Overview

The R package R6causal implements an R6 class called SCM. The class aims to simplify working with structural causal models. The missing data mechanism can be defined as a part of the structural model.

The class contains methods for

- defining a structural causal model via functions, text or conditional probability tables
- printing basic information on the model
- plotting the graph for the model using packages igraph or qgraph
- simulating data from the model
- applying an intervention
- checking the identifiability of a query using the R packages causaleffect and dosearch
- defining the missing data mechanism
- simulating incomplete data from the model according to the specified missing data mechanism
- checking the identifiability in a missing data problem using the R package dosearch

In addition, there are functions for

- running experiments
- counterfactual inference using simulation

Setup

```r
library(R6causal)
library(data.table)
library(stats)
```

Defining the model

Structural causal model (SCM) for a backdoor situation can be defined as follows

```r
backdoor <- SCM$new("backdoor",
    uflist = list(        uz = function(n) {return(runif(n))},        ux = function(n) {return(runif(n))},        uy = function(n) {return(runif(n))}
    ),
    vflist = list(        z = function(uz) {            return(as.numeric(uz < 0.4))},        x = function(ux, z) {            return(as.numeric(ux < 0.2 + 0.5*z))},    ))
```
\[y = \text{function}(uy, z, x) \{
\quad \text{return(\text{as.numeric}(uy < 0.1 + 0.4z + 0.4x))}\}
\]

A shortcut notation for this is

\[
\text{backdoor_text} <- \text{SCM}\$\text{new}("\text{backdoor}, \\
\text{ulist} = \text{list(} \\
\quad \text{uz} = "n : \text{runif}(n)", \\
\quad \text{ux} = "n : \text{runif}(n)", \\
\quad \text{uy} = "n : \text{runif}(n)" \\
\}), \\
\text{vlist} = \text{list(} \\
\quad z = "uz : \text{as.numeric}(uz < 0.4)"), \\
\quad x = "ux, z : \text{as.numeric}(ux < 0.2 + 0.5z)"), \\
\quad y = "uy, z, x : \text{as.numeric}(uy < 0.1 + 0.4z + 0.4x)"
\)
\]

Alternatively the functions of SCM can be specified via conditional probability tables

\[
\text{backdoor_condprob} <- \text{SCM}\$\text{new}("\text{backdoor}, \\
\text{uflist} = \text{list(} \\
\quad \text{uz} = \text{function}(n) \{ \text{return(\text{runif}(n))}\}, \\
\quad \text{ux} = \text{function}(n) \{ \text{return(\text{runif}(n))}\}, \\
\quad \text{uy} = \text{function}(n) \{ \text{return(\text{runif}(n))}\} \\
\}), \\
\text{vlist} = \text{list(} \\
\quad z = \text{function}(uz) \{
\quad \text{return(\text{generate_condprob(ycondx = data.table(z = c(0,1),} \\
\quad \text{prob = c(0.6,0.4)),} \\
\quad \text{x = data.table(uz = uz),} \\
\quad \text{Umerge_expr = "uz"))})}
\}), \\
\quad x = \text{function}(ux, z) \{
\quad \text{return(\text{generate_condprob(ycondx = data.table(x = c(0,1,0,1),} \\
\quad \text{z = c(0,0,1,1),} \\
\quad \text{prob = c(0.8,0.2,0.3,0.7)),} \\
\quad \text{x = data.table(z = z, ux = ux),} \\
\quad \text{Umerge_expr = "ux"))})}
\}), \\
\quad y = \text{function}(uy, z, x) \{
\quad \text{return(\text{generate_condprob(ycondx = data.table(y = rep(c(0,1), 4),} \\
\quad \text{z = c(0,0,1,1,0,0,1,1,1),} \\
\quad \text{x = c(0,0,0,0,1,1,1,1,1),} \\
\quad \text{prob = c(0.9,0.1,0.5,0.5,} \\
\quad \text{0.5,0.5,0.1,0.9))},} \\
\quad \text{x = data.table(z = z, x = x, uy = uy),} \\
\quad \text{Umerge_expr = "uy"))})
\}
\)
\]

It is possible to mix the styles and define some elements of a function list as functions, some as text and some as conditional probability tables.
Printing the model

The print method presents the basic information on the model:

```r
backdoor
#> Name of the model: backdoor

#> Graph:
#> z -> x
#> z -> y
#> x -> y

#> Functions of background (exogenous) variables:
#> $uz
#> function(n) {return(runif(n))}
#> $ux
#> function(n) {return(runif(n))}
#> $uy
#> function(n) {return(runif(n))}

#> Functions of endogenous variables:
#> $z
#> function(uz) {
#> return(as.numeric(uz < 0.4))
#>
#> $x
#> function(ux, z) {
#> return(as.numeric(ux < 0.2 + 0.5*z))
#>
#> $y
#> function(uy, z, x) {
#> return(as.numeric(uy < 0.1 + 0.4*z + 0.4*x))
#>
#> Topological order of endogenous variables:
#> [1] "z" "x" "y"

#> No missing data mechanism
```
Plotting the graph

