Package ‘RAC’

October 12, 2022

Version 1.5
Date 2018-04-24
Title R Package for Aqua Culture
Maintainer Baldan D. <damiano.baldan91@gmail.com>
Depends R (>= 3.1.0), matrixStats, rstudioapi, plotrix
Suggests MASS, knitr, rmarkdown
Imports maps, maptools, ncdf4, rgdal, rgeos, sp, stats, utils, raster
Description Solves the individual bioenergetic balance for different aquaculture sea fish (Sea Bream and Sea Bass; Brigolin et al., 2014 <doi:10.3354/aei00093>) and shellfish (Mussel and Clam; Brigolin et al., 2009 <doi:10.1016/j.ecss.2009.01.029>; Solidoro et al., 2000 <doi:10.3354/meps199137>). Allows for spatialized model runs and population simulations.
License MIT + file LICENSE
RoxygenNote 5.0.1
VignetteBuilder knitr
NeedsCompilation no
Author Baldan D. [aut, cre],
Palazzo D. [ctb],
Porporato E.M.D [ctb],
Brigolin D. [ctb]
Repository CRAN
Date/Publication 2018-05-02 07:38:09 UTC

R topics documented:

 Bass_ind_dataloader .. 4
 Bass_ind_equations .. 4
 Bass_ind_main ... 5
 Bass_ind_post ... 5
 Bass_ind_pre ... 6
 Bass_ind_RKsolver ... 6
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass_indSkeleton</td>
</tr>
<tr>
<td>Bass_popDataloader</td>
</tr>
<tr>
<td>Bass_popEquations</td>
</tr>
<tr>
<td>Bass_popLoop</td>
</tr>
<tr>
<td>Bass_popMain</td>
</tr>
<tr>
<td>Bass_popPost</td>
</tr>
<tr>
<td>Bass_popPre</td>
</tr>
<tr>
<td>Bass_popRKSolver</td>
</tr>
<tr>
<td>Bass_popSkeleton</td>
</tr>
<tr>
<td>Bass_spatialDataloader</td>
</tr>
<tr>
<td>Bass_spatialLoop</td>
</tr>
<tr>
<td>Bass_spatialMain</td>
</tr>
<tr>
<td>Bass_spatialPost</td>
</tr>
<tr>
<td>Bass_spatialPre</td>
</tr>
<tr>
<td>Bass_spatialPreInt</td>
</tr>
<tr>
<td>Bass_spatialRKSolver</td>
</tr>
<tr>
<td>Bream_indDataloader</td>
</tr>
<tr>
<td>Bream_indEquations</td>
</tr>
<tr>
<td>Bream_indMain</td>
</tr>
<tr>
<td>Bream_indPost</td>
</tr>
<tr>
<td>Bream_indPre</td>
</tr>
<tr>
<td>Bream_indRKSolver</td>
</tr>
<tr>
<td>Bream_indSkeleton</td>
</tr>
<tr>
<td>Bream_popDataloader</td>
</tr>
<tr>
<td>Bream_popEquations</td>
</tr>
<tr>
<td>Bream_popLoop</td>
</tr>
<tr>
<td>Bream_popMain</td>
</tr>
<tr>
<td>Bream_popPost</td>
</tr>
<tr>
<td>Bream_popPre</td>
</tr>
<tr>
<td>Bream_popRKSolver</td>
</tr>
<tr>
<td>Bream_popSkeleton</td>
</tr>
<tr>
<td>Bream_spatialDataloader</td>
</tr>
<tr>
<td>Bream_spatialLoop</td>
</tr>
<tr>
<td>Bream_spatialMain</td>
</tr>
<tr>
<td>Bream_spatialPost</td>
</tr>
<tr>
<td>Bream_spatialPre</td>
</tr>
<tr>
<td>Bream_spatialPreInt</td>
</tr>
<tr>
<td>Bream_spatialRKSolver</td>
</tr>
<tr>
<td>ClamF_indDataloader</td>
</tr>
<tr>
<td>ClamF_indEquations</td>
</tr>
<tr>
<td>ClamF_indMain</td>
</tr>
<tr>
<td>ClamF_indPost</td>
</tr>
<tr>
<td>ClamF_indPre</td>
</tr>
<tr>
<td>ClamF_indRKSolver</td>
</tr>
<tr>
<td>ClamF_indSkeleton</td>
</tr>
<tr>
<td>ClamF_popDataloader</td>
</tr>
<tr>
<td>ClamF_pop_equations</td>
</tr>
<tr>
<td>ClamF_pop_loop</td>
</tr>
<tr>
<td>ClamF_pop_main</td>
</tr>
<tr>
<td>ClamF_pop_post</td>
</tr>
<tr>
<td>ClamF_pop_pre</td>
</tr>
<tr>
<td>ClamF_pop_RKsolver</td>
</tr>
<tr>
<td>ClamF_pop_skeleton</td>
</tr>
<tr>
<td>Clam_ind_dataloader</td>
</tr>
<tr>
<td>Clam_ind_equations</td>
</tr>
<tr>
<td>Clam_ind_main</td>
</tr>
<tr>
<td>Clam_ind_post</td>
</tr>
<tr>
<td>Clam_ind_pre</td>
</tr>
<tr>
<td>clam_ind_RKsolver</td>
</tr>
<tr>
<td>Clam_ind_skeleton</td>
</tr>
<tr>
<td>Clam_pop_dataloader</td>
</tr>
<tr>
<td>Clam_pop_equations</td>
</tr>
<tr>
<td>Clam_pop_loop</td>
</tr>
<tr>
<td>Clam_pop_main</td>
</tr>
<tr>
<td>Clam_pop_post</td>
</tr>
<tr>
<td>Clam_pop_pre</td>
</tr>
<tr>
<td>Clam_pop_RKsolver</td>
</tr>
<tr>
<td>Clam_pop_skeleton</td>
</tr>
<tr>
<td>Mussel_ind_dataloader</td>
</tr>
<tr>
<td>Mussel_ind_equations</td>
</tr>
<tr>
<td>Mussel_ind_main</td>
</tr>
<tr>
<td>Mussel_ind_post</td>
</tr>
<tr>
<td>Mussel_ind_pre</td>
</tr>
<tr>
<td>Mussel_ind_RKsolver</td>
</tr>
<tr>
<td>Mussel_ind_skeleton</td>
</tr>
<tr>
<td>Mussel_pop_dataloader</td>
</tr>
<tr>
<td>Mussel_pop_equations</td>
</tr>
<tr>
<td>Mussel_pop_loop</td>
</tr>
<tr>
<td>Mussel_pop_main</td>
</tr>
<tr>
<td>Mussel_pop_post</td>
</tr>
<tr>
<td>Mussel_pop_pre</td>
</tr>
<tr>
<td>Mussel_pop_RKsolver</td>
</tr>
<tr>
<td>Mussel_pop_skeleton</td>
</tr>
<tr>
<td>Mussel_spatial_dataloader</td>
</tr>
<tr>
<td>Mussel_spatial_loop</td>
</tr>
<tr>
<td>Mussel_spatial_main</td>
</tr>
<tr>
<td>Mussel_spatial_post</td>
</tr>
<tr>
<td>Mussel_spatial_pre</td>
</tr>
<tr>
<td>Mussel_spatial_pre_int</td>
</tr>
<tr>
<td>Mussel_spatial_RKsolver</td>
</tr>
<tr>
<td>Mussel_spatial_skeleton</td>
</tr>
<tr>
<td>Pop_fun</td>
</tr>
</tbody>
</table>

Index 58
Bass_ind_dataloader

Function that loads forcings data for Seabass individual bioenergetic model and performs the interpolation

Description

Function that loads forcings data for Seabass individual bioenergetic model and performs the interpolation.

