution with:

- `P` matrix of cell probabilities estimates for mixtures
- `PI` matrix of mixture probabilities
- `GAM` matrix of cell probabilities estimates for bases

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet
repmat

Replicate and tile a matrix

Description
This function creates a large matrix consisting of an m-by-n tiling of copies of X. The dimensions of the returned matrix are \(\text{nrow}(X) \times m \times \text{ncol}(X) \times n \). This is the equivalent of the repmat MATLAB function.

Usage
repmat(X, m, n)

Arguments
- \(X \) matrix to be replicated
- \(m \) row dimension of replication
- \(n \) column dimension of replication

Value
A replicated matrix of \(X \) with dimensions \(\text{nrow}(X) \times m \times \text{ncol}(X) \times n \).

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>

test2cl

Test2.CL

Description
This function performs Test2.CL.

Usage
test2cl(X, freq, verbose = TRUE, rounding = 3)

Arguments
- \(X \) is a matrix of encounter histories with \(K \) occasions
- \(freq \) is a vector of the number of individuals with the corresponding encounter history
- \(verbose \) controls the level of the details in the outputs; default is TRUE for all details
- \(rounding \) is the level of rounding for outputs; default is 3
Value

This function returns a list with first component the overall test and second component a data.frame with 5 columns for components i (2:K-3) (in rows) of test2.cli following Pradel 1993 (in Lebreton and North, Birkhauser Verlag): component, degree of freedom, statistic of the test, p-value, test performed.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c('Male','Female')))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

split the dataset in males/females
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == 'Male')
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

for males
X = dip.mal.hist
freq = dip.mal.freq
res.males = test2cl(X,freq)
res.males

Description

This function performs Test2.CT

Usage

test2ct(X, freq, verbose = TRUE, rounding = 3)
Arguments

- **X** is a matrix of encounter histories with K occasions
- **freq** is a vector of the number of individuals with the corresponding encounter history
- **verbose** controls the level of the details in the outputs; default is TRUE for all details
- **rounding** is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with 5 columns for components i (2:K-2) (in rows) of test2.Cti: component, degree of freedom, statistic of the test, p-value, signed test, test performed.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

```r
# read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c("Male","Female")))

# Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

# split the dataset in males/females
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == 'Male')
dip.mal.hist = dip.hist[mask]
dip.mal.freq = dip.freq[mask]

# for females
X = dip.fem.hist
freq = dip.fem.freq
res.females = test2ct(X,freq)
res.females
```

Description

This function performs Test3G.SM
Usage

\texttt{test3Gsm(X, freq, verbose = TRUE, rounding = 3)}

Arguments

- \texttt{X} is a matrix of encounter histories with \texttt{K} occasions
- \texttt{freq} is a vector of the number of individuals with the corresponding encounter history
- \texttt{verbose} controls the level of the details in the outputs; default is \texttt{TRUE} for all details
- \texttt{rounding} is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with occasion, site, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez \texttt{<olivier.gimenez@cefe.cnrs.fr>}, Roger Pradel, Rémi Choquet

Examples

\begin{verbatim}
Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

perform Test.3.GSm
test3Gsm(geese.hist, geese.freq)
\end{verbatim}
Arguments

- **X**: a matrix of encounter histories with K occasions
- **freq**: a vector of the number of individuals with the corresponding encounter history
- **verbose**: controls the level of the details in the outputs; default is TRUE for all details
- **rounding**: is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with occasion, site, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Rémi Choquet, Roger Pradel

Examples

```r
# Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

# Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

# perform Test3.GSR
test3Gsr(geese.hist, geese.freq)
```

Description

This function performs Test3.G.WBWA

Usage

test3Gwbwa(X, freq, verbose = TRUE, rounding = 3)

Arguments

- **X**: a matrix of encounter histories with K occasions
- **freq**: a vector of the number of individuals with the corresponding encounter history
- **verbose**: controls the level of the details in the outputs; default is TRUE for all details
- **rounding**: is the level of rounding for outputs; default is 3
Value

This function returns a list with first component the overall test and second component a data.frame with occasion, site, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read_inp(geese)

Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

perform Test.3GWBWA
test3Gwbwa(geese.hist, geese.freq)

test3sm Test3.SM

Description

This function performs Test3.SM

Usage

test3sm(x, freq, verbose = TRUE, rounding = 3)

Arguments

x is a matrix of encounter histories with K occasions
freq is a vector of the number of individuals with the corresponding encounter history
verbose controls the level of the details in the outputs; default is TRUE for all details
rounding is the level of rounding for outputs; default is 3

Value

This function returns a list with first component the overall test and second component a data.frame with 5 columns for components i (2:K-1) (in rows) of test3.smi: component, degree of freedom, statistic of the test, p-value, test performed.
Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

read in the classical dipper dataset
dipper = system.file(“extdata”, “ed.inp”, package = “R2ucare”)
dipper = read.inp(dipper, group = data.frame(sex = c(“Male”, “Female”)))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

split the dataset in males/females
mask = (dip.group == “Female”)
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == “Male”)
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

for females
res.females = test3sm(dip.fem.hist, dip.fem.freq)
res.females

test3sr

Test3.SR

Description
This function performs Test3.SR

Usage

```
test3sr(X, freq, verbose = TRUE, rounding = 3)
```

Arguments

- **X** is a matrix of encounter histories with K occasions
- **freq** is a vector of the number of individuals with the corresponding encounter history
- **verbose** controls the level of the details in the outputs; default is TRUE for all details
- **rounding** is the level of rounding for outputs; default is 3
Value

This function returns a list with first component the overall test and second component a data.frame with 4 columns for components i (2:K-1) (in rows) of test3.sri: component, statistic of the test, p-value, signed test, test performed.

