Package ‘RBesT’

June 27, 2019

Type Package

Title R Bayesian Evidence Synthesis Tools

Version 1.4-0

Date 2019-06-27

Depends R (>= 3.4.0), Rcpp (>= 0.12.0), methods

Imports assertthat, mvtnorm, Formula, checkmate, rstan (>= 2.18.1), bayesplot (>= 1.4.0), ggplot2, dplyr, stats, utils

LinkingTo StanHeaders (>= 2.18.0), rstan (>= 2.18.1), BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0)

License GPL (>= 3) | file LICENSE

LazyData true

NeedsCompilation yes

Suggests rmarkdown, knitr, testthat (>= 2.0.0), foreach, tidyverse, purrr, rstanarm (>= 2.17.2), scales, tools, broom, tidyr

VignetteBuilder knitr

SystemRequirements GNU make, pandoc (>= 1.12.3), pandoc-citeproc

Encoding UTF-8

RoxygenNote 6.1.1

Author Novartis Pharma AG [cph], Sebastian Weber [aut, cre], Beat Neuenschwander [ctb], Heinz Schmidli [ctb], Baldur Magnusson [ctb], Yue Li [ctb], Satrajit Roychoudhury [ctb],

Maintainer Sebastian Weber <sebastian.weber@novartis.com>

Repository CRAN

Date/Publication 2019-06-27 09:00:03 UTC

R topics documented:

RBesT-package .. 3
AS ... 4
automixfit .. 5
BinaryExactCI ... 6
colitis ... 7
crohn ... 7
decision1S .. 8
decision1S_boundary .. 11
decision2S .. 13
decision2S_boundary .. 15
ess ... 17
forest_plot .. 20
gMAP ... 21
likelihood ... 28
lodds ... 30
mix ... 31
mixbeta ... 33
mixcombine .. 34
mixdiff ... 35
mixfit .. 37
mixgamma .. 39
mixnorm ... 41
oc1S ... 43
oc2S ... 46
plot.EM .. 48
plot.gMAP .. 50
plot.mix .. 51
pos1S .. 52
pos2S .. 54
postmix .. 57
preddist ... 60
predict.gMAP ... 62
robustify .. 64
transplant .. 66

Index 67
RBesT-package

R Bayesian Evidence Synthesis Tools

Description

The RBesT tools are designed to support in the derivation of parametric informative priors, assess design characteristics and perform analyses. Supported endpoints include normal, binary and Poisson.

Details

For introductory material, please refer to the vignettes which include

- Introduction (binary)
- Introduction (normal)
- Customizing RBesT Plots
- Robust MAP, advanced usage

The main function of the package is `gMAP`. See it’s help page for a detailed description of the statistical model.

Global Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBest.MC.warmup</td>
<td>2000</td>
<td>MCMC warmup iterations</td>
</tr>
<tr>
<td>RBest.MC.iter</td>
<td>6000</td>
<td>total MCMC iterations</td>
</tr>
<tr>
<td>RBest.MC.chains</td>
<td>4</td>
<td>MCMC chains</td>
</tr>
<tr>
<td>RBest.MC.thin</td>
<td>4</td>
<td>MCMC thinning</td>
</tr>
<tr>
<td>RBest.MC.control</td>
<td>list(adapt_delta=0.99, stepsize=0.01, max_treedepth=20)</td>
<td>sets control argument for Stan call</td>
</tr>
<tr>
<td>RBest.MC.ncp</td>
<td>1</td>
<td>parametrization: 0=CP, 1=NCP, 2=Automatic</td>
</tr>
<tr>
<td>RBest.MC.init</td>
<td>1</td>
<td>range of initial uniform [-1,1] is the default</td>
</tr>
<tr>
<td>RBest.MC.rescale</td>
<td>TRUE</td>
<td>Automatic rescaling of raw parameters</td>
</tr>
<tr>
<td>RBest.verbose</td>
<td>FALSE</td>
<td>requests outputs to be more verbose</td>
</tr>
<tr>
<td>RBest.integrate_args</td>
<td>list(lower=-Inf, upper=Inf, rel.tol=.Machine$double.eps0.25, abs.tol=.Machine$double.eps0.25, subdivisions=1E3)</td>
<td>arguments passed to integrate for integration of densities</td>
</tr>
</tbody>
</table>
Version History

See NEWS file.

As

Ankylosing Spondylitis.

Description

Data set containing historical information for placebo for a phase II trial of ankylosing spondylitis patients. The primary efficacy endpoint was the percentage of patients with a 20 according to the Assessment of SpondyloArthritis international Society criteria for improvement (ASAS20) at week 6.

Usage

`AS`

Format

A data frame with 8 rows and 3 variables:

- `study` study
- `n` study size
- `r` number of events

References

Examples

```r
set.seed(34563)
map_AS <- gMAP(cbind(r, n-r) ~ 1 | study,
               family=binomial,
               data=AS,
               tau.dist="HalfNormal", tau.prior=1,
               beta.prior=2,
               ## ensure fast example runtime
               thin=1, chains=1)
```
Description

Fitting a series of mixtures of conjugate distributions to a sample, using Expectation-Maximization (EM). The number of mixture components is specified by the vector \(\text{nc} \). First a \(\text{nc}[1] \) component mixture is fitted, then a \(\text{nc}[2] \) component mixture, and so on. The mixture providing the best AIC value is then selected.

Usage

\[
\text{automixfit(sample, nc = seq(1, 4), k = 6, thresh = -Inf, verbose = FALSE, ...)}
\]

Arguments

- **sample**: Sample to be fitted by a mixture distribution.
- **\(\text{nc} \)**: Vector of mixture components to try out (default seq(1, 4)).
- **\(k \)**: Penalty parameter for AIC calculation (default 6).
- **\(\text{thresh} \)**: The procedure stops if the difference of subsequent AIC values is smaller than this threshold (default -Inf). Setting the threshold to 0 stops automixfit once the AIC becomes worse.
- **\(\text{verbose} \)**: Enable verbose logging.
- **...**: Further arguments passed to \text{mixfit}, including \text{type}.

Details

The \text{type} argument specifies the distribution of the mixture components, and can be a normal, beta or gamma distribution.

The penalty parameter \(k \) is 2 for the standard AIC definition. \text{Collet (2003)} suggested to use values in the range from 2 to 6, where larger values of \(k \) penalize more complex models. To favor mixtures with fewer components a value of 6 is used as default.

Value

As result the best fitting mixture model is returned, i.e. the model with lowest AIC. All other models are saved in the attribute \text{models}.

References

- \text{Collet D. Modeling Survival Data in Medical Research}. 2003; Chapman and Hall/CRC.
Examples

random sample of size 1000 from a mixture of 2 beta components
bm <- mixbeta(beta1=c(0.4, 20, 90), beta2=c(0.6, 35, 65))
bmSamp <- rmix(bm, 1000)

fit with EM mixture models with up to 10 components and stop if # AIC increases
bmFit <- automixfit(bmSamp, Nc=1:10, thresh=0, type="beta")
bmfit

advanced usage: find out about all discarded models
bmFitAll <- attr(bmFit, "models")
sapply(bmFitAll, AIC, k=6)

BinaryExactCI
Exact Confidence interval for Binary Proportion

Description

This function calculates the exact confidence interval for a response rate presented by \(n \) and \(r \).

Usage

BinaryExactCI(r, n, alpha = 0.05, drop = TRUE)

Arguments

\(r \)
Number of success or responder

\(n \)
Sample size

\(\alpha \)
Confidence level

\(\text{drop} \)
Determines if \text{drop} will be called on the result

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934). This guarantees that the confidence level is at least \((1-\alpha)\). Details can be found in the publication listed below.

Value

100 \((1-\alpha)\)% exact confidence interval for given response rate
References

Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934.

Examples

BinaryExactCI(3,20,0.05)

colitis

| colitis | Ulcerative Colitis. |

Description

Data set containing historical information for placebo arm of a phase II proof-of-concept trial for the treatment of ulcerative colitis. The primary outcome is remission at week 8 (binary).

Usage

colitis

Format

A data frame with 4 rows and 3 variables:

<table>
<thead>
<tr>
<th>study</th>
<th>study size</th>
<th>number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>study</td>
<td>n</td>
<td>r</td>
</tr>
</tbody>
</table>

References

crohn

| crohn | Crohn’s disease. |

Description

Data set containing historical information for placebo arm of relevant studies for the treatment of Crohn’s disease. The primary outcome is change from baseline in Crohn’s Disease Activity Index (CDAI) over a duration of 6 weeks. Standard deviation of change from baseline endpoint is approximately 88.
Usage
crohn

Format
A data frame with 4 rows and 3 variables:

- **study**: study
- **n**: study size
- **y**: mean CDAI change

References

Examples
```r
set.seed(546346)
map_crohn <- gMAP(cbind(y, y.se) ~ 1 | study,
  family=gaussian,
  data=transform(crohn, y.se=88/sqrt(n)),
  weights=n,
  tau.dist="HalfNormal", tau.prior=44,
  beta.prior=cbind(0,88),
  ## ensure fast example runtime
  thin=1, chains=1)
```

decision1S

Decision Function for 1 Sample Designs

Description
The function sets up a 1 sample one-sided decision function with an arbitrary number of conditions.

Usage
```r
decision1S(pc = 0.975, qc = 0, lower.tail = TRUE)
decision1S(pc = 0.975, qc = 0, lower.tail = TRUE)
```

Arguments
- **pc**: Vector of critical cumulative probabilities.
- **qc**: Vector of respective critical values. Must match the length of pc.
- **lower.tail**: Logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).
The function creates a one-sided decision function which takes two arguments. The first argument is expected to be a mixture (posterior) distribution. This distribution is tested whether it fulfills all the required threshold conditions specified with the `pc` and `qc` arguments and returns 1 if all conditions are met and 0 otherwise. Hence, for `lower.tail=TRUE` condition \(i\) is equivalent to

\[P(x \le q_{c,i}) > p_{c,i} \]

and the decision function is implemented as indicator function on the basis of the heavy-side step function \(H\) which is 0 for \(x \le 0\) and 1 for \(x > 0\). As all conditions must be met, the final indicator function returns

\[\Pi_i H_i (P(x \le q_{c,i}) - p_{c,i}) \]

When the second argument is set to `TRUE` a distance metric is returned component-wise per defined condition as

\[D_i = \log(P(p < q_{c,i})) - \log(p_{c,i}) \]

These indicator functions can be used as input for 1-sample boundary, OC or PoS calculations using `oc1S` or `pos1S`.

The function returns a decision function which takes two arguments. The first argument is expected to be a mixture (posterior) distribution which is tested if the specified conditions are met. The logical second argument determines if the function acts as an indicator function or if the function returns the distance from the decision boundary for each condition in log-space, i.e. the distance is 0 at the decision boundary, negative for a 0 decision and positive for a 1 decision.

These indicator functions can be used as input for 1-sample boundary, OC or PoS calculations using `oc1S` or `pos1S`.