Usage

`Bass_ind_dataloader(userpath)`

Arguments

- `userpath`: the path where folder containing model inputs and outputs is located.

Value

A list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d].

Bass_ind_equations

Seabass bioenergetic individual model differential equations

Description

Seabass bioenergetic individual model differential equations.

Usage

`Bass_ind_equations(Param, Temp, G, Food, weight)`

Arguments

- `Param`: vector containing all metabolic parameters.
- `Temp`: water temperature forcing at time t.
- `G`: food entering the cage at time t.
- `Food`: food characterization (Proteins, Lipids, Carbohydrates).
- `weight`: individual weight at time t.

Value

Model output at time t.
Bass_ind_main

Bass ind_main

Seabass bioenergetic individual model

Description

Solves the bioenergetic balance for Seabass

Usage

`Bass_ind_main(userpath, forcings)`

Arguments

- **userpath**
 the path where forcing are located
- **forcings**
 a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value

A list containing model outputs: weight, excreted quantities and quantities to waste, actual and potential ingestion, temperature limitation functions and metabolic rates

Bass_ind_post

Bass ind_post

Seabass bioenergetic individual model postprocessor

Description

Seabass bioenergetic individual model postprocessor

Usage

`Bass_ind_post(userpath, output, times, Dates, CS)`

Arguments

- **userpath**
 the path where the working folder is located
- **output**
 output list containing the output of the RK solver
- **times**
 the vector containing informations on integration extremes
- **Dates**
 the vector containing the date
- **CS**
 the commercial size of Seabass

Value

A list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates
Bass_ind_pre
Seabass bioenergetic individual model preprocessor

Description
Seabass bioenergetic individual model preprocessor

Usage
```python
Bass_ind_pre(userpath, forcings)
```

Arguments
- **userpath** the path where folder containing model inputs and outputs is located
- **forcings** a list containing model forcings

Value
a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Bass_ind_RKsolver
Solves the Seabass bioenergetic balance with a 4th order Runge Kutta method

Description
Solves the Seabass bioenergetic balance with a 4th order Runge Kutta method

Usage
```python
Bass_ind_RKsolver(Param, Temperature, G, Food, IC, times)
```

Arguments
- **Param** vector containing all metabolic parameters
- **Temperature** water temperature forcing time series
- **G** food entering the cage time series
- **Food** food characterization (Proteins, Lipids, Carbohydrates)
- **IC** initial conditions
- **times** vector containing integration extremes and integration timestep

Value
a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates
Bass_ind_skeleton

Creates the folders structure for Seabass individual bioenergetic model

Description

Creates the folders structure for Seabass individual bioenergetic model

Usage

Bass_ind_skeleton(userpath)

Arguments

userpath the path where forcing are located

Bass_pop_dataloader

Function that loads forcings data for Seabass population model and performs the interpolation

Description

Function that loads forcings data for Seabass population model and performs the interpolation

Usage

Bass_pop_dataloader(userpath)

Arguments

userpath the path where folder containing model inputs and outputs is located

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]
Bass_pop_equations

Description

Seabass bioenergetic population model differential equations

Usage

Bass_pop_equations(Param, N, Temp, G, Food, weight)

Arguments

- **Param**
 vector containing all metabolic parameters
- **N**
 the number of individuals at time t
- **Temp**
 water temperature forcing at time t
- **G**
 food entering the cage at time t
- **Food**
 food characterization (Proteins, Lipids, Carbohydrates)
- **weight**
 individual weight at time t

Value

model output at time t

Bass_pop_loop

Description

Function that runs the Monte Carlo simulation for the Seabass population model

Usage

Bass_pop_loop(Param, Tint, Gint, Food, IC, times, N, userpath)

Arguments

- **Param**
 a vector containing model parameters
- **Tint**
 the interpolated water temperature time series
- **Gint**
 the interpolated feeding rate time series
- **Food**
 the food characterization
- **IC**
 initial condition
- **times**
 integration extremes and integration timestep
- **N**
 time series with number of individuals
- **userpath**
 the path where the working folder is located
Bass_pop_main

Value

A list with RK solver outputs

Bass_pop_main
Seabass bioenergetic population model

Description

Seabass bioenergetic population model

Usage

`Bass_pop_main(userpath, forcings)`

Arguments

- **userpath**: the path where the working folder is located
- **forcings**: a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value

A list containing model outputs: weight, excreted quantities and quantities to waste, actual and potential ingestion, temperature limitation functions and metabolic rates

Bass_pop_post
Postprocess the Seabass population bioenergetic model results

Description

Postprocess the Seabass population bioenergetic model results

Usage

`Bass_pop_post(userpath, output, times, Dates, N, CS)`

Arguments

- **userpath**: the path where the working folder is located
- **output**: list containing the output of the RK solver
- **times**: the vector containing informations on integration extremes
- **Dates**: the vector containing the date
- **N**: the number of individuals time series
- **CS**: the commercial size of Seabass
Value
output: a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bass_pop_pre Seabass bioenergetic population model preprocessor

Description
Seabass bioenergetic population model preprocessor

Usage
Bass_pop_pre(userpath, forcings)

Arguments
userpath the path where folder containing model inputs and outputs is located
forcings a list containing model forcings

Value
a list containing the time series in the odd positions and related forcings in the even positions.
Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Bass_pop_RKsolver Solves the Seabass population bioenergetic balance with a 4th order Runge Kutta method

Description
Solves the Seabass population bioenergetic balance with a 4th order Runge Kutta method

Usage
Bass_pop_RKsolver(Param, Temperature, G, Food, IC, times, N)

Arguments
Param vector containing all metabolic parameters
Temperature water temperature forcing time series
G food entering the cage at time series
Food food characterization (Proteins, Lipids, Carbohydrates)
IC initial condition on weight
times integration times
N number of individuals time series
Value

a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bass_pop_skeleton

Creates the folders structure for Seabass population model

Description

Creates the folders structure for Seabass population model

Usage

`Bass_pop_skeleton(userpath)`

Arguments

- `userpath` the path where forcing are located

Bass_spatial_dataloader

Function that loads forcings data for Bass spatialized model and performs the interpolation

Description

Function that loads forcings data for Bass spatialized model and performs the interpolation

Usage

`Bass_spatial_dataloader(userpath)`

Arguments

- `userpath` the path where folder containing model inputs and outputs is located

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]
Bass_spatial_loop
"Bass bioenergetic spatialized model - spatialization loop"

Description

Solves the bioenergetic balance for Bass

Usage

Bass_spatial_loop(userpath, forcings)

Arguments

- **userpath**: the path where the working folder is located
- **forcings**: a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value

a list containing the outputs that main script saves to .nc, .csv and .asc files

Bass_spatial_main
"Bass bioenergetic spatialized model - spatialization loop"

Description

Solves the bioenergetic balance for Bass

Usage

Bass_spatial_main(userpath, forcings)