The plotting method of the package `igraph` is used by default. If `qgraph` is available, its plotting method can be used as well. The argument `subset` controls which variables are plotted. Plotting parameters are passed to the plotting method.

```r
backdoor$plot(vertex.size = 25) # with package 'igraph'
```

```r
backdoor$plot(subset = "v") # only observed variables
```
if (requireNamespace("qgraph", quietly = TRUE)) backdoor$plot(method = "qgraph")
Simulating data

Calling method `simulate()` creates or updates data table `simdata`.

```r
backdoor$simulate(10)
backdoor$simdata
#>
#> 1: 0.08825727 0.2134524 0.144842838 1 1 1
#> 2: 0.39153788 0.8432795 0.140244378 1 0 1
#> 3: 0.67716922 0.5522505 0.798552506 0 0 0
#> 4: 0.24316595 0.5277762 0.774681081 1 1 1
#> 5: 0.16763421 0.4238919 0.844601495 1 1 1
#> 6: 0.88362075 0.2350016 0.009793869 0 0 1
#> 7: 0.92164964 0.2178123 0.30357107 0 0 0
#> 8: 0.78831191 0.2436196 0.521628107 0 0 0
#> 9: 0.67479687 0.8198795 0.563194058 0 0 0
#> 10: 0.53531451 0.4059065 0.853722318 0 0 0
backdoor$simulate(8)
backdoor$simdata
#>
#> 1: 0.07952332 0.870030816 0.009026842 1 0 1
#> 2: 0.97010495 0.146590343 0.342205652 0 1 1
#> 3: 0.67273276 0.499134110 0.62459302 0 0 0
#> 4: 0.81241975 0.007645814 0.043582779 0 1 1
```
Applying an intervention

In an intervention, the structural equation of the target variable is changed.

```r
backdoor_x1 <- backdoor$clone()  # making a copy
backdoor_x1$intervene("x",1)   # applying the intervention
backdoor_x1$plot(method = "qgraph")  # to see that arrows incoming to x are cut
```

```
uz
ux
uy
z
x y
```

```
backdoor_x1$simulate(10)  # simulating from the intervened model
backdoor_x1$simdata
```

```r
#>  1: 0.01355571 0.07589350 0.16523142 1 1 1
#>  2: 0.46773195 0.79690430 0.79729327 0 1 0
#>  3: 0.88419213 0.04956716 0.05327442 0 1 1
#>  4: 0.17917345 0.57871292 0.62271447 1 1 1
#>  5: 0.76973670 0.87320844 0.32136078 0 1 1
#>  6: 0.27850679 0.29007694 0.40752861 1 1 1
#>  7: 0.74907192 0.36657186 0.49661998 0 1 1
#>  8: 0.42173200 0.94241092 0.83722295 0 1 0
```
An intervention can redefine a structural equation

```r
callback_yz <- backdoor$clone()  # making a copy
callback_yz$intervene("y", function(uy, z) {return(as.numeric(uy < 0.1 + 0.8*z ))})  # making y a function of z only
callback_yz$plot(method = "qgraph")  # to see that arrow x -> y is cut
```

Running an experiment (set of interventions)

The function `run_experiment` applies a set of interventions, simulates data and collects the results.

```r
backdoor_experiment <- run_experiment(backdoor,
  intervene = list(x = c(0,1)),
  response = "y",
  n = 10000)

str(backdoor_experiment)
#> List of 2
#> $ interventions:Classes 'data.table' and 'data.frame': 2 obs. of 1 variable:
#> ..$ x: num [1:2] 0 1
#> ..- attr(*, "sorted")= chr "x"
#> $ response_list:List of 1
```

```
#> 9: 0.84223875 0.80206929 0.99891863 0 1 0
#> 10: 0.37151395 0.49432979 0.10927442 1 1 1
```

```
An intervention can redefine a structural equation

```r
callback_yz <- backdoor$clone() # making a copy
callback_yz$intervene("y", function(uy, z) {return(as.numeric(uy < 0.1 + 0.8*z))}) # making y a function of z only
callback_yz$plot(method = "qgraph") # to see that arrow x -> y is cut
```

Running an experiment (set of interventions)

The function `run_experiment` applies a set of interventions, simulates data and collects the results.

```r
backdoor_experiment <- run_experiment(backdoor,
 intervene = list(x = c(0,1)),
 response = "y",
 n = 10000)

str(backdoor_experiment)
#> List of 2
#> $ interventions:Classes 'data.table' and 'data.frame': 2 obs. of 1 variable:
#> ..$ x: num [1:2] 0 1
#> ..- attr(*, "sorted")= chr "x"
#> $ response_list:List of 1
```
Applying the ID algorithm and Do-search

There are direct plugins to R packages causaleffect and dosearch that can be used to solve identifiability problems.

```r
backdoor$causal.effect(y = "y", x = "x")
#> [1] "\sum_{z}P(y|z,x)P(z)"
backdoor$dosearch(data = "p(x,y,z)", query = "p(y|do(x))")
#> \sum_{z}\left(p(z)p(y|x,z)\right)
```

Counterfactual inference

Let us assume that intervention do(X=0) was applied and the response Y = 0 was recorded. What is the probability that in this situation the intervention do(X=1) would have led to the response Y = 1? We estimate this probability by means of simulation.