References

See Also

Other design1S: `decision1S_boundary, oc1S, pos1S`
Examples

see Neuenschwander et al., 2011

example is for a time-to-event trial evaluating non-inferiority
using a normal approximation for the log-hazard ratio

reference scale
s <- 2
theta_ni <- 0.4
theta_a <- 0
alpha <- 0.05
beta <- 0.2
za <- qnorm(1-alpha)
zb <- qnorm(1-beta)
n1 <- round((s * (za + zb)/(theta_ni - theta_a))^2) # n for which design was intended
nL <- 233
c1 <- theta_ni - za * s / sqrt(n1)

flat prior
flat_prior <- mixnorm(c(1,0,100), sigma=s)

standard NI design
decA <- decision1S(1 - alpha, theta_ni, lower.tail=TRUE)

for double criterion with indecision point (mean estimate must be
lower than this)
theta_c <- c1

double criterion design
statistical significance (like NI design)
dec1 <- decision1S(1-alpha, theta_ni, lower.tail=TRUE)
require mean to be at least as good as theta_c
dec2 <- decision1S(0.5, theta_c, lower.tail=TRUE)
combination
decComb <- decision1S(c(1-alpha, 0.5), c(theta_ni, theta_c), lower.tail=TRUE)

theta_eval <- c(theta_a, theta_c, theta_ni)

we can display the decision function definition
decComb

and use it to decide if a given distribution fulfills all
criterions defined
for the prior
decComb(flat_prior)
or for a possible outcome of the trial
here with HR of 0.8 for 40 events
decComb(postmix(flat_prior, m=log(0.8), n=40))
Description

Calculates the decision boundary for a 1 sample design. This is the critical value at which the decision function will change from 0 (failure) to 1 (success).

Usage

decision1s_boundary(prior, n, decision, ...)

S3 method for class 'betaMix'
decision1s_boundary(prior, n, decision, ...)

S3 method for class 'normMix'
decision1s_boundary(prior, n, decision, sigma, eps = 1e-06, ...)

S3 method for class 'gammaMix'
decision1s_boundary(prior, n, decision, eps = 1e-06, ...)

Arguments

- **prior**: Prior for analysis.
- **n**: Sample size for the experiment.
- **decision**: One-sample decision function to use; see decision1S.
- **...**: Optional arguments.
- **sigma**: The fixed reference scale. If left unspecified, the default reference scale of the prior is assumed.
- **eps**: Support of random variables are determined as the interval covering 1-eps probability mass. Defaults to 10^{-6}.

Details

The specification of the 1 sample design (prior, sample size and decision function, $D(y)$), uniquely defines the decision boundary

$$y_c = \max_y \{ D(y) = 1 \},$$

which is the maximal value of y whenever the decision $D(y)$ function changes its value from 1 to 0 for a decision function with `lower.tail=TRUE` (otherwise the definition is $y_c = \max_y \{ D(y) = 0 \}$). The decision function may change at most at a single critical value as only one-sided decision
functions are supported. Here, y is defined for binary and Poisson endpoints as the sufficient statistic $y = \sum_{i=1}^{n} y_i$ and for the normal case as the mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

The convention for the critical value y_c depends on whether a left (lower.tail=TRUE) or right-sided decision function (lower.tail=FALSE) is used. For lower.tail=TRUE the critical value y_c is the largest value for which the decision is 1, $D(y \leq y_c) = 1$, while for lower.tail=FALSE then $D(y > y_c) = 1$ holds. This is aligned with the cumulative density function definition within R (see for example `pbinom`).

Value

Returns the critical value y_c.

Methods (by class)

- betaMix: Applies for binomial model with a mixture beta prior. The calculations use exact expressions.
- normMix: Applies for the normal model with known standard deviation σ and a normal mixture prior for the mean. As a consequence from the assumption of a known standard deviation, the calculation discards sampling uncertainty of the second moment. The function `decision1S_boundary` has an extra argument `eps` (defaults to 10^{-6}). The critical value y_c is searched in the region of probability mass $1-Meps$ for y.
- gammaMix: Applies for the Poisson model with a gamma mixture prior for the rate parameter. The function `decision1S_boundary` takes an extra argument `eps` (defaults to 10^{-6}) which determines the region of probability mass $1-Meps$ where the boundary is searched for y.

See Also

Other design1S: `decision1S`, `oc1S`, `pos1S`

Examples

```r
# non-inferiority example using normal approximation of log-hazard
# ratio, see ?decision1S for all details
s <- 2
flat_prior <- mixnorm(c(1,0,100), sigma=s)
nL <- 233
theta_ni <- 0.4
theta_a <- 0
alpha <- 0.05
beta <- 0.2
za <- qnorm(1-alpha)
zb <- qnorm(1-beta)
nL <- round((s * (za + zb)/(theta_ni - theta_a))^2 )
theta_c <- theta_ni - za * s / sqrt(nL)

# double criterion design
# statistical significance (like NI design)
decl <- decision1S(1-alpha, theta_ni, lower.tail=TRUE)
# require mean to be at least as good as theta_c
```
description

The function sets up a 2 sample one-sided decision function with an arbitrary number of conditions on the difference distribution.

Usage

decision2S(pc = 0.975, qc = 0, lower.tail = TRUE,
link = c("identity", "logit", "log"))

oc2Sdecision(pc = 0.975, qc = 0, lower.tail = TRUE,
link = c("identity", "logit", "log"))

Arguments

- **pc** Vector of critical cumulative probabilities of the difference distribution.
- **qc** Vector of respective critical values of the difference distribution. Must match the length of pc.
- **lower.tail** Logical; if TRUE (default), probabilities are \(P(X \leq x) \), otherwise, \(P(X > x) \).
- **link** Enables application of a link function prior to evaluating the difference distribution. Can take one of the values identity (default), logit or log.

Details

This function creates a one-sided decision function on the basis of the difference distribution in a 2 sample situation. To support double criterion designs, see Neuenschwander et al., 2010, an arbitrary number of criterions can be given. The decision function demands that the probability mass below the critical value \(q_c \) of the difference \(x_1 - x_2 \) is at least \(pc \). Hence, for lower.tail=TRUE condition \(i \) is equivalent to

\[
P(x_1 - x_2 \leq q_{c,i}) > pc_i
\]
and the decision function is implemented as indicator function using the heavy-side step function \(H \) which is 0 for \(x \leq 0 \) and 1 for \(x > 0 \). As all conditions must be met, the final indicator function returns

\[
\Pi_i H_i(P(x_1 - x_2 \leq q_{c,i}) - p_{c,i}),
\]

which is 1 if all conditions are met and 0 otherwise. For \texttt{lower_tail=FALSE} differences must be greater than the given quantiles \(q_c \).

Note that whenever a link other than identity is requested, then the underlying densities are first transformed using the link function and then the probabilities for the differences are calculated in the transformed space. Hence, for a binary endpoint the default identity link will calculate risk differences, the \texttt{logit} link will lead to decisions based on the differences in logits corresponding to a criterion based on the log-odds. The \texttt{log} link will evaluate ratios instead of absolute differences which could be useful for a binary endpoint or counting rates. The respective critical quantiles \(q_c \) must be given on the transformed scale.

Value

The function returns a decision function which takes three arguments. The first and second argument are expected to be mixture (posterior) distributions from which the difference distribution is formed and all conditions are tested. The third argument determines if the function acts as an indicator function or if the function returns the distance from the decision boundary for each condition in log-space. That is, the distance is 0 at the decision boundary, negative for a 0 decision and positive for a 1 decision.

Functions

- \texttt{oc2S_decision}: Deprecated old function name. Please use \texttt{decision2S} instead.

References

See Also

Other design2S: \texttt{decision2S_boundary, oc2S, pos2S}

Examples

```r
# see Gsponer et al., 2010
priorT <- mixnorm(c(1, 0, 0.001), sigma=88, param="mn")
priorP <- mixnorm(c(1, -49, 20 ), sigma=88, param="mn")
# the success criteria is for delta which are larger than some
# threshold value which is why we set lower.tail=FALSE
successCrit <- decision2S(c(0.95, 0.5), c(0, 50), FALSE)
# the futility criterion acts in the opposite direction
futilityCrit <- decision2S(c(0.90), c(400), TRUE)
```
print(successCrit)
print(futilityCrit)

consider decision for specific outcomes
postP_interim <- postmix(priorP, n=10, m=-50)
postT_interim <- postmix(priorT, n=20, m=-80)
futilityCrit(postP_interim, postT_interim)
successCrit(postP_interim, postT_interim)

Binary endpoint with double criterion decision on log-odds scale
95% certain positive difference and an odds ratio of 2 at least
decL2 <- decision2S(c(0.95, 0.5), c(0, log(2)), lower.tail=FALSE, link="logit")
95% certain positive difference and an odds ratio of 3 at least
decL3 <- decision2S(c(0.95, 0.5), c(0, log(3)), lower.tail=FALSE, link="logit")

data scenario
post1 <- postmix(mixbeta(c(1, 1, 1)), n=40, r=10)
post2 <- postmix(mixbeta(c(1, 1, 1)), n=40, r=18)

positive outcome and a median odds ratio of at least 2 ...
decL2(post2, post1)
... but not more than 3
decL3(post2, post1)

decision2S_boundary
Decision Boundary for 2 Sample Designs

Description

The `decision2S_boundary` function defines a 2 sample design (priors, sample sizes, decision function) for the calculation of the decision boundary. A function is returned which calculates the critical value of the first sample y_1, as a function of the outcome in the second sample y_2. At the decision boundary, the decision function will change between 0 (failure) and 1 (success) for the respective outcomes.

Usage

```r
decision2S_boundary(prior1, prior2, n1, n2, decision, ...)
```

S3 method for class 'betaMix'

decision2S_boundary(prior1, prior2, n1, n2, decision, eps, ...)

S3 method for class 'normMix'

decision2S_boundary(prior1, prior2, n1, n2, decision, sigma1, sigma2, eps = 1e-06, Ngrid = 10, ...)

S3 method for class 'gammaMix'

decision2S_boundary(prior1, prior2, n1, n2, decision, eps = 1e-06, ...)

Arguments

prior1 Prior for sample 1.
prior2 Prior for sample 2.
n1, n2 Sample size of the respective samples. Sample size n1 must be greater than 0 while sample size n2 must be greater or equal to 0.
decision Two-sample decision function to use; see decision2S.
... Optional arguments.
eps Support of random variables are determined as the interval covering 1-eps probability mass. Defaults to 10^{-6}.
sigma1 The fixed reference scale of sample 1. If left unspecified, the default reference scale of the prior 1 is assumed.
sigma2 The fixed reference scale of sample 2. If left unspecified, the default reference scale of the prior 2 is assumed.
Ngrid Determines density of discretization grid on which decision function is evaluated (see below for more details).

Details

For a 2 sample design the specification of the priors, the sample sizes and the decision function, $D(y_1, y_2)$, uniquely defines the decision boundary

$$D_1(y_2) = \max_{y_1} \{D(y_1, y_2) = 1\},$$

which is the critical value of $y_{1,c}$ conditional on the value of y_2 whenever the decision $D(y_1, y_2)$ function changes its value from 0 to 1 for a decision function with lower.tail=TRUE (otherwise the definition is $D_1(y_2) = \max_{y_1} \{D(y_1, y_2) = 0\}$). The decision function may change at most at a single critical value for given y_2 as only one-sided decision functions are supported. Here, y_2 is defined for binary and Poisson endpoints as the sufficient statistic $y_2 = \sum_{i=1}^{n_2} y_{2,i}$ and for the normal case as the mean $\bar{y}_2 = 1/n_2 \sum_{i=1}^{n_2} y_{2,i}$.