Arguments

- **userpath**: the path where the working folder is located
- **forcings**: list containing the time series in the odd positions and related forcings in the even positions. Forcings inputted are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value

saves .nc, .csv and .asc outputs in the 'Outputs' folder
Bass_spatial_post

Postprocess the Mussel spatialized model results

Description

Postprocess the Mussel spatialized model results

Usage

Bass_spatial_post(userpath, output, times, Dates, CS)

Arguments

userpath the path where the working folder is located
output output list containing the output of the RK solver
times the vector containing informations on integration extremes
Dates the vector containing the date
CS the commercial size of Bass

Value

a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bass_spatial_pre

Bass bioenergetic spatialized model preprocessor

Description

Bass bioenergetic spatialized model preprocessor

Usage

Bass_spatial_pre(userpath, forcings)

Arguments

userpath the path where folder containing model inputs and outputs is located
forcings a list containing forcings used by the model

Value

a list containing the data used by the main script
Bass_spatial_pre_int
Bass bioenergetic spatialized model preprocessor - used inside spatialization loop

Description
Bass bioenergetic spatialized model preprocessor - used inside spatialization loop

Usage
```python
Bass_spatial_pre_int(userpath, forcings)
```

Arguments
- `userpath` the path where folder containing model inputs and outputs is located
- `forcings` a list containing forcings used by the model

Value
a list containing data used by the main script

Bass_spatial_RKsolver
Solves the Seabass bioenergetic balance with a 4th order Runge Kutta method - used in spatialized model

Description
Solves the Seabass bioenergetic balance with a 4th order Runge Kutta method - used in spatialized model

Usage
```python
Bass_spatial_RKsolver(Param, Temperature, G, Food, IC, times)
```

Arguments
- `Param` vector containing all metabolic parameters
- `Temperature` water temperature forcing time series
- `G` food entering the cage time series
- `Food` food characterization (Proteins, Lipids, Carbohydrates)
- `IC` initial conditions
- `times` vector containing integration extremes and integration timestep

Value
a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates
Bass_spatial_skeleton

Creates the folders structure for Bass spatialized model

Description

Creates the folders structure for Bass spatialized model

Usage

```
Bass_spatial_skeleton(userpath)
```

Arguments

- `userpath`: the path where forcing are located

Bream_ind_dataloader

Function that loads forcings data for Seabream individual bioenergetic model and performs the interpolation

Description

Function that loads forcings data for Seabream individual bioenergetic model and performs the interpolation

Usage

```
Bream_ind_dataloader(userpath)
```

Arguments

- `userpath`: the path where folder containing model inputs and outputs is located

Value

A list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]
Bream_ind_equations
Seabream bioenergetic individual model differential equations

Description
Seabream bioenergetic individual model differential equations

Usage
\[\text{Bream_ind_equations}(\text{Param}, \text{Temp}, \text{G}, \text{Food}, \text{weight}) \]

Arguments
- **Param**: vector containing all metabolic parameters
- **Temp**: water temperature forcing at time t
- **G**: food entering the cage at time t
- **Food**: food characterization (Proteins, Lipids, Carbohydrates)
- **weight**: individual weight at time t

Value
model output at time t

Bream_ind_main
Seabream bioenergetic individual model

Description
Seabream bioenergetic individual model

Usage
\[\text{Bream_ind_main}(\text{userpath}, \text{forcings}) \]

Arguments
- **userpath**: the path where the working folder is located
- **forcings**: a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value
A list containing model outputs: weight, excreted quantities and quantities to waste, actual and potential ingestion, temperature limitation functions and metabolic rates
Bream_ind_post

Postprocess the Seabream individual bioenergetic model results

Description

Postprocess the Seabream individual bioenergetic model results

Usage

Bream_ind_post(userpath, output, times, Dates, CS)

Arguments

- **userpath**: the path where the working folder is located
- **output**: output list containing the output of the RK solver
- **times**: the vector containing informations on integration extremes
- **Dates**: the vector containing the date
- **CS**: the commercial size of Seabream

Value

a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bream_ind_pre

Seabream bioenergetic individual model preprocessor

Description

Preprocesses the data for the bioenergetic balance for Sea Bream

Usage

Bream_ind_pre(userpath, forcings)

Arguments

- **userpath**: the path where folder containing model inputs and outputs is located
- **forcings**: a list containing model forcings

Value

a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]
Bream_ind_RKsolver \textit{Solves the Seabream individual bioenergetic balance with a 4th order Runge Kutta method}

\begin{description}
\item[Description] Solves the Seabream individual bioenergetic balance with a 4th order Runge Kutta method
\item[Usage] \texttt{Bream_ind_RKsolver(Param, Temperature, G, Food, IC, times)}
\item[Arguments]
 \begin{itemize}
 \item \texttt{Param} vector containing all metabolic parameters
 \item \texttt{Temperature} water temperature forcing time series
 \item \texttt{G} food entering the cage time series
 \item \texttt{Food} food characterization (Proteins, Lipids, Carbohydrates)
 \item \texttt{IC} vector containing initial conditions on weight
 \item \texttt{times} vector containing integration extremes and timestep
 \end{itemize}
\item[Value] a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates
\end{description}

Bream_ind_skeleton \textit{Creates the folders structure for Seabream individual bioenergetic model}

\begin{description}
\item[Description] Creates the folders structure for Seabream individual bioenergetic model
\item[Usage] \texttt{Bream_ind_skeleton(userpath)}
\item[Arguments]
 \begin{itemize}
 \item \texttt{userpath} the path where forcing are located
 \end{itemize}
\end{description}
Function that loads forcings data for Seabream population model and performs the interpolation

Description
Function that loads forcings data for Seabream population model and performs the interpolation

Usage
Bream_pop_dataloader(userpath)

Arguments
- userpath: the path where folder containing model inputs and outputs is located

Value
a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Seabream bioenergetic population model differential equations

Description
Seabream bioenergetic population model differential equations

Usage
Bream_pop_equations(Param, N, Temp, G, Food, weight)

Arguments
- Param: vector containing all metabolic parameters
- N: the number of individuals at time t
- Temp: water temperature forcing at time t
- G: food entering the cage at time t
- Food: food characterization (Proteins, Lipids, Carbohydrates)
- weight: individual weight at time t

Value
model output at time t
Bream_pop_loop

Function that runs the Monte Carlo simulation for the Seabream population model

Description

Function that runs the Monte Carlo simulation for the Seabream population model

Usage

\[\text{Bream_pop_loop(Param, Tint, Gint, Food, IC, times, N, userpath)} \]

Arguments

- **Param**: a vector containing model parameters
- **Tint**: the interpolated water temperature time series
- **Gint**: the interpolated feeding rate time series
- **Food**: the food characterization
- **IC**: initial condition
- **times**: integration extremes and integration timestep
- **N**: time series with number of individuals
- **userpath**: the path where the working folder is located

Value

a list with RK solver outputs

Bream_pop_main

Seabream bioenergetic population model

Description

Seabream bioenergetic population model

Usage

\[\text{Bream_pop_main(userpath, forcings)} \]

Arguments

- **userpath**: the path where the working folder is located
- **forcings**: a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]
Bream_pop_post

Value
A list containing model outputs: weight, excreted quantities and quantities to waste, actual and potential ingestion, temperature limitation functions and metabolic rates