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Jean-Dominique Lebreton, Rémi Choquet, Roger Pradel

Examples

read in the classical dipper dataset
dipper = system.file("extdata", "ed.inp", package = "R2ucare")
dipper = read_inp(dipper, group.df=data.frame(sex=c('Male', 'Female')))

Get encounter histories, counts and groups:
dip.hist = dipper$encounter_histories
dip.freq = dipper$sample_size
dip.group = dipper$groups

split the dataset in males/females
mask = (dip.group == 'Female')
dip.fem.hist = dip.hist[mask,]
dip.fem.freq = dip.freq[mask]
mask = (dip.group == 'Male')
dip.mal.hist = dip.hist[mask,]
dip.mal.freq = dip.freq[mask]

Test3SR for males
res.males = test3sr(dip.mal.hist, dip.mal.freq)
res.males

Description

This function performs TestM.ITEC

Usage

testMitec(X, freq, verbose = TRUE, rounding = 3)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>is a matrix of encounter histories with K occasions</td>
</tr>
<tr>
<td>freq</td>
<td>is a vector of the number of individuals with the corresponding encounter history</td>
</tr>
<tr>
<td>verbose</td>
<td>controls the level of the details in the outputs; default is TRUE for all details</td>
</tr>
<tr>
<td>rounding</td>
<td>is the level of rounding for outputs; default is 3</td>
</tr>
</tbody>
</table>
testMltec

Value
This function returns a list with first component the overall test and second component a data.frame with occasion, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).

Author(s)
Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Rémi Choquet, Roger Pradel

Examples
Not run:
Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read.inp(geese)

Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

perform TestM.LTEC
testMltec(geese.hist, geese.freq)

End(Not run)

testMltec

TestM.LTEC

Description
This function performs TestM.LTEC

Usage
testMltec(X, freq, verbose = TRUE, rounding = 3)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>is a matrix of encounter histories with K occasions</td>
</tr>
<tr>
<td>freq</td>
<td>is a vector of the number of individuals with the corresponding encounter history</td>
</tr>
<tr>
<td>verbose</td>
<td>controls the level of the details in the outputs; default is TRUE for all details</td>
</tr>
<tr>
<td>rounding</td>
<td>is the level of rounding for outputs; default is 3</td>
</tr>
</tbody>
</table>

Value
This function returns a list with first component the overall test and second component a data.frame with occasion, the value of the test statistic, degree of freedom, p-value and test performed (chi-square, Fisher or none).
Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
## Not run:
# Read in Geese dataset:
geese = system.file("extdata", "geese.inp", package = "R2ucare")
geese = read.inp(geese)

# Get encounter histories and number of individuals with corresponding histories
geese.hist = geese$encounter_histories
geese.freq = geese$sample_size

# perform TestM.LTEC
testMltec(geese.hist, geese.freq)

## End(Not run)
```

```r
ungroup_data
```

ungroup_data

Ungroup encounter capture-recapture data in individual histories

Description

This function splits encounter histories in as many individual histories as required.

Usage

```r
ungroup_data(X, effX)
```

Arguments

- `X` : matrix of encounter capture-recapture histories
- `effX` : vector with numbers of individuals with that particular encounter history

Value

matrix with ungrouped capture-recapture histories and counts in the last column (should be 1s)

Author(s)

Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>, Roger Pradel, Rémi Choquet

Examples

```r
# Generate fake capture-recapture dataset
X = matrix(round(runif(9)), nrow=3)
freq=c(4,3,8)
cbind(X,freq)
ungroup_data(X,freq)
```
Index

*Topic package
 coef_mixtures, 2
deviance_mixture, 3
expval_table, 4
gof_test, 4
group_data, 5
group_data_gen, 6
ind_test_22, 6
ind_test_rc, 7
inv_logit_gen, 8
marray, 8
multimarray, 9
overall_CJS, 10
overall_JMV, 11
pool2K, 12
pooling_ct, 13
pooling_mixtures, 14
read_heading, 14
read_inpt, 15
reconstitution, 16
repmat, 17
test2cl, 17
test2ct, 18
test3Gsm, 19
test3Gsr, 20
test3Gwbla, 21
test3sm, 22
test3sr, 23
testMitec, 24
testMitec, 25
ungroup_data, 26

coef_mixtures, 2
deviance_mixture, 3
expval_table, 4
gof_test, 4
group_data, 5

Overall CJS, 10
Overall JMV, 11
Pool2K, 12
Pooling_CT, 13
Pooling_Mixtures, 14
Read_Headed, 14
Read_Inp, 15
Reconstitution, 16
Repmat, 17
Test2cl, 17
Test2ct, 18
Test3Gsm, 19
Test3Gsr, 20
Test3Gwbla, 21
Test3sm, 22
Test3sr, 23
TestMitec, 24
TestMitec, 25
Ungroup_Data, 26