Value

Returns a function with a single argument. This function calculates in dependence of the outcome y_2 in sample 2 the critical value $y_{1,c}$ for which the defined design will change the decision from 0 to 1 (or vice versa, depending on the decision function).

Methods (by class)

- betaMix: Applies for binomial model with a mixture beta prior. The calculations use exact expressions. If the optional argument eps is defined, then an approximate method is used which limits the search for the decision boundary to the region of $1-\text{eps}$ probability mass. This is useful for designs with large sample sizes where an exact approach is very costly to calculate.
- **normMix**: Applies for the normal model with known standard deviation σ and normal mixture priors for the means. As a consequence from the assumption of a known standard deviation, the calculation discards sampling uncertainty of the second moment. The function has two extra arguments (with defaults): $\epsilon_{\text{ps}} (10^{-6})$ and $N_{\text{grid}} (10)$. The decision boundary is searched in the region of probability mass $1 - \epsilon_{\text{ps}}$ for y_1 and y_2. The continuous decision function is evaluated at a discrete grid, which is determined by a spacing with $\delta_2 = \sigma^2 / \sqrt{N_{\text{grid}}}$. Once the decision boundary is evaluated at the discrete steps, a spline is used to interpolate the decision boundary at intermediate points.

- **gammaMix**: Applies for the Poisson model with a gamma mixture prior for the rate parameter. The function `decision2S_boundary` takes an extra argument ϵ_{ps} (defaults to 10^{-6}) which determines the region of probability mass $1 - \epsilon_{\text{ps}}$ where the boundary is searched for y_1 and y_2, respectively.

See Also

Other design2S: `decision2S`, `oc2S`, `pos2S`

Examples

```r
# see ?decision2S for details of example  
priorT <- mixnorm(c(1, 0, 0.001), sigma=88, param="mn")  
priorP <- mixnorm(c(1, -49, 20 ), sigma=88, param="mn")  
# the success criteria is for delta which are larger than some  
# threshold value which is why we set lower.tail=FALSE  
successCrit <- decision2S(c(0.95, 0.5), c(0, 50), FALSE)  
# the futility criterion acts in the opposite direction  
futilityCrit <- decision2S(c(0.90), c(40), TRUE)  

# success criterion boundary  
successBoundary <- decision2S_boundary(priorP, priorT, 10, 20, successCrit)  

# futility criterion boundary  
futilityBoundary <- decision2S_boundary(priorP, priorT, 10, 20, futilityCrit)  

curve(successBoundary(x), -25:25 - 49, xlab="y2", ylab="critical y1")  
curve(futilityBoundary(x), 1ty=2, add=TRUE)  

# hence, for mean in sample 2 of 10, the critical value for y1 is  
y1c <- futilityBoundary(-10)  

# around the critical value the decision for futility changes  
futilityCrit(postmix(priorP, m=y1c+1E-3, n=10), postmix(priorT, m=-10, n=20))  
futilityCrit(postmix(priorP, m=y1c-1E-3, n=10), postmix(priorT, m=-10, n=20))
```
Description

Calculates the Effective Sample Size (ESS) for a mixture prior. The ESS indicates how many experimental units the prior is roughly equivalent to.

Usage

ess(mix, method = c("elir", "moment", "morita"), ...)

Arguments

- mix: Prior (mixture of conjugate distributions).
- method: Selects the used method. Can be either elir (default), moment or morita.
- ... Optional arguments applicable to specific methods.

Details

The ESS is calculated using either the expected local information ratio (elir) Neuenschwander et al. (submitted), the moments approach or the method by Morita et al. (2008). The moments based method is the default method and provides conservative estimates of the ESS.

The elir approach is the only ESS which fulfills predictive consistency. The predictive consistency of the ESS requires that the ESS of a prior is the same as averaging the posterior ESS after a fixed amount of events over the prior predictive distribution from which the number of forward simulated events is subtracted. The elir approach results in ESS estimates which are neither conservative nor liberal. See the example section for a demonstration of predictive consistency.

For the moments method the mean and standard deviation of the mixture are calculated and then approximated by the conjugate distribution with the same mean and standard deviation. For conjugate distributions, the ESS is well defined. See the examples for a step-wise calculation in the beta mixture case.

The Morita method used here evaluates the mixture prior at the mode instead of the mean as proposed originally by Morita. The method may lead to very optimistic ESS values, especially if the mixture contains many components.

Supported Conjugate Prior-Likelihood Pairs

<table>
<thead>
<tr>
<th>Prior/Posterior</th>
<th>Likelihood</th>
<th>Predictive</th>
<th>Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>Binomial</td>
<td>Beta-Binomial</td>
<td>n, r</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal (fixed σ)</td>
<td>Normal</td>
<td>n, m, se</td>
</tr>
<tr>
<td>Gamma</td>
<td>Poisson</td>
<td>Gamma-Poisson</td>
<td>n, m</td>
</tr>
<tr>
<td>Gamma</td>
<td>Exponential</td>
<td>Gamma-Exp (not supported)</td>
<td>n, m</td>
</tr>
</tbody>
</table>

References

Examples

```r
# Conjugate Beta example
a <- 5
b <- 15
prior <- mixbeta(c(1, a, b))

ess(prior)
(a+b)

# Beta mixture example
bmix <- mixbeta(rob=c(0.2, 1, 1), inf=c(0.8, 10, 2))

ess(bmix, "elir")

ess(bmix, "moment")

# moments method is equivalent to
# first calculate moments
bmix_sum <- summary(bmix)
# then calculate a and b of a matching beta
ab_matched <- ms2beta(bmix_sum["mean"], bmix_sum["sd"])
# finally take the sum of a and b which are equivalent
# to number of responders/non-responders respectively
round(sum(ab_matched))

ess(bmix, method="morita")

# Predictive consistency of elir
## Not run:
n_forward <- 1E2
bmixPred <- preddist(bmix, n=n_forward)
pred_samp <- rmix(bmixPred, 1E3)
pred_ess <- sapply(pred_samp, function(r) ess(postmix(bmix, r=r, n=n_forward), "elir"))

ess(bmix, "elir")
mean(pred_ess) - n_forward

## End(Not run)

# Normal mixture example
nmix <- mixnorm(rob=c(0.5, 0, 2), inf=c(0.5, 3, 4), sigma=10)

ess(nmix, "elir")

ess(nmix, "moment")

## the reference scale determines the ESS
sigma(nmix) <- 20
ess(nmix)

# Gamma mixture example
```
Description

Creates a forest plot for gMAP analysis objects.

Usage

forest_plot(x, prob = 0.95, est = c("both", "MAP", "Mean", "none"),
model = c("stratified", "both", "meta"), point_est = c("median",
"mean"), size = 1.25, alpha = 0.5)

Arguments

x gMAP object.
prob confidence interval width and probability mass of credible intervals.
est can be set to one of both (default), MAP, Mean or none. Controls which model
estimates are to be included.
model controls which estimates are displayed per study. Either stratified (default),
both or meta.
point_est shown point estimate. Either median (default) or mean.
size controls point and linesize.
alpha transparency of reference line. Setting alpha=0 suppresses the reference line.

Details

The function creates a forest plot suitable for gMAP analyses. Note that the Meta-Analytic-Predictive
prior is included by default in the plot as opposed to only showing the estimated model mean. See
the examples below to obtain standard forest plots.

Also note that the plot internally flips the x and y-axis. Therefore, if you want to manipulate the
x-axis, you have to give commands affecting the y-axis (see examples).

Value

The function returns a ggplot2 plot object.
Customizing ggplot2 plots

The returned plot is a ggplot2 object. Please refer to the "Customizing Plots" vignette which is part of RBesT documentation for an introduction. For simple modifications (change labels, add reference lines, ...) consider the commands found in bayesplot-helpers. For more advanced customizations please use the ggplot2 package directly. A description of the most common tasks can be found in the R Cookbook and a full reference of available commands can be found at the ggplot2 documentation site.

See Also
gMAP

Examples

```r
# we consider the example AS MAP analysis
e_example("AS")

# default forest plot for a gMAP analysis
forest_plot(map_A5)

# standard forest plot (only stratified estimate and Mean)
forest_plot(map_A5, est=c("Mean"), model="stratified")

# to further customize these plots, first load bayesplot and ggplot
library(bayesplot)
library(ggplot2)

# to make plots with red colors, big fonts for presentations, suppress
# the x axis label and add another title (with a subtitle)
color_scheme_set("red")
theme_set(theme_default(base_size=16))
forest_plot(map_A5, size=2) +
  yaxis_title(FALSE) +
  ggtitle("Ankylosing Spondylitis Forest Plot",
           subtitle="Control Group Response Rate")

# the defaults are set with
color_scheme_set("blue")
theme_set(theme_default(base_size=12))
```

Meta-Analytic-Predictive Analysis for Generalized Linear Models

Description

Meta-Analytic-Predictive (MAP) analysis for generalized linear models suitable for normal, binary, or Poisson data. Model specification and overall syntax follows mainly glm conventions.
Usage

gMAP(formula, family = gaussian, data, weights, offset, tau.strata,
 tau.dist = c("HalfNormal", "TruncNormal", "Uniform", "Gamma",
 "InvGamma", "LogNormal", "TruncCauchy", "Exp", "Fixed"), tau.prior,
 tau.strata.pred = 1, beta.prior, prior_PD = FALSE,
 REdist = c("normal", "t"), t.df = 5, contrasts = NULL,
 iter = getOption("RBesT.MC.iter", 6000),
 warmup = getOption("RBesT.MC.warmup", 2000),
 thin = getOption("RBesT.MC.thin", 4),
 init = getOption("RBesT.MC.init", 1),
 chains = getOption("RBesT.MC.chains", 4),
 cores = getOption("mc.cores", 1L))

S3 method for class 'gMAP'
print(x, digits = 3, probs = c(0.025, 0.5, 0.975), ...)

S3 method for class 'gMAP'
fitted(object, type = c("response", "link"),
 probs = c(0.025, 0.5, 0.975), ...)

S3 method for class 'gMAP'
coef(object, probs = c(0.025, 0.5, 0.975), ...)

S3 method for class 'gMAP'
as.matrix(x, ...)

S3 method for class 'gMAP'
summary(object, type = c("response", "link"),
 probs = c(0.025, 0.5, 0.975), ...)