Bream_pop_post Postprocess the Bream population bioenergetic model results

Description
Postprocess the Bream population bioenergetic model results

Usage
Bream_pop_post(userpath, output, times, Dates, N, CS)

Arguments
- userpath: the path where the working folder is located
- output: output list containing the output of the RK solver
- times: the vector containing informations on integration extremes
- Dates: the vector containing the date
- N: the number of individuals
- CS: the commercial size of Seabream

Value
A list containing the fish weight, proteines, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bream_pop_pre Seabream bioenergetic population model preprocessor

Description
Preprocesses the data for the bioenergetic balance for Sea Bream

Usage
Bream_pop_pre(userpath, forcings)

Arguments
- userpath: the path where folder containing model inputs and outputs is located
- forcings: a list containing model forcings
Bream_pop_skeleton

Value

a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Bream_pop_RKsolver

Solves the Seabream population bioenergetic balance with a 4th order Runge Kutta method

Description

Solves the Seabream population bioenergetic balance with a 4th order Runge Kutta method

Usage

\[\text{Bream_pop_RKsolver}(\text{Param, Temperature, G, Food, IC, times, N})\]

Arguments

- **Param** vector containing all metabolic parameters
- **Temperature** water temperature forcing time series
- **G** food entering the cage time series
- **Food** food characterization (Proteins, Lipids, Carbohydrates)
- **IC** initial condition on weight
- **times** integration times
- **N** number of individuals time series

Value

a list containing the fish weight, proteins, lipids and carbohydrates wasted or produced with excretions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bream_pop_skeleton

Creates the folders structure for Seabream population model

Description

Creates the folders structure for Seabream population model

Usage

\[\text{Bream_pop_skeleton}(\text{userpath})\]

Arguments

- **userpath** the path where forcing are located
Bream_spatial_dataloader

Function that loads forcings data for Bream spatialized model and performs the interpolation

Description
Function that loads forcings data for Bream spatialized model and performs the interpolation

Usage
Bream_spatial_dataloader(userpath)

Arguments
userpath the path where folder containing model inputs and outputs is located

Value
a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Bream_spatial_loop Bream bioenergetic spatialized model - spatialization loop

Description
Solves the bioenergetic balance for Bream

Usage
Bream_spatial_loop(userpath, forcings)

Arguments
userpath the path where the working folder is located
forcings a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value
A list containing model outputs: weight, excreted quantities and quantities to waste, actual and potential ingestion, temperature limitation functions and metabolic rates
Bream_spatial_main
Bream bioenergetic spatialized model - spatialization loop

Description

Solves the bioenergetic balance for Bream

Usage

Bream_spatial_main(userpath, forcings)

Arguments

- **userpath**
 the path where the working folder is located

- **forcings**
 list containing the time series in the odd positions and related forcings in the even positions. Forcings inputted are: Water temperature [Celsius degrees] and feeding rate [g/individual x d]

Value

saves .nc; .csv and .asc outputs in the 'Outputs' folder

Bream_spatial_post
Postprocess the Bream spatialized model results

Description

Postprocess the Bream spatialized model results

Usage

Bream_spatial_post(userpath, output, times, Dates, CS)

Arguments

- **userpath**
 the path where the working folder is located

- **output**
 output list containing the output of the RK solver

- **times**
 the vector containing informations on integration extremes

- **Dates**
 the vector containing the date

- **CS**
 the commercial size of Bream

Value

a list containing the model outputs saved by the main script to .nc; .csv and .asc files
Bream_spatial_pre

Bream bioenergetic spatialized model preprocessor

Description

Bream bioenergetic spatialized model preprocessor

Usage

Bream_spatial_pre(userpath, forcings)

Arguments

- **userpath** the path where folder containing model inputs and outputs is located
- **forcings** a list containing forcings used by the model

Value

a list containing the data used in the main script

Bream_spatial_pre_int

Bream bioenergetic spatialized model preprocessor - used inside spatialization loop

Description

Bream bioenergetic spatialized model preprocessor - used inside spatialization loop

Usage

Bream_spatial_pre_int(userpath, forcings)

Arguments

- **userpath** the path where folder containing model inputs and outputs is located
- **forcings** a list containing forcings used by the model

Value

a list containing the data used by the main script
Bream_spatial_RKsolver

Solves the Seabream bioenergetic balance with a 4th order Runge Kutta method - used in spatialized model

Description
Solves the Seabream bioenergetic balance with a 4th order Runge Kutta method - used in spatialized model

Usage
Bream_spatial_RKsolver(Param, Temperature, G, Food, IC, times)

Arguments
Param vector containing all metabolic parameters
Temperature water temperature forcing time series
G food entering the cage time series
Food food characterization (Proteins, Lipids, Carbohydrates)
IC initial conditions
times vector containing integration extremes and integration timestep

Value
a list containing the fish weight, proteines, lipids and carbohydrates wasted or produced with excre-
tions, potential and actual ingestion rates, temperature limitation functions and metabolic rates

Bream_spatial_skeleton

Creates the folders structure for Bream spatialized model

Description
Creates the folders structure for Bream spatialized model

Usage
Bream_spatial_skeleton(userpath)

Arguments
userpath the path where forcing are located
ClamF_ind_dataloader
Function that loads forcings data for Clam individual bioenergetic model (alternative version) and performs the interpolation

Description

Function that loads forcings data for Clam individual bioenergetic model (alternative version) and performs the interpolation.

Usage

ClamF_ind_dataloader(userpath)

Arguments

- **userpath** the path where folder containing model inputs and outputs is located.

Value

A list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3].

ClamF_ind_equations
Clam bioenergetic individual model differential equations (alternative version)

Description

Clam bioenergetic individual model differential equations (alternative version).

Usage

ClamF_ind_equations(Param, Tint, Chlint, Ww)

Arguments

- **Param** a vector containing model parameters.
- **Tint** the interpolated water temperature at time t.
- **Chlint** the interpolated chlorophyll at time t.
- **Ww** clam wet weight at time t.

Value

A list containing the clam weights, temperature limitation functions and metabolic rates at time t.
ClamF_ind_main
Clam bioenergetic individual model (alternative version)

Description

Clam bioenergetic individual model (alternative version)

Usage

```r
ClamF_ind_main(userpath, forcings)
```

Arguments

- `userpath`
 the path where the working folder is located
- `forcings`
 a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3]

Value

A list containing model outputs: weights, temperature limitation functions and metabolic rates

ClamF_ind_post
Postprocess the Clam indivual bioenergetic model (alternative version) results

Description

Postprocess the Clam indivual bioenergetic model (alternative version) results

Usage

```r
ClamF_ind_post(userpath, output, times, Dates, CS)
```

Arguments

- `userpath`
 the path where the working folder is located
- `output`
 output list containing the output of the RK solver
- `times`
 the vector containing informations on integration extremes
- `Dates`
 the vector containing the date
- `CS`
 the commercial size of Clam

Value

A list containing the clam weights, temperature limitation functions and metabolic rates
ClamF_ind_pre

Clam bioenergetic individual model preprocessor (alternative version)

Description

Clam bioenergetic individual model preprocessor (alternative version)

Usage

```
ClamF_ind_pre(userpath, forcings)
```

Arguments

- **userpath**
 the path where folder containing model inputs and outputs is located

- **forcings**
 a list containing model forcings

Value

a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3]

ClamF_ind_RKsolver

Solves the Clam bioenergetic balance (alternative version) with a 4th order Runge Kutta method