```r
cfdata <- counterfactual(backdoor, situation = list(do = list(target = "x", ifunction = 0),
 condition = data.table(x = 0, y = 0)),
 target = "x", ifunction = 1, n = 100000)
mean(cfdata$y)
#> [1] 0.54219
```

The result differs from P(Y = 1 | do(X = 1))

```r
backdoor_x1$simulate(100000)
mean(backdoor_x1$simdata$y)
#> [1] 0.659
```

A model with a missing data mechanism

The missing data mechanism is defined in similar manner as the other variables.

```r
backdoor_md <- SCM$new("backdoor_md",
 uflist = list(
 uz = "n : runif(n)",
 ux = "n : runif(n)",
 uy = "n : runif(n)",
 urz = "n : runif(n)",
 urx = "n : runif(n)",
 ury = "n : runif(n)"
),
 vflist = list(
 z = "uz : as.numeric(uz < 0.4)",
 x = "ux, z : as.numeric(ux < 0.2 + 0.5*z)",
 y = "uy, z, x : as.numeric(uy < 0.1 + 0.4*z + 0.4*x)"
))
```
Plotting the graph for a model with missing data mechanism

```r
backdoor_md$plot(vertex.size = 25, edge.arrow.size=0.5) # with package 'igraph'
```

```
backdoor_md$plot(subset = "v") # only observed variables a
```
if (!requireNamespace("qgraph", quietly = TRUE)) backdoor_md$plot(method = "qgraph")
# alternative look with package 'qgraph'

Simulating incomplete data

By default both complete data and incomplete data are simulated. The incomplete dataset is named as $simdata_md.

backdoor_md$simulate(100)
summary(backdoor_md$simdata)

```r
#> uz ux uy urz
#> Min. :0.01017 Min. :0.00731 Min. :0.03904 Min. :0.005941
#> 1st Qu.:0.24106 1st Qu.:0.31420 1st Qu.:0.21873 1st Qu.:0.234579
#> Median :0.49156 Median :0.47677 Median :0.45914 Median :0.518430
#> Mean :0.50415 Mean :0.51465 Mean :0.48064 Mean :0.488372
#> 3rd Qu.:0.75188 3rd Qu.:0.75245 3rd Qu.:0.74231 3rd Qu.:0.700892
#> Max. :0.99997 Max. :0.99723 Max. :0.99983 Max. :0.983133
#> urx ury z x
#> Min. :0.002825 Min. :0.0184 Min. :0.00 Min. :0.00
#> 1st Qu.:0.212025 1st Qu.:0.2587 1st Qu.:0.00 1st Qu.:0.00
#> Median :0.494262 Median :0.4777 Median :0.00 Median :0.00
#> Mean :0.509594 Mean :0.5029 Mean :0.35 Mean :0.36
#> 3rd Qu.:0.769464 3rd Qu.:0.7837 3rd Qu.:1.00 3rd Qu.:1.00
#> Max. :0.999450 Max. :0.9994 Max. :1.00 Max. :1.00
#> y
#> Min. :0.00
```
By using the argument `fixedvars` one can keep the complete data unchanged and re-simulate the missing data mechanism.

```r
backdoor_md$simulate(100, fixedvars = c("x","y","z","ux","uy","uz"))
summary(backdoor_md$simdata)
```

```r
tz
us
ux uy urz
Min. :0.01017 Min. :0.00731 Min. :0.03904 Min. :0.006097
1st Qu.:0.24106 1st Qu.:0.31420 1st Qu.:0.21873 1st Qu.:0.285620
Median :0.49156 Median :0.47677 Median :0.45914 Median :0.532844
Mean :0.50415 Mean :0.51465 Mean :0.48064 Mean :0.524816
3rd Qu.:0.75188 3rd Qu.:0.75245 3rd Qu.:0.74231 3rd Qu.:0.761368
Max. :0.99997 Max. :0.99723 Max. :0.99983 Max. :0.986495
urx ury z x
Min. :0.02144 Min. :0.001754 Min. :0.00 Min. :0.00
1st Qu.:0.27624 1st Qu.:0.212716 1st Qu.:0.00 1st Qu.:0.00
Median :0.60300 Median :0.459770 Median :0.00 Median :0.00
Mean :0.55069 Mean :0.457759 Mean :0.35 Mean :0.36
3rd Qu.:0.81051 3rd Qu.:0.687357 3rd Qu.:1.00 3rd Qu.:1.00
Max. :0.98697 Max. :0.985962 Max. :1.00 Max. :1.00
y
Min. :0.00
1st Qu.:0.00
Median :0.00
Mean :0.33
3rd Qu.:1.00
Max. :1.00
```

```r
summary(backdoor_md$simdata_md)
```
Applying Do-search for a missing data problem

```r
backdoor_md$dosearch(data = "p(x*,y*,z*,r_x,r_y,r_z)", query = "p(y|do(x))")
```

It is automatically recognized that the problem is a missing data problem when `rflist` \(!=\) `NULL`. 