Arguments

formula the model formula describing the linear predictor and encoding the grouping;

family the family of distributions defining the statistical model (binomial, gaussian,

data optional data frame containing the variables of the model. If not found in

weights optional weight vector; see details below.

offset offset term in statistical model used for Poisson data

tau.strata sets the exchangability stratum per study. That is, it is expected that each study
 belongs to a single stratum. Default is to assign all studies to stratum 1. See
 section differential heterogeneity below.

tau.dist type of prior distribution for tau; supported priors are HalfNormal (default),
 TruncNormal, Uniform, Gamma, InvGamma, LogNormal, TruncCauchy, Exp and Fixed.
tau.prior: parameters of prior distribution for tau; see section prior specification below.

tau.strata.pred: the index for the prediction stratum; default is 1.

beta.prior: mean and standard deviation for normal priors of regression coefficients, see section prior specification below.

prior_PD: logical to indicate if the prior predictive distribution should be sampled (no conditioning on the data). Defaults to FALSE.

REdist: type of random effects distribution. Normal (default) or t.

t.df: degrees of freedom if random-effects distribution is t.

contrasts: an optional list; See contrasts.arg from model.matrix.default.

iter: number of iterations (including warmup).

warmup: number of warmup iterations.

thin: period of saving samples.

init: positive number to specify uniform range on unconstrained space for random initialization. See stan.

chains: number of Markov chains.

cores: number of cores for parallel sampling of chains.

x, object: gMAP analysis object created by gMAP function

digits: number of displayed significant digits.

probs: defines quantiles to be reported.

...: optional arguments are ignored

type: sets reported scale (response (default) or link).

Details

The meta-analytic-predictive (MAP) approach derives a prior from historical data using a hierarchical model. The statistical model is formulated as a generalized linear mixed model for binary, normal (with fixed σ) and Poisson endpoints:

$$y_{ih}|\theta_{ih} \sim f(y_{ih}|\theta_{ih})$$

Here, $i = 1,\ldots,N$ is the index for observations, and $h = 1,\ldots,H$ is the index for the grouping (usually studies). The model assumes the linear predictor for a transformed mean as

$$g(\theta_{ih}; x_{ih}, \beta) = x_{ih} \beta + \epsilon_h$$

with x_{ih} being the row vector of k covariates for observation i. The variance component is assumed by default normal

$$\epsilon_h \sim N(0, \tau^2), \quad h = 1,\ldots,H$$

Lastly, the Bayesian implementation assumes independent normal priors for the k regression coefficients and a prior for the between-group standard deviation τ (see taud.dist for available distributions).
The MAP prior will then be derived from the above model as the conditional distribution of θ_\star given the available data and the vector of covariates x_\star defining the overall intercept

$$\theta_\star | x_\star, y.$$

A simple and common case arises for one observation (summary statistic) per trial. For a normal endpoint, the model then simplifies to the standard normal-normal hierarchical model. In the above notation, $i = h = 1, \ldots, H$ and

$$y_h | \theta_h \sim N(\theta_h, s_h^2)$$

$$\theta_h = \mu + \epsilon_h$$

$$\epsilon_h \sim N(0, \tau^2),$$

where the more common μ is used for the only (intercept) parameter β_1. Since there are no covariates, the MAP prior is simply $P(\theta_\star | y_1, \ldots, y_H)$. The hierarchical model is a compromise between the two extreme cases of full pooling ($\tau = 0$, full borrowing, no discounting) and no pooling ($\tau = \infty$, no borrowing, stratification). The information content of the historical data grows with H (number of historical data items) indefinitely for full pooling whereas no information is gained in a stratified analysis. For a fixed τ, the maximum effective sample size of the MAP prior is n_∞ ($H \to \infty$), which for a normal endpoint with fixed σ is

$$n_\infty = \left(\frac{\tau^2}{\sigma^2} \right)^{-1},$$

(Neuenschwander et al., 2010). Hence, the ratio τ/σ limits the amount of information a MAP prior is equivalent to. This allows for a classification of τ values in relation to σ, which is crucial to define a prior P_τ. The following classification is useful in a clinical trial setting:

<table>
<thead>
<tr>
<th>Heterogeneity</th>
<th>τ/σ</th>
<th>n_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>0.0625</td>
<td>256</td>
</tr>
<tr>
<td>moderate</td>
<td>0.125</td>
<td>64</td>
</tr>
<tr>
<td>substantial</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>large</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>very large</td>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

The above formula for n_∞ assumes a known τ. This is unrealistic as the between-trial heterogeneity parameter is often not well estimable, in particular if the number of trials is small (H small). The above table helps to specify a prior distribution for τ appropriate for the given context which defines the crucial parameter σ. For binary and Poisson endpoints, normal approximations can be used to determine σ. See examples below for concrete cases.

The design matrix X is defined by the formula for the linear predictor and is always of the form $\text{response} \sim \text{predictor} | \text{grouping}$, which follows glm conventions. The syntax has been extended to include a specification of the grouping (for example study) factor of the data with a horizontal bar, $. The bar separates the optionally specified grouping level, i.e. in the binary
endpoint case `cbind(r, n-r) ~ 1 | study`. By default it is assumed that each row corresponds to an individual group (for which an individual parameter is estimated). Specifics for the different endpoints are:

normal family=`gaussian` assumes an identity link function. The response should be given as matrix with two columns with the first column being the observed mean value y_{ih} and the second column the standard error se_{ih} (of the mean). Additionally, it is recommended to specify with the weight argument the number of units which contributed to the (mean) measurement y_{ih}. This information is used to estimate σ.

binary family=`binomial` assumes a logit link function. The response must be given as two-column matrix with number of responders r (first column) and non-responders $n - r$ (second column).

Poisson family=`poisson` assumes a log link function. The response is a vector of counts. The total exposure times can be specified by an offset, which will be linearly added to the linear predictor. The offset can be given as part of the formula, $y \sim 1 + \text{offset}(\log(\text{exposure}))$ or as the offset argument to `gmap`. Note that the exposure unit must be given as log-offset.

Value

The function returns a S3 object of type `gMAP`. See the methods section below for applicable functions to query the object.

Methods (by generic)

- `print`: displays a summary of the gMAP analysis.
- `fitted`: returns the quantiles of the posterior shrinkage estimates for each data item used during the analysis of the given `gmap` object.
- `coef`: returns the quantiles of the predictive distribution. User can choose with `type` if the result is on the response or the link scale.
- `as.matrix`: extracts the posterior sample of the model.
- `summary`: returns the summaries of a gMAP. analysis. Output is a `gMAPsummary` object, which is a list containing

 - `tau`: posterior summary of the heterogeneity standard deviation
 - `beta`: posterior summary of the regression coefficients
 - `theta.pred`: summary of the predictive distribution (given in dependence on the `type` argument either on response or link scale)
 - `theta`: posterior summary of the mean estimate (also depends on the `type` argument)

Differential Discounting

The above model assumes the same between-group standard deviation τ, which implies that the data are equally relevant. This assumption can be relaxed to more than one τ. That is,

$$\epsilon_h \sim N(0, \tau^2_{s(h)})$$

where $s(h)$ assignes group h to one of S between-group heterogeneity strata.
For example, in a situation with two randomized and four observational studies, one may want to assume \(\tau_1 \) (for trials 1 and 2) and \(\tau_2 \) (for trials 3-6) for the between-trial standard deviations of the control means. More heterogeneity (less relevance) for the observational studies can then be expressed by appropriate priors for \(\tau_1 \) and \(\tau_2 \). In this case, \(S = 2 \) and the strata assignments (see `tau.strata` argument) would be \(s(1) = s(2) = 1, s(3) = \ldots = s(6) = 2 \).

Prior Specification

The prior distribution for the regression coefficients \(\beta \) is normal.

- If a single number is given, then this is used as the standard deviation and the default mean of 0 is used.
- If a vector is given, it must be of the same length as number of covariates defined and is used as standard deviation.
- If a matrix with a single row is given, its first row will be used as mean and the second row will be used as standard deviation for all regression coefficients.
- Lastly, a two-column matrix (mean and standard deviation columns) with as many columns as regression coefficients can be given.

It is recommended to always specify a `beta.prior`. Per default a mean of 0 is set. The standard deviation is set to 2 for the binary case, to \(100 \times \text{sd}(y) \) for the normal case and to \(\text{sd}(\log(y + 0.5 + \text{offset})) \) for the Poisson case.

For the between-trial heterogeneity \(\tau \) prior, a dispersion parameter must always be given for each exchangeability stratum. For the different `tau.prior` distributions, two parameters are needed out of which one is set to a default value if applicable:

<table>
<thead>
<tr>
<th>Prior</th>
<th>a</th>
<th>b</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>HalfNormal</td>
<td>(\mu = 0)</td>
<td>(\sigma)</td>
<td></td>
</tr>
<tr>
<td>TruncNormal</td>
<td>(\mu)</td>
<td>(\sigma)</td>
<td>(\mu = 0)</td>
</tr>
<tr>
<td>Uniform</td>
<td>a</td>
<td>b</td>
<td>a = 0</td>
</tr>
<tr>
<td>Gamma</td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td></td>
</tr>
<tr>
<td>InvGamma</td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td></td>
</tr>
<tr>
<td>LogNormal</td>
<td>(\mu_{\log})</td>
<td>(\sigma_{\log})</td>
<td></td>
</tr>
<tr>
<td>TruncCauchy</td>
<td>(\mu)</td>
<td>(\sigma)</td>
<td>(\mu = 0)</td>
</tr>
<tr>
<td>Exp</td>
<td>(\beta)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fixed</td>
<td>a</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

For a prior distribution with a default location parameter, a vector of length equal to the number of exchangeability strata can be given. Otherwise, a two-column matrix with as many rows as exchangeability strata must be given, except for a single \(\tau \) stratum, for which a vector of length two defines the parameters \(a \) and \(b \).

Random seed

The MAP analysis is performed using Markov-Chain-Monte-Carlo (MCMC) in `rstan`. MCMC is a stochastic algorithm. To obtain exactly reproducible results you must use the `set.seed` function before calling `gMAP`. See `RBesT` overview page for global options on setting further MCMC
simulation parameters.

References

See Also

plot.gMAP, forest_plot, automixfit, predict.gMAP

Examples

Binary data example 1

Mean response rate is ~0.25. For binary endpoints
a conservative choice for tau is a HalfNormal(0,1) as long as
the mean response rate is in the range of 0.2 to 0.8. For
very small or large rates consider the n_infinity approach
illustrated below.
for exact reproducible results, the seed must be set
set.seed(34563)
map_AS <- gMAP(cbind(r, n-r) ~ 1 | study,
 family=binomial,
 data=AS,
 tau.dist="HalfNormal", tau.prior=1,
 beta.prior=2,
 ## ensure fast example runtime (use defaults)
 ## please ignore the warning of less than 1000 draws
 warmup=500, iter=1000, chains=2, thin=1)
print(map_AS)

obtain numerical summaries
map_sum <- summary(map_AS)
print(map_sum)
names(map_sum)
[1] "tau" "beta" "theta.pred" "theta"
map_sum$theta.pred

Not run:
graphical model checks (returns list of ggplot2 plots)
map_checks <- plot(map_AS)
forest plot with shrinkage estimates
map Checks$forest_model
density of MAP prior on response scale
map Checks$densityThetaStar
density of MAP prior on link scale
map Checks$densityThetaStarLink
End(Not run)

obtain shrinkage estimates
fitted(map_AS)

regression coefficients
coef(map_AS)

finally fit MAP prior with parametric mixture
map_mix <- mixfit(map_AS, Ne=2)
plot(map_mix)$mix

Not run:
optionally select number of components automatically via AIC
map_automix <- automixfit(map_AS)
plot(map_automix)$mix

End(Not run)

Normal example 2, see normal vignette

Prior considerations

The general principle to derive a prior for tau can be based on the
n_infinity concept as discussed in Neuenschwander et al., 2010.
This assumes a normal approximation which applies for the colitis
data set as:
p_bar <- mean(with(colitis, r/n))
s <- round(1/sqrt(p_bar * (1-p_bar)), 1)
s is the approximate sampling standard deviation and a
conservative prior is tau ~ HalfNormal(0,s/2)
tau_prior_sd <- s/2

Evaluate HalfNormal prior for tau
tau_cat <- c(pooling=0,
 small=0.0625,
 moderate=0.125,
 substantial=0.25,
 large=0.5,
 veryLarge=1,
 stratified=Inf)

Interval probabilities (basically saying we are assuming
heterogeniety to be smaller than very large)
diff(2*pnorm(tau_cat * s, 0, tau_prior_sd))
Cumulative probabilities as 1-F
1 - 2*(pnorm(tau_cat * s, 0, tau_prior_sd) - 0.5)
Description

Read and set the likelihood distribution corresponding to the conjugate prior distribution.