Description

Solves the Clam bioenergetic balance (alternative version) with a 4th order Runge Kutta method

Usage

```
ClamF_ind_RKsolver(Param, times, IC, Tint, Chlint)
```

Arguments

- **Param**
 a vector containing model parameters

- **times**
 integration extremes and integration timestep

- **IC**
 initial condition

- **Tint**
 the interpolated water temperature time series

- **Chlint**
 the interpolated chlorophyll a time series

Value

a list containing the clam weights, temperature limitation functions and metabolic rates
ClamF_ind_skeleton

Description

Creates the folders structure for Clam individual bioenergetic model (alternative version)

Usage

ClamF_ind_skeleton(userpath)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>userpath</td>
<td>the path where forcing are located</td>
</tr>
</tbody>
</table>

ClamF_pop_dataloader

Description

Function that loads forcings data for Clam population model (alternative version) and performs the interpolation

Usage

ClamF_pop_dataloader(userpath)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>userpath</td>
<td>the path where folder containing model inputs and outputs is located</td>
</tr>
</tbody>
</table>

Value

a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3]
ClamF_pop_equations

Clam bioenergetic population model differential equations (alternative version)

Description

Clam bioenergetic population model differential equations (alternative version)

Usage

ClamF_pop_equations(Param, Tint, Chlint, Ww)

Arguments

<table>
<thead>
<tr>
<th>Param</th>
<th>a vector containing model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tint</td>
<td>the interpolated water temperature at time t</td>
</tr>
<tr>
<td>Chlint</td>
<td>the interpolated chlorophyll at time t</td>
</tr>
<tr>
<td>Ww</td>
<td>clam wet weight at time t</td>
</tr>
</tbody>
</table>

Value

a list containing the clam weights, temperature limitation functions and metabolic rates at time t

ClamF_pop_loop

Function that runs the Monte Carlo simulation for the Clam population model (alternative version)

Description

Function that runs the Monte Carlo simulation for the Clam population model (alternative version)

Usage

ClamF_pop_loop(Param, times, IC, Tint, Chlint, N, userpath)

Arguments

<table>
<thead>
<tr>
<th>Param</th>
<th>a vector containing model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>times</td>
<td>integration extremes and integration timestep</td>
</tr>
<tr>
<td>IC</td>
<td>initial condition</td>
</tr>
<tr>
<td>Tint</td>
<td>the interpolated water temperature time series</td>
</tr>
<tr>
<td>Chlint</td>
<td>the interpolated chlorophyll a time series</td>
</tr>
<tr>
<td>N</td>
<td>time series with number of individuals</td>
</tr>
<tr>
<td>userpath</td>
<td>the path where the working folder is located</td>
</tr>
</tbody>
</table>
ClamF_pop_main
Clam bioenergetic population model (alternative version)

Description
Clam bioenergetic population model (alternative version)

Usage
ClamF_pop_main(userpath, forcings)

Arguments
userpath the path where the working folder is located
forcings a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3]

Value
A list containing model outputs: weights, temperature limitation functions and metabolic rates

ClamF_pop_post
Postprocess the Clam population bioenergetic model results (alternative model)

Description
Postprocess the Clam population bioenergetic model results (alternative model)

Usage
ClamF_pop_post(userpath, output, times, Dates, N, CS)

Arguments
userpath the path where the working folder is located
output output list containing the output of the RK solver
times the vector containing informations on integration extremes
Dates the vector containing the date
N the number of individuals
CS the commercial size of Clam
ClamF_pop_pre

Value

a list containing the clam weights, temperature limitation functions and metabolic rates

Description

Clam bioenergetic population model (alternative version) preprocessor

Usage

ClamF_pop_pre(userpath, forcings)

Arguments

- **userpath**
 the path where folder containing model inputs and outputs is located
- **forcings**
 a list containing model forcings

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m³]

ClamF_pop_RKsolver

Solves the Clam bioenergetic balance (alternative version) with a 4th order Runge Kutta method

Description

Solves the Clam bioenergetic balance (alternative version) with a 4th order Runge Kutta method

Usage

ClamF_pop_RKsolver(Param, times, IC, Tint, Chlint)

Arguments

- **Param**
 a vector containing model parameters
- **times**
 integration extremes and integration timestep
- **IC**
 initial condition on weight
- **Tint**
 the interpolated water temperature time series
- **Chlint**
 the interpolated chlorophyll a time series
ClamF_pop_skeleton

Description

Creates the folders structure for Clam population model (alternative version)

Usage

ClamF_pop_skeleton(userpath)

Arguments

userpath
the path where forcing are located

Clam_ind_dataloader

Description

Function that loads forcings data for Clam individual bioenergetic model and performs the interpolation

Usage

Clam_ind_dataloader(userpath)

Arguments

userpath
the path where folder containing model inputs and outputs is located

Value

a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l], particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Clam_ind_equations

Description

Clam bioenergetic individual model differential equations

Usage

```r
Clam_ind_equations(Param, Tint, Phy, DT, POCint, POMint, TSSint, Wd)
```

Arguments

- **Param**
 - a vector containing model parameters
- **Tint**
 - the interpolated water temperature at time t
- **Phy**
 - the interpolated phytoplankton at time t
- **DT**
 - the interpolated detritus at time t
- **POCint**
 - the interpolated POC at time t
- **POMint**
 - the interpolated POM at time t
- **TSSint**
 - the interpolated TSS at time t
- **Wd**
 - the weight of the clam at time t

Value

a list containing the clam weights, temperature limitation functions and metabolic rates at time t

Clam_ind_main

Description

Clam bioenergetic individual model

Usage

```r
Clam_ind_main(userpath, forcings)
```

Arguments

- **userpath**
 - the path where the working folder is located
- **forcings**
 - a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l], particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Clam_ind_post

Postprocess the Clam individual bioenergetic model results

Description

Postprocess the Clam individual bioenergetic model results

Usage

Clam_ind_post(userpath, output, times, Dates, CS)

Arguments

- userpath: the path where the working folder is located
- output: output list containing the output of the RK solver
- times: the vector containing informations on integration extremes
- Dates: the vector containing the date
- CS: the commercial size of Clam

Value

A list containing model outputs: weights, temperature limitation functions and metabolic rates

Clam_ind_pre

Clam bioenergetic individual model preprocessor

Description

Clam bioenergetic individual model preprocessor

Usage

Clam_ind_pre(userpath, forcings)

Arguments

- userpath: the path where folder containing model inputs and outputs is located
- forcings: a list containing model forcings
Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l], particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

clam_ind_RKsolver

Solves the Clam individual bioenergetic balance with a 4th order Runge Kutta method

Description

Solves the Clam individual bioenergetic balance with a 4th order Runge Kutta method

Usage

clam_ind_RKsolver(Param, times, IC, Tint, Phyint, DTint, POCint, POMint, TSSint)

Arguments

Param a vector containing model parameters
times integration extremes and integration timestep
IC initial condition
Tint the interpolated water temperature time series
Phyint the interpolated phytoplankton time series
DTint the interpolated detritus time series
POCint the interpolated POC time series
POMint the interpolated POM time series
TSSint the interpolated TSS time series

Value

a list containing the clam weights, temperature limitation functions and metabolic rates
Clam_ind_skeleton

Description
Creates the folders structure for Clam individual bioenergetic model

Usage
Clam_ind_skeleton(userpath)

Arguments
userpath the path where forcing are located

Clam_pop_dataloader

Description
Function that loads forcings data for Clam population model and performs the interpolation

Usage
Clam_pop_dataloader(userpath)

Arguments
userpath the path where folder containing model inputs and outputs is located

Value
a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChla/m^3], particulated organic carbon (POC) concentration [mgC/l], particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Clam_pop_equations

Clam bioenergetic population model differential equations

Description

Clam bioenergetic population model differential equations

Usage

```r
Clam_pop_equations(Param, Tint, Phy, DT, POCint, POMint, TSSint, Wd)
```

Arguments

- `Param`: a vector containing model parameters
- `Tint`: the interpolated water temperature at time t
- `Phy`: the interpolated phytoplankton at time t
- `DT`: the interpolated detritus at time t
- `POCint`: the interpolated POC at time t
- `POMint`: the interpolated POM at time t
- `TSSint`: the interpolated TSS at time t
- `Wd`: the weight of the clam at time t

Value

a list containing the clam weights, temperature limitation functions and metabolic rates at time t

Clam_pop_loop

Function that runs the Monte Carlo simulation for the Clam population model

Description

Function that runs the Monte Carlo simulation for the Clam population model

Usage

```r
Clam_pop_loop(Param, times, IC, Tint, Phyint, DTint, POCint, POMint, TSSint, N, userpath)
```
Arguments

Param a vector containing model parameters
times integration extremes and integration timestep
IC initial condition
Tint the interpolated water temperature time series
Phyint the interpolated phytoplankton time series
DTint the interpolated detritus time series
POCint the interpolated POC time series
POMint the interpolated POM time series
TSSint the interpolated TSS time series
N time series with number of individuals
userpath the path where the working folder is located

Value

a list with RK solver outputs

Clam_pop_main Clam bioenergetic population model

Description

Clam bioenergetic population model

Usage

Clam_pop_main(userpath, forcings)

Arguments

userpath the path where the working folder is located
forcings a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l], particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Value

A list containing model outputs: weights, temperature limitation functions and metabolic rates
Clam_pop_post

Postprocess the Clam population bioenergetic model results

Description

Postprocess the Clam population bioenergetic model results

Usage

Clam_pop_post(userpath, output, times, Dates, N, CS)

Arguments

- userpath: the path where the working folder is located
- output: output list containing the output of the RK solver
- times: the vector containing informations on integration extremes
- Dates: the vector containing the date
- N: the number of individuals
- CS: the commercial size of Clam

Value

a list containing the clam weights, temperature limitation functions and metabolic rates

Clam_pop_pre

Clam bioenergetic population model preprocessor

Description

Clam bioenergetic population model preprocessor

Usage

Clam_pop_pre(userpath, forcings)

Arguments

- userpath: the path where folder containing model inputs and outputs is located
- forcings: a list containing model forcings

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m³], particulated organic carbon (POC) concentration [mgC/l], particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Clam_pop_RKsolver
Solves the Clam bioenergetic balance for population with a 4th order Runge Kutta method

Description

Solves the Clam bioenergetic balance for population with a 4th order Runge Kutta method

Usage

Clam_pop_RKsolver(Param, times, IC, Tint, Phyint, DTint, POCint, POMint, TSSint)

Arguments

- **Param**
 a vector containing model parameters

- **times**
 integration extremes and integration timestep

- **IC**
 initial condition

- **Tint**
 the interpolated water temperature time series

- **Phyint**
 the interpolated phytoplankton time series

- **DTint**
 the interpolated detritus time series

- **POCint**
 the interpolated POC time series

- **POMint**
 the interpolated POM time series

- **TSSint**
 the interpolated TSS time series

Value

a list containing the clam weights, temperature limitation functions and metabolic rates

Clam_pop_skeleton
Creates the folders structure for Clam population model

Description

Creates the folders structure for Clam population model

Usage

Clam_pop_skeleton(userpath)

Arguments

- **userpath**
 the path where forcing are located
Mussel_ind_dataloader

Function that loads forcings data for Mussel individual bioenergetic model and performs the interpolation

Description

Function that loads forcings data for Mussel individual bioenergetic model and performs the interpolation

Usage

```
Mussel_ind_dataloader(userpath)
```

Arguments

- **userpath**

 the path where folder containing model inputs and outputs is located

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m³], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Mussel_ind_equations

Mussel bioenergetic individual model differential equations

Description

Mussel bioenergetic individual model differential equations

Usage

```
Mussel_ind_equations(Param, Tint, Phyint, DTint, POCint, Ccont, Ncont, Pcont, POMint, TSSint, Wb, R, t, trip)
```

Arguments

- **Param**

 a vector containing model parameters

- **Tint**

 the interpolated water temperature at time t

- **Phyint**

 the interpolated phytoplankton at time t

- **DTint**

 the interpolated detritus at time t

- **POCint**

 the interpolated POC at time t
Mussel_ind_main

\begin{itemize}
\item \texttt{Ccont} \hspace{1cm} \text{the C/C content of the POC at time t}
\item \texttt{Ncont} \hspace{1cm} \text{the N/C content of POC at time t}
\item \texttt{Pcont} \hspace{1cm} \text{the P/C content of POC at time t}
\item \texttt{POMint} \hspace{1cm} \text{the interpolated POM at time t}
\item \texttt{TSSint} \hspace{1cm} \text{the interpolated TSS at time t}
\item \texttt{Wb} \hspace{1cm} \text{the somatic tissue dry weight at time t}
\item \texttt{R} \hspace{1cm} \text{the gonadatic tissue dry weight at time t}
\item \texttt{t} \hspace{1cm} \text{the time}
\item \texttt{trip} \hspace{1cm} \text{vector containing the flags with resting periods}
\end{itemize}

Value

\text{the outputs at time t}

Mussel_ind_main \hspace{1cm} **Mussel bioenergetic individual model**

Description

Solves the bioenergetic balance for Mussel

Usage

\texttt{Mussel_ind_main(userpath, forcings)}

Arguments

\begin{itemize}
\item \texttt{userpath} \hspace{1cm} \text{the path where the working folder is located}
\item \texttt{forcings} \hspace{1cm} \text{a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]}
\end{itemize}

Value

\text{A list containing model outputs: weight, length mussel CNP, pseudofaeces CNP production, faeces CNP production, temperature limitation functions, metabolic rates and oxygen consumption}
Mussel_ind_post

Postprocess the Mussel individual bioenergetic model results

Description

Postprocess the Mussel individual bioenergetic model results

Usage

Mussel_ind_post(userpath, output, times, Dates, CS)

Arguments

userpath the path where the working folder is located
output output list containing the output of the RK solver
times the vector containing informations on integration extremes
Dates the vector containing the date
CS the commercial size of Mussel

Value

a list containing the weights of the mussel, the excreted CNP, the mussel CNP, temperature limitation functions, metabolic rates, oxygen consumption

Mussel_ind_pre

Mussel bioenergetic individual model preprocessor

Description

Mussel bioenergetic individual model preprocessor

Usage

Mussel_ind_pre(userpath, forcings)

Arguments

userpath the path where folder containing model inputs and outputs is located
forcings a list containing model forcings