Usage

```r
likelihood(mix)
likelihood(mix) <- value
```

Arguments

- `mix` Prior mixture distribution.
- `value` New likelihood. **Should** only be changed for Gamma priors as these are supported with either Poisson (`value="poisson"`) or Exponential (`value="exp"`) likelihoods.

Details

If the prior and posterior distributions are in the same family, then the prior distribution is called a conjugate prior for the likelihood function.

Supported Conjugate Prior-Likelihood Pairs

<table>
<thead>
<tr>
<th>Prior/Posterior</th>
<th>Likelihood</th>
<th>Predictive</th>
<th>Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>Binomial</td>
<td>Beta-Binomial</td>
<td>n, r</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal (fixed (\sigma))</td>
<td>Normal</td>
<td>n, m, se</td>
</tr>
<tr>
<td>Gamma</td>
<td>Poisson</td>
<td>Gamma-Poisson</td>
<td>n, m</td>
</tr>
<tr>
<td>Gamma</td>
<td>Exponential</td>
<td>Gamma-Exp (not supported)</td>
<td>n, m</td>
</tr>
</tbody>
</table>

Examples

```r
# Gamma mixture
gmix <- mixgamma(c(0.3, 20, 4), c(0.7, 50, 10))

# read out conjugate partner
likelihood(gmix)

es(gmix)

# set conjugate partner
likelihood(gmix) <- "exp"

# ... which changes the interpretation of the mixture
es(gmix)
```
lodds

Logit (log-odds) and inverse-logit function.

Description
Calculates the logit (log-odds) and inverse-logit.

Usage

logit(mu)

inv_logit(eta)

Arguments

mu
A numeric object with probabilities, with values in the range [0,1]. Missing values (NAs) are allowed.

eta
A numeric object with log-odds values, with values in the range [-Inf,Inf]. Missing values (NAs) are allowed.

Details
Values of mu equal to 0 or 1 will return -Inf or Inf respectively.

Value
A numeric object of the same type as mu and eta containing the logits or inverse logit of the input values. The logit and inverse transformation equates to

\[
\logit(\mu) = \log(\mu/(1 - \mu))
\]

\[
\logit^{-1}(\eta) = \exp(\eta)/(1 + \exp(\eta))
\]

Examples
logit(0.2)
inv_logit(-1.386)
mix

Mixture Distributions

Description
Density, cumulative distribution function, quantile function and random number generation for supported mixture distributions. (d/p/q/r)mix are generic and work with any mixture supported by BesT (see table below).

Usage

\[
\begin{align*}
dmix(mix, x, log = FALSE) \\
\text{pmix}(mix, q, lower.tail = TRUE, log.p = FALSE) \\
\text{qmix}(mix, p, lower.tail = TRUE, log.p = FALSE) \\
\text{rmix}(mix, n)
\end{align*}
\]

Arguments
- **mix**: mixture distribution object
- **x, q**: vector of quantiles
- **log, log.p**: logical; if TRUE (not default), probabilities \(p \) are given as \(\log(p) \)
- **lower.tail**: logical; if TRUE (default), probabilities are \(P[X \leq x] \) otherwise, \(P[X > x] \)
- **p**: vector of probabilities
- **n**: number of observations. If length(n) > 1, the length is taken to be the number required
- **...**: components to subset given mixture.
- **rescale**: logical; if TRUE, mixture weights will be rescaled to sum to 1

Details
A mixture distribution is defined as a linear superposition of \(K \) densities of the same distributional class. The mixture distributions supported have the form

\[
f(x, w, a, b) = \sum_{k=1}^{K} w_k f_k(x, a_k, b_k).
\]

The \(w_k \) are the mixing coefficients which must sum to 1. Moreover, each density \(f \) is assumed to be parametrized by two parameters such that each component \(k \) is defined by a triplet, \((w_k, a_k, b_k)\).
Individual mixture components can be extracted using the \([\cdot]\) operator, see examples below.

The supported densities are normal, beta and gamma which can be instantiated with \texttt{mixnorm}, \texttt{mixbeta}, or \texttt{mixgamma}, respectively. In addition, the respective predictive distributions are supported. These can be obtained by calling \texttt{preddist} which returns appropriate normal, beta-binomial or Poisson-gamma mixtures.

For convenience a summary function is defined for all mixtures. It returns the mean, standard deviation and the requested quantiles which can be specified with the argument \texttt{probs}.

\textbf{Value}

\texttt{dmix} gives the weighted sum of the densities of each component.

\texttt{pmix} calculates the distribution function by evaluating the weighted sum of each components distribution function.

\texttt{qmix} returns the quantile for the given \(p\) by using that the distribution function is monotonous and hence a gradient based minimization scheme can be used to find the matching quantile \(q\).

\texttt{rmix} generates a random sample of size \(n\) by first sampling a latent component indicator in the range \(1..K\) for each draw and then the function samples from each component a random draw using the respective sampling function. The \texttt{rnorm} function returns the random draws as numerical vector with an additional attribute \texttt{ind} which gives the sampled component indicator.

\textbf{Supported Conjugate Prior-Likelihood Pairs}

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Prior/Posterior & Likelihood & Predictive & Summaries \\
\hline
Beta & Binomial & Beta-Binomial & \(n, r\) \\
Normal & Normal (fixed \(\sigma\)) & Normal & \(n, m, se\) \\
Gamma & Poisson & Gamma-Poisson & \(n, m\) \\
Gamma & Exponential & Gamma-Exp \texttt{(not supported)} & \(n, m\) \\
\hline
\end{tabular}
\end{center}

\textbf{See Also}

\texttt{plot.mix}

Other \texttt{mixdist}: \texttt{mixbeta, mixcombine, mixgamma, mixnorm, plot.mix}

\textbf{Examples}

```r
## a beta mixture
bm <- mixbeta(weak=c(0.2, 2, 10), inf=c(0.4, 10, 100), inf2=c(0.4, 30, 80))

## extract the two most informative components
bm[[c(2,3)]]
## rescaling needed in order to plot
plot(bm[[c(2,3)],rescale=TRUE])

summary(bm)
```
mixbeta

Beta Mixture Density

Description

The Beta mixture density and auxiliary functions.

Usage

```r
mixbeta(..., param = c("ab", "ms", "mn"))
ms2beta(m, s, drop = TRUE)
mn2beta(m, n, drop = TRUE)
```

```r
## S3 method for class 'betaMix'
summary(object, probs = c(0.025, 0.5, 0.975), ...)
```

```r
## S3 method for class 'betaBinomialMix'
summary(object, probs = c(0.025, 0.5, 0.975), ...)
```

Arguments

- `...` List of mixture components.
- `param` Determines how the parameters in the list are interpreted. See details.
- `m` Vector of means of beta mixture components.
- `s` Vector of standard deviations of beta mixture components.
- `drop` Delete the dimensions of an array which have only one level.
- `n` Vector of number of observations.
- `object` Beta mixture object.
- `probs` Quantiles reported by the summary function.

Details

Each entry in the ... argument list is expected to be a triplet of numbers which defines the weight w_k, first and second parameter of the mixture component k. A triplet can optionally be named which will be used appropriately.

The first and second parameter can be given in different parametrizations which is set by the param option:

- `ab` Natural parametrization of Beta density (a=shape1 and b=shape2). Default.
- `ms` Mean and standard deviation, $m = a/(a + b)$ and $s = \sqrt{\frac{m(1-m)}{1+n}}$, where $n = a + b$ is the number of observations. Note that s must be less than $\sqrt{m(1-m)}$.
- `mn` Mean and number of observations, $n = a + b$.
mixcombine

Combine Mixture Distributions

Description

Combining mixture distributions of the same class to form a new mixture.

Usage

mixcombine(..., weight, rescale = TRUE)

Arguments

... arbitrary number of mixtures with same distributional class. Each component with values of mixture weight and model parameters.

weight relative weight for each component in new mixture distribution. The vector must be of the same length as input mixtures components. The default value gives equal weight to each component.

rescale boolean value indicates if the weights are rescaled to sum to 1.
Details

Combines mixtures of the same class of random variable to form a new mixture distribution.

Value

A R-object with the new mixture distribution.

See Also

robustify

Other mixdist: mixbeta, mixgamma, mixnorm, mix, plot.mix

Examples

beta with two informative components
bm <- mixbeta(inf=c(0.5, 10, 100), inf2=c(0.5, 30, 80))

robustified with mixcombine, i.e. a 10% uninformative part added
unif <- mixbeta(roB=c(1,1,1))
mixcombine(bm, unif, weight=c(9, 1))
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x].
p vector of cumulative probabilities for which quantiles are computed
n size of random sample

Details

If \(x_1 \sim f_1(x) \) and \(x_2 \sim f_2(x) \), the density of the difference \(x \equiv x_1 - x_2 \) is given by the convolution

\[
f(x) = \int f_1(x) f_2(x-u) \, du = (f_1 * f_2)(x).\]

The cumulative distribution function equates to

\[
F(x) = \int F_1(x+u) f_2(u) \, du.
\]

Both integrals are performed over the full support of the densities and use the numerical integration function `integrate`.

Value

Respective density, quantile, cumulative density or random numbers.