Value

a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Mussel_ind_RKsolver

Solves the Mussel individual bioenergetic balance with a 4th order Runge Kutta method

Description

Solves the Mussel individual bioenergetic balance with a 4th order Runge Kutta method

Usage

Mussel_ind_RKsolver(Param, times, IC, Tint, Phyint, DTint, POCint, Ccont, Ncont, Pcont, POMint, TSSint)

Arguments

<table>
<thead>
<tr>
<th>Param</th>
<th>a vector containing model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>times</td>
<td>integration extremes and integration timestep</td>
</tr>
<tr>
<td>IC</td>
<td>initial condition</td>
</tr>
<tr>
<td>Tint</td>
<td>the interpolated water temperature time series</td>
</tr>
<tr>
<td>Phyint</td>
<td>the interpolated phytoplankton time series</td>
</tr>
<tr>
<td>DTint</td>
<td>the interpolated detritus time series</td>
</tr>
<tr>
<td>POCint</td>
<td>the interpolated POC time series</td>
</tr>
<tr>
<td>Ccont</td>
<td>the C/C content of the POC</td>
</tr>
<tr>
<td>Ncont</td>
<td>the N/C content of POC</td>
</tr>
<tr>
<td>Pcont</td>
<td>the P/C content of POC</td>
</tr>
<tr>
<td>POMint</td>
<td>the interpolated POM time series</td>
</tr>
<tr>
<td>TSSint</td>
<td>the interpolated TSS time series</td>
</tr>
</tbody>
</table>

Value

A list containing the weights of the mussel, the excreted CNP, the mussel CNP, temperature limitation functions, metabolic rates, oxygen consumption
Mussel_ind_skeleton
Creates the folders structure for Mussel individual bioenergetic model

Description

Creates the folders structure for Mussel individual bioenergetic model

Usage

```python
Mussel_ind_skeleton(userpath)
```

Arguments

- `userpath`
 the path where forcing are located

Mussel_pop_dataloader
Function that loads forcings data for Mussel population model and performs the interpolation

Description

Function that loads forcings data for Mussel population model and performs the interpolation

Usage

```python
Mussel_pop_dataloader(userpath)
```

Arguments

- `userpath`
 the path where folder containing model inputs and outputs is located

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Mussel_pop_equations Mussel bioenergetic population model differential equations

Description

Mussel bioenergetic population model differential equations

Usage

Mussel_pop_equations(Param, N, Tint, Phyint, DTint, POCint, Ccont, Ncont, Pcont, POMint, TSSint, Wb, R, t, trip)

Arguments

Param a vector containing model parameters
N the number of individuals at time t
Tint the interpolated water temperature at time t
Phyint the interpolated phytoplankton at time t
DTint the interpolated detritus at time t
POCint the interpolated POC at time t
Ccont the C/C content of the POC at time t
Ncont the N/C content of POC at time t
Pcont the P/C content of POC at time t
POMint the interpolated POM at time t
TSSint the interpolated TSS at time t
Wb the somatic tissue dry weight at time t
R the gondadic tissue dry weight at time t
t the time
trip vector containing the flags with resting periods

Value

the outputs at time t
Mussel_pop_loop

Function that runs the Monte Carlo simulation for the Mussel population model

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function that runs the Monte Carlo simulation for the Mussel population model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Mussel_pop_loop(Param, times, IC, Tint, Phyint, DTint, POCint, Ccont, Ncont, Pcont, POMint, TSSint, N, userpath)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Param</code></td>
</tr>
<tr>
<td><code>times</code></td>
</tr>
<tr>
<td><code>IC</code></td>
</tr>
<tr>
<td><code>Tint</code></td>
</tr>
<tr>
<td><code>Phyint</code></td>
</tr>
<tr>
<td><code>DTint</code></td>
</tr>
<tr>
<td><code>POCint</code></td>
</tr>
<tr>
<td><code>Ccont</code></td>
</tr>
<tr>
<td><code>Ncont</code></td>
</tr>
<tr>
<td><code>Pcont</code></td>
</tr>
<tr>
<td><code>POMint</code></td>
</tr>
<tr>
<td><code>TSSint</code></td>
</tr>
<tr>
<td><code>N</code></td>
</tr>
<tr>
<td><code>userpath</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a list with RK solver outputs</td>
</tr>
</tbody>
</table>
Mussel_pop_main *Mussel bioenergetic population model*

Description
Solves the bioenergetic balance for Mussel and simulates a population

Usage

```python
Mussel_pop_main(userpath, forcings)
```

Arguments
- `userpath`: the path where the working folder is located
- `forcings`: a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Value
A list containing model outputs: weight, length mussel CNP, pseudofecies CNP production, temperature limitation functions, metabolic rates and oxygen consumption

Mussel_pop_post *Postprocess the Mussel population bioenergetic model results*

Description
Postprocess the Mussel population bioenergetic model results

Usage

```python
Mussel_pop_post(userpath, output, times, Dates, N, CS)
```

Arguments
- `userpath`: the path where the working folder is located
- `output`: output list containing the output of the RK solver
- `times`: the vector containing informations on integration extremes
- `Dates`: the vector containing the date
- `N`: the number of individuals
- `CS`: the commercial size of Seabass
Mussel_pop_pre

Value
a list containing the weights of the mussel, the excreted CNP, the mussel CNP, temperature limitation functions, metabolic rates, oxygen consumption

Mussel bioenergetic population model preprocessor

Description
Mussel bioenergetic population model preprocessor

Usage
Mussel_pop_pre(userpath, forcings)

Arguments
userpath the path where folder containing model inputs and outputs is located
forcings a list containing forcings used by the model

Value
a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Mussel_pop_RKsolver
Solves the Mussel population bioenergetic balance with a 4th order Runge Kutta method

Description
Solves the Mussel population bioenergetic balance with a 4th order Runge Kutta method

Usage
Mussel_pop_RKsolver(Param, times, IC, Tint, Phyint, DTint, POCint, Ccont, Ncont, Pcont, POMint, TSSint, N)
Arguments

Param a vector containing model parameters
times integration extremes and integration timestep
IC initial condition
Tint the interpolated water temperature time series
Phyint the interpolated phytoplankton time series
DTint the interpolated detritus time series
POCint the interpolated POC time series
Ccont the C/C content of the POC
Ncont the N/C content of POC
Pcont the P/C content of POC
POMint the interpolated POM time series
TSSint the interpolated TSS time series
N the number of individuals time series

Value

a list containing the weights of the mussel, the excreted CNP, the mussel CNP, temperature limitation functions, metabolic rates, oxygen consumption

Mussel_pop_skeleton Creates the folders structure for Mussel population model

Description

Creates the folders structure for Mussel population model

Usage

Mussel_pop_skeleton(userpath)

Arguments

userpath the path where forcing are located
Mussel_spatial_dataloader

Function that loads forcings data for Mussel spatialized model and performs the interpolation

Description

Function that loads forcings data for Mussel spatialized model and performs the interpolation

Usage

```python
Mussel_spatial_dataloader(userpath)
```

Arguments

- `userpath` the path where folder containing model inputs and outputs is located

Value

A list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Mussel_spatial_loop

Mussel bioenergetic spatialized model - spatialization loop

Description

Solves the bioenergetic balance for Mussel

Usage

```python
Mussel_spatial_loop(userpath, forcings)
```

Arguments

- `userpath` the path where the working folder is located
- `forcings` a list containing the time series in the odd positions and related forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]
Mussel_spatial_main