Examples

1. Difference between two beta distributions, i.e. Pr(mix1 - mix2 > 0)
mix1 <- mixbeta(c(1, 11, 4))
mix2 <- mixbeta(c(1, 8, 7))
pmixdiff(mix1, mix2, 0, FALSE)

Interval probability, i.e. Pr(0.3 > mix1 - mix2 > 0)
pmixdiff(mix1, mix2, 0.3) - pmixdiff(mix1, mix2, 0)

2. two distributions, one of them a mixture
m1 <- mixbeta(c(1,30,50))
m2 <- mixbeta(c(0.75,20,50),c(0.25,1,1))

random sample of difference
set.seed(23434)
rM <- rmixdiff(m1, m2, 1E4)

histogram of random numbers and exact density
hist(rM,prob=TRUE,new=TRUE,nclass=40)
curve(dmixdiff(m1,m2,x), add=TRUE, n=51)

threshold probabilities for difference, at 0 and 0.2
pmixdiff(m1, m2, 0)
mean(rM<0)

pmixdiff(m1,m2,0.2)
mean(rM<0.2)
median of difference
mdn <- qmixdiff(m1, m2, 0.5)
mean(rM<mdn)

95%-interval
qmixdiff(m1, m2, c(0.025, 0.975))
quantile(rM, c(0.025, 0.975))

mixfit
Fit of Mixture Densities to Samples

Description

Expectation-Maximization (EM) based fitting of parametric mixture densities to numerical samples. This provides a convenient approach to approximate MCMC samples with a parametric mixture distribution.

Usage

mixfit(sample, type = c("norm", "beta", "gamma"), thin, ...)

Default S3 method:
mixfit(sample, type = c("norm", "beta", "gamma"), thin, ...)

S3 method for class 'gMAP'
mixfit(sample, type, thin, ...)

S3 method for class 'gMAPpred'
mixfit(sample, type, thin, ...)

S3 method for class 'array'
mixfit(sample, type, thin, ...)

Arguments

- **sample**: Sample to be fitted.
- **type**: Mixture density to use. Can be either norm, beta or gamma.
- **thin**: Thinning applied to the sample. See description for default behavior.
- **...**: Parameters passed to the low-level EM fitting functions. Parameter `nc` is mandatory.
Details

Parameters of EM fitting functions

Nc Number of mixture components. Required parameter.

mix_init Initial mixture density. If missing (default) then a k-nearest-neighbor algorithm is used to find an initial mixture density.

Ninit Number of data points used for initialization. Defaults to 50.

verbose If set to TRUE the function will inform about fitting process

maxIter Maximal number of iterations. Defaults to 500.

tol Defines a convergence criteria as an upper bound for the change in the log-likelihood, i.e. once the derivative (with respect to iterations) of the log-likelihood falls below tol, the function declares convergence and stops.

eps Must be a triplet of numbers which set the desired accuracy of the inferred parameters per mixture component. See below for a description of the parameters used during EM. EM is stopped once a running mean of the absolute difference between the last successive Neps estimates is below the given eps for all parameters. Defaults to 5E-3 for each parameter.

Neps Number of iterations used for the running mean of parameter estimates to test for convergence. Defaults to 5.

By default the EM convergence is declared when the desired accuracy of the parameters has been reached over the last Neps estimates. If tol and Neps is specified, then whatever criterion is met first will stop the EM.

The parameters per component k used internally during fitting are for the different EM procedures:

- **normal** logit\(w_k\), \(\mu_k\), log\(\sigma_k\)
- **beta** logit\(w_k\), logit\(\mu_k\), log\(n_k\)
- **gamma** logit\(w_k\), log\(\alpha_k\), log\(\beta_k\)

Note: Whenever no mix_init argument is given, the EM fitting routines assume that the data vector is given in random order. If in the unlikely event that the EM gets caught in a local extremum, then random reordering of the data vector may alleviate the issue.

Value

A mixture object according the requested type is returned. The object has additional information attached, i.e. the log-likelihood can be queried and diagnostic plots can be generated. See links below.

Methods (by class)

- **default**: Performs an EM fit for the given sample. Thinning is applied only if thin is specified.
- **gMAP**: Fits the default predictive distribution from a gMAP analysis. Automatically obtains the predictive distribution of the intercept only case on the response scale mixture from the \texttt{gMAP} object. For the binomial case a beta mixture, for the gaussian case a normal mixture and for the Poisson case a gamma mixture will be used. In the gaussian case, the resulting normal mixture will set the reference scale to the estimated sigma in \texttt{gMAP} call.
• **gMAPpred**: Fits a mixture density for each prediction from the gMAP prediction.

• **array**: Fits a mixture density for an MCMC sample. It is recommended to provide a thinning argument which roughly yields independent draws (i.e. use acf to identify a thinning lag with small auto-correlation). The input array is expected to have 3 dimensions which are nested as iterations, chains, and draws.

References

See Also

Other EM: `plot.EM`

Examples

```r
bmix <- mixbeta(rob=c(0.2, 1, 1), inf=c(0.8, 10, 2))
bsamp <- rmix(bmix, 1000)
bfit <- mixfit(bsamp, type="beta", Nc=2)

# diagnostic plots can easily by generated from the EM fit with
bfit.check <- plot(bfit)

names(bfit.check)

# check convergence of parameters
bfit.check$mix
bfit.check$mixens

# obtain the log-likelihood
logLik(bfit)

# or AIC
AIC(bfit)
```

mixgamma

The Gamma Mixture Distribution

Description

The gamma mixture density and auxiliary functions.
mixgamma

Usage

mixgamma(..., param = c("ab", "ms", "mn"), likelihood = c("poisson", "exp"))

ms2gamma(m, s, drop = TRUE)

mn2gamma(m, n, likelihood = c("poisson", "exp"), drop = TRUE)

S3 method for class 'gammaMix'
summary(object, probs = c(0.025, 0.5, 0.975), ...)

S3 method for class 'gammaPoissonMix'
summary(object, probs = c(0.025, 0.5, 0.975), ...)

Arguments

... List of mixture components.

param Determines how the parameters in the list are interpreted. See details.

likelihood Defines with what likelihood the Gamma density is used (Poisson or Exp). Defaults to poisson.

m Vector of means of the Gamma mixture components

s Vector of standard deviations of the gamma mixture components,

drop Delete the dimensions of an array which have only one level.

n Vector of sample sizes of the Gamma mixture components.

object Gamma mixture object.

probs Quantiles reported by the summary function.

Details

Each entry in the ... argument list is expected to be a triplet of numbers which defines the weight \(w_k \), first and second parameter of the mixture component \(k \). A triplet can optionally be named which will be used appropriately.

The first and second parameter can be given in different parametrizations which is set by the param option:

ab Natural parametrization of Gamma density (a=shape and b=rate). Default.

ms Mean and standard deviation, \(m = a/b \) and \(s = \sqrt{a/b} \).

mn Mean and number of observations. Translation to natural parameter depends on the likelihood argument. For a Poisson likelihood \(n = b \) (and \(a = m \cdot n \)), for an Exp likelihood \(n = a \) (and \(b = n/m \)).

Value

mixgamma returns a gamma mixture with the specified mixture components. ms2gamma and mn2gamma return the equivalent natural a and b parametrization given parameters m, s, or n.
mixnorm

Normal Mixture Density

Description

The normal mixture density and auxiliary functions.

Usage

mixnorm(..., sigma, param = c("ms", "mn"))

mn2norm(m, n, sigma, drop = TRUE)

S3 method for class 'normMix'
summary(object, probs = c(0.025, 0.5, 0.975), ...)

S3 method for class 'normMix'

See Also

Other mixdist: mixbeta, mixcombine, mixnorm, mix.plot.mix

Examples

Gamma mixture with robust and informative component
gmix <- mixgamma(rob=c(0.3, 20, 4), inf=c(0.7, 50, 10))

objects can be printed
gmix
or explicitly
print(gmix)

summaries are defined
summary(gmix)

sub-components may be extracted
by component number
gmix[[2]]
or component name
gmix["inf"]

alternative mean and standard deviation parametrization
gmsMix <- mixgamma(rob=c(0.5, 8, 0.5), inf=c(0.5, 9, 2), param="ms")

or mean and number of observations parametrization
gmnMix <- mixgamma(rob=c(0.2, 2, 1), inf=c(0.8, 2, 5), param="mn")

and mixed parametrizations are also possible
gfMix <- mixgamma(rob1=c(0.15, mn2gamma(2, 1)), rob2=c(0.15, ms2gamma(2, 5)), inf=c(0.7, 50, 10))
sigma(object, ...)

sigma(object) <- value

Arguments

... list of mixture components.
sigma reference scale.
param determines how the parameters in the list are interpreted. See details.
m vector of means
n vector of sample sizes.
drop delete the dimensions of an array which have only one level.
object normal mixture object.
probs quantiles reported by the summary function.
value new value of the reference scale sigma.

Details

Each entry in the ... argument list is expected to be a triplet of numbers which defines the weight \(w_k \), first and second parameter of the mixture component \(k \). A triplet can optionally be named which will be used appropriately.

The first and second parameter can be given in different parametrizations which is set by the param option:

- **ms** Mean and standard deviation. Default.
- **mn** Mean and number of observations. \(n \) determines \(s \) via the relation \(s = \sigma / \sqrt{n} \) with \(\sigma \) being the fixed reference scale.

The reference scale \(\sigma \) is the fixed standard deviation in the one-parameter normal-normal model (observation standard deviation). The function sigma can be used to query the reference scale and may also be used to assign a new reference scale, see examples below. In case the sigma is not specified, the user has to supply sigma as argument to functions which require a reference scale.

Value

Returns a normal mixture with the specified mixture components. mn2norm returns the mean and standard deviation given a mean and sample size parametrization.

Functions

- **sigma<-.** Allows to assign a new reference scale sigma.

See Also

Other mixdist: mixbeta, mixcombine, mixgamma, mix, plot.mix
Examples

```r
nm <- mixnorm(rob=c(0.2, 0, 2), inf=c(0.8, 2, 2), sigma=5)

print(nm)
summary(nm)
plot(nm)

set.seed(1)
mixSamp <- rmix(nm, 500)
plot(nm, samp=mixSamp)

# support defined by quantiles
qmix(nm, c(0.01, 0.99))

# density function
dmix(nm, seq(-5,5,by=2))

# distribution function
pmix(nm, seq(-5,5,by=2))

# the reference scale can be changed (it determines the ESS)
ess(nm)
sigma(nm) <- 10
ess(nm)
```

Operating Characteristics for 1 Sample Design

Description

The `oc1S` function defines a 1 sample design (prior, sample size, decision function) for the calculation of the frequency at which the decision is evaluated to 1 conditional on assuming known parameters. A function is returned which performs the actual operating characteristics calculations.

Usage

```r
oc1S(prior, n, decision, ...)
```

S3 method for class 'betaMix'

```r
oc1S(prior, n, decision, ...)
```

S3 method for class 'normMix'

```r
oc1S(prior, n, decision, sigma, eps = 1e-06, ...)
```

S3 method for class 'gammaMix'

```r
oc1S(prior, n, decision, eps = 1e-06, ...)
```
Arguments

- **prior**: Prior for analysis.
- **n**: Sample size for the experiment.
- **decision**: One-sample decision function to use; see `decision1S`.
- ... Optional arguments.
- **sigma**: The fixed reference scale. If left unspecified, the default reference scale of the prior is assumed.
- **eps**: Support of random variables are determined as the interval covering 1-eps probability mass. Defaults to 10^{-6}.

Details

The `oc1S` function defines a 1 sample design and returns a function which calculates its operating characteristics. This is the frequency with which the decision function is evaluated to 1 under the assumption of a given true distribution of the data defined by a known parameter θ. The 1 sample design is defined by the prior, the sample size and the decision function, $D(y)$. These uniquely define the decision boundary, see `decision1S_boundary`.

When calling the `oc1S` function, then internally the critical value y_c (using `decision1S_boundary`) is calculated and a function is returns which can be used to calculated the desired frequency which is evaluated as

$$F(y_c | \theta).$$

Value

Returns a function with one argument `theta` which calculates the frequency at which the decision function is evaluated to 1 for the defined 1 sample design. Note that the returned function takes vectors arguments.

Methods (by class)

- **betaMix**: Applies for binomial model with a mixture beta prior. The calculations use exact expressions.
- **normMix**: Applies for the normal model with known standard deviation σ and a normal mixture prior for the mean. As a consequence from the assumption of a known standard deviation, the calculation discards sampling uncertainty of the second moment. The function `oc1S` has an extra argument `eps` (defaults to 10^{-6}). The critical value y_c is searched in the region of probability mass $1-\text{eps}$ for y.
- **gammaMix**: Applies for the Poisson model with a gamma mixture prior for the rate parameter. The function `oc1S` takes an extra argument `eps` (defaults to 10^{-6}) which determines the region of probability mass $1-\text{eps}$ where the boundary is searched for y.

See Also

Other design1S: `decision1S_boundary, decision1S, pos1S`
Examples

non-inferiority example using normal approximation of log-hazard ratio, see decisionIS for all details
s <- 2
flat_prior <- mixnorm(c(1,0,100), sigma=s)
nL <- 233
theta_ni <- 0.4
theta_a <- 0
alpha <- 0.05
beta <- 0.2
za <- qnorm(1-alpha)
zb <- qnorm(1-beta)
n1 <- round((s * (za + zb)/(theta_ni - theta_a))^2)
theta_c <- theta_ni - za * s / sqrt(n1)

standard NI design
decA <- decisionIS(1 - alpha, theta_ni, lower.tail=TRUE)

dec1 <- decisionIS(1-alpha, theta_ni, lower.tail=TRUE)
require mean to be at least as good as theta_c
dec2 <- decisionIS(0.5, theta_c, lower.tail=TRUE)
combination
decComb <- decisionIS(c(1-alpha, 0.5), c(theta_ni, theta_c), lower.tail=TRUE)

theta_eval <- c(theta_a, theta_c, theta_ni)

designA_n1 <- oc1S(flat_prior, n1, decA)
designA_nL <- oc1S(flat_prior, nL, decA)
designC_n1 <- oc1S(flat_prior, n1, decComb)
designC_nL <- oc1S(flat_prior, nL, decComb)

designA_n1(theta_eval)
designA_nL(theta_eval)
designC_n1(theta_eval)
designC_nL(theta_eval)

designC1_nL(theta_eval)
designC2_nL(theta_eval)
see also ?decision1s_boundary to see which of the two criterions will drive the decision

Operating Characteristics for 2 Sample Design

Description

The oc2S function defines a 2 sample design (priors, sample sizes & decision function) for the calculation of operating characteristics. A function is returned which calculates the frequency at which the decision function is evaluated to 1 when assuming known parameters.

Usage

```r
oc2S(prior1, prior2, n1, n2, decision, ...)  
## S3 method for class 'betaMix'
oc2S(prior1, prior2, n1, n2, decision, eps, ...)
## S3 method for class 'normMix'
oc2S(prior1, prior2, n1, n2, decision, sigma1, sigma2,  
eps = 1e-06, Ngrid = 10, ...)
## S3 method for class 'gammaMix'
oc2S(prior1, prior2, n1, n2, decision, eps = 1e-06,  
...)
```

Arguments

- **prior1**: Prior for sample 1.
- **prior2**: Prior for sample 2.
- **n1, n2**: Sample size of the respective samples. Sample size n1 must be greater than 0 while sample size n2 must be greater or equal to 0.
- **decision**: Two-sample decision function to use; see `decision2S`.
- **...**: Optional arguments.
- **eps**: Support of random variables are determined as the interval covering 1-eps probability mass. Defaults to 10^{-6}.
- **sigma1**: The fixed reference scale of sample 1. If left unspecified, the default reference scale of the prior 1 is assumed.
- **sigma2**: The fixed reference scale of sample 2. If left unspecified, the default reference scale of the prior 2 is assumed.
- **Ngrid**: Determines density of discretization grid on which decision function is evaluated (see below for more details).
Details

The oc2S function defines a 2 sample design and returns a function which calculates its operating characteristics. This is the frequency with which the decision function is evaluated to 1 under the assumption of a given true distribution of the data defined by the known parameter \(\theta_1 \) and \(\theta_2 \). The 2 sample design is defined by the priors, the sample sizes and the decision function, \(D(y_1, y_2) \). These uniquely define the decision boundary, see decision2S_boundary.

Calling the oc2S function calculates the decision boundary \(D_1(y_2) \) (see decision2S_boundary) and returns a function which can be used to calculate the desired frequency which is evaluated as

\[
\int f_2(y_2|\theta_2) F_1(D_1(y_2)|\theta_1) dy_2.
\]

See below for examples and specifics for the supported mixture priors.

Value

Returns a function which when called with two arguments theta1 and theta2 will return the frequencies at which the decision function is evaluated to 1 whenever the data is distributed according to the known parameter values in each sample. Note that the returned function takes vector arguments.

Methods (by class)

- **betaMix**: Applies for binomial model with a mixture beta prior. The calculations use exact expressions. If the optional argument eps is defined, then an approximate method is used which limits the search for the decision boundary to the region of \(1-\text{eps} \) probability mass. This is useful for designs with large sample sizes where an exact approach is very costly to calculate.

- **normMix**: Applies for the normal model with known standard deviation \(\sigma \) and normal mixture priors for the means. As a consequence from the assumption of a known standard deviation, the calculation discards sampling uncertainty of the second moment. The function has two extra arguments (with defaults): eps \((10^{-6})\) and Ngrid \((10)\). The decision boundary is searched in the region of probability mass \(1-\text{eps} \), respectively for \(y_1 \) and \(y_2 \). The continuous decision function is evaluated at a discrete grid, which is determined by a spacing with \(\delta_2 = \sigma_2 / \sqrt{N_{grid}} \). Once the decision boundary is evaluated at the discrete steps, a spline is used to inter-polate the decision boundary at intermediate points.

- **gammaMix**: Applies for the Poisson model with a gamma mixture prior for the rate parameter. The function oc2S takes an extra argument eps (defaults to \(10^{-6} \)) which determines the region of probability mass \(1-\text{eps} \) where the boundary is searched for \(y_1 \) and \(y_2 \), respectively.

References

See Also

Other design2S: decision2S_boundary, decision2S, pos2S
plot.EM

Examples

example from Schmidli et al., 2014
dec <- decision2S(0.975, 0, lower.tail=FALSE)

prior_inf <- mixbeta(c(1, 4, 16))
prior_rob <- robustify(prior_inf, weight=0.2, mean=0.5)
prior_uni <- mixbeta(c(1, 1, 1))

N <- 40
N_ctl <- N - 20

compare designs with different priors
design_uni <- oc2S(prior_uni, prior_uni, N, N_ctl, dec)
design_inf <- oc2S(prior_uni, prior_inf, N, N_ctl, dec)
design_rob <- oc2S(prior_uni, prior_rob, N, N_ctl, dec)

type I error
curve(design_inf(x,x), 0, 1)
curve(design_uni(x,x), lty=2, add=TRUE)
curve(design_rob(x,x), lty=3, add=TRUE)

power
curve(design_inf(0.2+x,0.2), 0, 0.5)
curve(design_uni(0.2+x,0.2), lty=2, add=TRUE)
curve(design_rob(0.2+x,0.2), lty=3, add=TRUE)

Description

Produce diagnostic plots of EM fits returned from mixfit.

Usage

S3 method for class 'EM'
plot(x, size = 1.25, link = c("identity", "logit", "log"),
 ...

Arguments

x EM fit
size Optional argument passed to ggplot2 routines which control line thickness.
link Choice of an applied link function. Can take one of the values identity (default), logit or log.
plot.EM

Ignored.
Overlays the fitted mixture density with a histogram and a density plot of the raw sample fitted. Applying a link function can be beneficial, for example a logit (log) link for beta (gamma) mixtures obtained from a Binomial (Poisson) gMAP analysis.

Value

A list of ggplot plots for diagnostics of the EM run. Detailed EM diagnostic plots are included only if the global option RBesT.verbose is set to TRUE. These include plots of the parameters of each component vs the iteration. The plot of the mixture density with a histogram and a density of the fitted sample is always returned.

Customizing ggplot2 plots

The returned plot is a ggplot2 object. Please refer to the "Customizing Plots" vignette which is part of RBesT documentation for an introduction. For simple modifications (change labels, add reference lines, ...) consider the commands found in bayesplotMhelpers. For more advanced customizations please use the ggplot2 package directly. A description of the most common tasks can be found in the R Cookbook and a full reference of available commands can be found at the ggplot2 documentation site.

See Also

Other EM: mixfit

Examples

```r
bmix <- mixbeta(rob=c(0.2, 1, 1), inf=c(0.8, 10, 2))
bsamp <- rmix(bmix, 1000)
bfit <- mixfit(bsamp, type="beta", Nc=2)
pl <- plot(bfit)
print(pl$mixdens)
print(pl$mix)

## Not run:
# a number of additional plots are generated in verbose mode
options(RBesT.verbose=TRUE)
pl_all <- plot(bfit)
names(pl_all)
# [1] "a" "b" "w" "m" "N" "Lm" "LN" "Lw" "lli" "mixdens" "mix"

## End(Not run)
```
plot.gMAP

Diagnostic plots for gMAP analyses

Description

Diagnostic plots for gMAP analyses

Usage

S3 method for class 'gMAP'
plot(x, size = NULL, ...)

Arguments

x gMAP object
size Controls line sizes of traceplots and forest plot.
... Ignored.

Details

Creates MCMC diagnostics and a forest plot (including model estimates) for a gMAP analysis. For a customized forest plot, please use the dedicated function forest_plot.

Value

The function returns a list of ggplot objects.

Customizing ggplot2 plots

The returned plot is a ggplot2 object. Please refer to the "Customizing Plots" vignette which is part of RBesT documentation for an introduction. For simple modifications (change labels, add reference lines, ...) consider the commands found in bayesplot helpers. For more advanced customizations please use the ggplot2 package directly. A description of the most common tasks can be found in the R Cookbook and a full reference of available commands can be found at the ggplot2 documentation site.
Description
Plot mixture distributions

Usage
S3 method for class 'mix'
plot(x, prob = 0.99, fun = dmix, log = FALSE,
 comp = TRUE, size = 1.25, ...)

Arguments
x mixture distribution
prob defining lower and upper percentile of x-axis. Defaults to the 99% central probability mass.
fun function to plot which can be any of dmix, qmix or pmix.
log log argument passed to the function specified in fun.
comp for the density function this can be set to TRUE which will display colour-coded each mixture component of the density in addition to the density.
size controls the linesize in plots.
... extra arguments passed on to the qplot call.