Mussel bioenergetic spatialized model - spatialization loop

Description

Solves the bioenergetic balance for Mussel

Usage

Mussel_spatial_main(userpath, forcings)

Arguments

- **userpath**: the path where the working folder is located
- **forcings**: a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Value

saves .nc; .csv and .asc outputs in the 'Outputs' folder

Mussel_spatial_post

Postprocess the Mussel spatialized model results

Description

Postprocess the Mussel spatialized model results

Usage

Mussel_spatial_post(userpath, output, times, Dates, CS)

Arguments

- **userpath**: the path where the working folder is located
- **output**: output list containing the output of the RK solver
- **times**: the vector containing informations on integration extremes
- **Dates**: the vector containing the date
- **CS**: the commercial size of Mussel
Mussel_spatial_pre

Value

a list containing the weights of the mussel, the excreted CNP, the mussel CNP, temperature limitation functions, metabolic rates, oxygen consumption

Mussel_spatial_pre

Mussel bioenergetic spatialized model preprocessor

Description

Mussel bioenergetic spatialized model preprocessor

Usage

Mussel_spatial_pre(userpath, forcings)

Arguments

userpath the path where folder containing model inputs and outputs is located
forcings a list containing forcings used by the model

Value

a list containing the time series in the odd positions and realted forcings in the even positions. Forcings returned are: Water temperature [Celsius degrees], Chlorophyll a concentration [mgChl-a/m^3], particulated organic carbon (POC) concentration [mgC/l] and its characterization in terms of C/P and N/P molar ratios, particulated organic matter (POM) concentration [mgC/l], total suspended solids (TSS) concentration [mg/l]

Mussel_spatial_pre_int

Mussel bioenergetic spatialized model preprocessor - used inside spatialization loop

Description

Mussel bioenergetic spatialized model preprocessor - used inside spatialization loop

Usage

Mussel_spatial_pre_int(userpath, forcings)

Arguments

userpath the path where folder containing model inputs and outputs is located
forcings a list containing forcings used by the model
Mussel_spatial_RKsolver

Solves the Mussel individual bioenergetic balance with a 4th order Runge Kutta method for spatialized model

Description

Solves the Mussel individual bioenergetic balance with a 4th order Runge Kutta method for spatialized model

Usage

Mussel_spatial_RKsolver(Param, times, IC, Tint, Phyint, DTint, POCint, Ccont, Ncont, Pcont, POMint, TSSint)

Arguments

- Param: a vector containing model parameters
- times: integration extremes and integration timestep
- IC: initial condition
- Tint: the interpolated water temperature time series
- Phyint: the interpolated phytoplankton time series
- DTint: the interpolated detritus time series
- POCint: the interpolated POC time series
- Ccont: the C/C content of the POC
- Ncont: the N/C content of POC
- Pcont: the P/C content of POC
- POMint: the interpolated POM time series
- TSSint: the interpolated TSS time series

Value

a list containing the weights of the mussel, the excreted CNP, the mussel CNP, temperature limitation functions, metabolic rates, oxygen consumption
Mussel_spatial_skeleton

Creates the folders structure for Mussel spatialized model

Description

Creates the folders structure for Mussel spatialized model

Usage

```r
Mussel\_spatial\_skeleton(userpath)
```

Arguments

- **userpath**: the path where forcing are located

Pop_fun

Function that solves the population dynamics equations including discontinuities

Description

Function that solves the population dynamics equations including discontinuities

Usage

```r
Pop\_fun(Nseed, mort, manag, times)
```

Arguments

- **Nseed**: number of seeded individuals
- **mort**: mortality rate
- **manag**: list of management actions (seeded/harvested individuals)
- **times**: vector containing informations on integration times

Value

a time series with the number of individuals
Index

Bass_ind_dataloader, 4
Bass_ind_equations, 4
Bass_ind_main, 5
Bass_ind_post, 5
Bass_ind_pre, 6
Bass_ind_RKsolver, 6
Bass_ind_skeleton, 7
Bass_pop_dataloader, 7
Bass_pop_equations, 8
Bass_pop_loop, 8
Bass_pop_main, 9
Bass_pop_post, 9
Bass_pop_pre, 10
Bass_pop_RKsolver, 10
Bass_pop_skeleton, 11
Bass_spatial_dataloader, 11
Bass_spatial_loop, 12
Bass_spatial_main, 12
Bass_spatial_post, 13
Bass_spatial_pre, 13
Bass_spatial_pre_int, 14
Bass_spatial_RKsolver, 14
Bass_spatial_skeleton, 15
Bream_ind_dataloader, 15
Bream_ind_equations, 16
Bream_ind_main, 16
Bream_ind_post, 17
Bream_ind_pre, 17
Bream_ind_RKsolver, 18
Bream_ind_skeleton, 18
Bream_pop_dataloader, 19
Bream_pop_equations, 19
Bream_pop_loop, 20
Bream_pop_main, 20
Bream_pop_post, 21
Bream_pop_pre, 21
Bream_pop_RKsolver, 22
Bream_pop_skeleton, 22
Bream_spatial_dataloader, 23
Bream_spatial_loop, 23
Bream_spatial_main, 24
Bream_spatial_post, 24
Bream_spatial_pre, 25
Bream_spatial_pre_int, 25
Bream_spatial_RKsolver, 26
Bream_spatial_skeleton, 26
Clam_ind_dataloader, 34
Clam_ind_equations, 35
Clam_ind_main, 35
Clam_ind_post, 36
Clam_ind_pre, 36
Clam_ind_RKsolver, 37
Clam_ind_skeleton, 38
Clam_pop_dataloader, 38
Clam_pop_equations, 39
Clam_pop_loop, 39
Clam_pop_main, 40
Clam_pop_post, 41
Clam_pop_pre, 41
Clam_pop_RKsolver, 42
Clam_pop_skeleton, 42
ClamF_ind_dataloader, 27
ClamF_ind_equations, 27
ClamF_ind_main, 28
ClamF_ind_post, 28
ClamF_ind_pre, 29
ClamF_ind_RKsolver, 29
ClamF_ind_skeleton, 30
ClamF_pop_dataloader, 30
ClamF_pop_equations, 31
ClamF_pop_loop, 31
ClamF_pop_main, 32
ClamF_pop_post, 32
ClamF_pop_pre, 33
ClamF_pop_RKsolver, 33
ClamF_pop_skeleton, 34
Mussel_ind_dataloader, 43
>> Mussel_ind_equations, 43
Mussel_ind_main, 44
Mussel_ind_post, 45
Mussel_ind_pre, 45
Mussel_ind_RKsolver, 46
Mussel_ind_skeleton, 47
Mussel_pop_dataloader, 47
Mussel_pop_equations, 48
Mussel_pop_loop, 49
Mussel_pop_main, 50
Mussel_pop_post, 50
Mussel_pop_pre, 51
Mussel_pop_RKsolver, 51
Mussel_pop_skeleton, 52
Mussel_spatial_dataloader, 53
Mussel_spatial_loop, 53
Mussel_spatial_main, 54
Mussel_spatial_post, 54
Mussel_spatial_pre, 55
Mussel_spatial_pre_int, 55
Mussel_spatial_RKsolver, 56
Mussel_spatial_skeleton, 57

Pop_fun, 57