Details
Plot function for mixture distribution objects. It shows the density/quantile/cumulative distribution (corresponds to d/q/pmix function) for some specific central probability mass defined by prob. By default the x-axis is chosen to show 99% of the probability density mass.

Value
A ggplot object is returned.

Customizing ggplot2 plots
The returned plot is a ggplot2 object. Please refer to the "Customizing Plots" vignette which is part of RBesT documentation for an introduction. For simple modifications (change labels, add reference lines, ...) consider the commands found in bayesplot-helpers. For more advanced customizations please use the ggplot2 package directly. A description of the most common tasks can be found in the R Cookbook and a full reference of available commands can be found at the ggplot2 documentation site.

See Also
Other mixdist: mixbeta, mixcombine, mixgamma, mixnorm, mix
Examples

beta with two informative components
bm <- mixbeta(inf=c(0.5, 10, 100), inf2=c(0.5, 30, 80))
plot(bm)
plot(bm, fun=pmix)

for customizations of the plot we need to load ggplot2 first
library(ggplot2)

show a histogram along with the density
plot(bm) + geom_histogram(data=data.frame(x=rmix(bm, 1000)),
 aes(y=..density..), bins=50, alpha=0.4)

Not run:
note: we can also use bayesplot for histogram plots with a density ...
library(bayesplot)
mh <- mcmc_hist(data.frame(x=rmix(bm, 1000)), freq=FALSE) +
 overlay_function(fun=dmix, args=list(mix=bm))
... and even add each component
for(k in 1:ncol(bm))
 mh <- mh + overlay_function(fun=dmix, args=list(mix=bm[[k]]), linetype=1)
print(mh)

End(Not run)

normal mixture
nm <- mixnorm(rob=c(0.2, 0, 2), inf=c(0.8, 6, 2), sigma=5)
plot(nm)
plot(nm, fun=qmix)

obtain ggplot2 object and change title
pl <- plot(nm)
pl + ggtitle("Normal 2-Component Mixture")

pos1S

Probability of Success for a 1 Sample Design

Description

The pos1S function defines a 1 sample design (prior, sample size, decision function) for the calculation of the frequency at which the decision is evaluated to 1 when assuming a distribution for the parameter. A function is returned which performs the actual operating characteristics calculations.

Usage

pos1S(prior, n, decision, ...)

S3 method for class 'betaMix'
pos1S(prior, n, decision, ...)

S3 method for class 'normMix'
pos1S(prior, n, decision, sigma, eps = 1e-06, ...)

S3 method for class 'gammaMix'
pos1S(prior, n, decision, eps = 1e-06, ...)

Arguments

- **prior**
 Prior for analysis.
- **n**
 Sample size for the experiment.
- **decision**
 One-sample decision function to use; see `decision1S`.
- **sigma**
 The fixed reference scale. If left unspecified, the default reference scale of the prior is assumed.
- **eps**
 Support of random variables are determined as the interval covering $1 - \text{eps}$ probability mass. Defaults to 10^{-6}.

Details

The `pos1S` function defines a 1 sample design and returns a function which calculates its probability of success. The probability of success is the frequency with which the decision function is evaluated to 1 under the assumption of a given true distribution of the data implied by a distribution of the parameter θ.

Calling the `pos1S` function calculates the critical value y_c and returns a function which can be used to evaluate the PoS for different predictive distributions and is evaluated as

$$
\int F(y_c | \theta)p(\theta)d\theta,
$$

where F is the distribution function of the sampling distribution and $p(\theta)$ specifies the assumed true distribution of the parameter θ. The distribution $p(\theta)$ is a mixture distribution and given as the `mix` argument to the function.

Value

Returns a function that takes as single argument `mix`, which is the mixture distribution of the control parameter. Calling this function with a mixture distribution then calculates the PoS.

Methods (by class)

- **betaMix**: Applies for binomial model with a mixture beta prior. The calculations use exact expressions.
- **normMix**: Applies for the normal model with known standard deviation σ and a normal mixture prior for the mean. As a consequence from the assumption of a known standard deviation, the calculation discards sampling uncertainty of the second moment. The function `pos1S` has an extra argument `eps` (defaults to 10^{-6}). The critical value y_c is searched in the region of probability mass $1 - \text{eps}$ for y.
• \texttt{gammaMix}: Applies for the Poisson model with a gamma mixture prior for the rate parameter. The function \texttt{pos1S} takes an extra argument \texttt{eps} (defaults to 10^{-6}) which determines the region of probability mass $1-\texttt{eps}$ where the boundary is searched for y.

See Also

Other design1S: \texttt{decision1S_boundary, decision1S, oc1S}

Examples

```r
# non-inferiority example using normal approximation of log-hazard
# ratio, see ?decision1S\_boundary for all details
s <- 2
flat_prior <- mixnorm(c(1,0,100), sigma=s)
nL <- 233
theta_ni <- 0.4
theta_a <- 0
alpha <- 0.05
beta <- 0.2
za <- qnorm(1-alpha)
zb <- qnorm(1-beta)
n1 <- round( (s * (za + zb)/(theta_ni - theta_a))^2 )
theta_c <- theta_ni - za * s / sqrt(n1)

# assume we would like to conduct at an interim analysis
# of PoS after having observed 20 events with a HR of 0.8.
# We first need the posterior at the interim ...
post_ia <- postmix(flat_prior, m=log(0.8), n=20)

# dual criterion
decComb <- decision1S(c(1-alpha, 0.5), c(theta_ni, theta_c), lower.tail=TRUE)

# ... and we would like to know the PoS for a successful
# trial at the end when observing 10 more events
pos_ia <- pos1S(post_ia, 10, decComb)

# our knowledge at the interim is just the posterior at
# interim such that the PoS is
pos_ia(post_ia)
```

pos2S

Probability of Success for 2 Sample Design

Description

The \texttt{pos2S} function defines a 2 sample design (priors, sample sizes & decision function) for the calculation of the probability of success. A function is returned which calculates the calculates the
frequency at which the decision function is evaluated to 1 when parameters are distributed according to the given distributions.

Usage

pos2S(prior1, prior2, n1, n2, decision, ...)

S3 method for class 'betaMix'
pos2S(prior1, prior2, n1, n2, decision, eps, ...)

S3 method for class 'normMix'
pos2S(prior1, prior2, n1, n2, decision, sigma1, sigma2, eps = 1e-06, Ngrid = 10, ...)

S3 method for class 'gammaMix'
pos2S(prior1, prior2, n1, n2, decision, eps = 1e-06, ...)

Arguments

prior1 Prior for sample 1.
prior2 Prior for sample 2.
n1, n2 Sample size of the respective samples. Sample size n1 must be greater than 0 while sample size n2 must be greater or equal to 0.
decision Two-sample decision function to use; see decision2S.
... Optional arguments.
eps Support of random variables are determined as the interval covering 1-eps probability mass. Defaults to 10^{-6}.
sigma1 The fixed reference scale of sample 1. If left unspecified, the default reference scale of the prior 1 is assumed.
sigma2 The fixed reference scale of sample 2. If left unspecified, the default reference scale of the prior 2 is assumed.
Ngrid Determines density of discretization grid on which decision function is evaluated (see below for more details).

Details

The pos2S function defines a 2 sample design and returns a function which calculates its probability of success. The probability of success is the frequency with which the decision function is evaluated to 1 under the assumption of a given true distribution of the data implied by a distribution of the parameters θ_1 and θ_2.

The calculation is analogous to the operating characteristics oc2S with the difference that instead of assuming known (point-wise) true parameter values a distribution is specified for each parameter.

Calling the pos2S function calculates the decision boundary $D_1(y_2)$ and returns a function which can be used to evaluate the PoS for different predictive distributions. It is evaluated as
\[\int \int f_2(y_2 | \theta_2) p(\theta_2) F_1(D_1(y_2) | \theta_1) p(\theta_1) \, dy_2 d\theta_2 d\theta_1. \]

where \(F \) is the distribution function of the sampling distribution and \(p(\theta_1) \) and \(p(\theta_2) \) specifies the assumed true distribution of the parameters \(\theta_1 \) and \(\theta_2 \), respectively. Each distribution \(p(\theta_1) \) and \(p(\theta_2) \) is a mixture distribution and given as the \texttt{mix1} and \texttt{mix2} argument to the function.

For example, in the binary case an integration of the predictive distribution, the BetaBinomial, instead of the binomial distribution will be performed over the data space wherever the decision function is evaluated to 1. All other aspects of the calculation are as for the 2-sample operating characteristics, see \texttt{oc2S}.

Value

Returns a function which when called with two arguments \texttt{mix1} and \texttt{mix2} will return the frequencies at which the decision function is evaluated to 1. Each argument is expected to be a mixture distribution representing the assumed true distribution of the parameter in each group.

Methods (by class)

- \texttt{betaMix}: Applies for binomial model with a mixture beta prior. The calculations use exact expressions. If the optional argument \texttt{eps} is defined, then an approximate method is used which limits the search for the decision boundary to the region of \(1-\texttt{eps} \) probability mass. This is useful for designs with large sample sizes where an exact approach is very costly to calculate.

- \texttt{normMix}: Applies for the normal model with known standard deviation \(\sigma \) and normal mixture priors for the means. As a consequence from the assumption of a known standard deviation, the calculation discards sampling uncertainty of the second moment. The function has two extra arguments (with defaults): \texttt{eps} \((10^{-6}) \) and \texttt{Ngrid} \((10) \). The decision boundary is searched in the region of probability mass \(1-\texttt{eps} \), respectively for \(y_1 \) and \(y_2 \). The continuous decision function is evaluated at a discrete grid, which is determined by a spacing with \(\delta_2 = \sigma_2 / \sqrt{\texttt{Ngrid}} \). Once the decision boundary is evaluated at the discrete steps, a spline is used to inter-polate the decision boundary at intermediate points.

- \texttt{gammamix}: Applies for the Poisson model with a gamma mixture prior for the rate parameter. The function \texttt{pos2S} takes an extra argument \texttt{eps} \((\text{defaults to } 10^{-6}) \) which determines the region of probability mass \(1-\texttt{eps} \) where the boundary is searched for \(y_1 \) and \(y_2 \), respectively.

See Also

Other design2S: \texttt{decision2S_boundary, decision2S, oc2S}

Examples

see ?decision2S for details of example
priorT <- mixnorm(c(1, 0, 0.001), sigma=88, param="mn")
priorP <- mixnorm(c(1, -49, 20), sigma=88, param="mn")
the success criteria is for delta which are larger than some
postmix

Conjugate Posterior Analysis

Description

Calculates the posterior distribution for data `data` given a prior `priormix`, where the prior is a mixture of conjugate distributions. The posterior is then also a mixture of conjugate distributions.

Usage

```r
postmix(priormix, data, ...)  
```

```r  
## S3 method for class 'betaMix'
postmix(priormix, data, n, r, ...)  
```

```r  
## S3 method for class 'normMix'
postmix(priormix, data, n, m, se, ...)  
```

```r  
## S3 method for class 'gammaMix'
postmix(priormix, data, n, m, ...)  
```

Arguments

- **priormix**
 - prior (mixture of conjugate distributions).
- **data**
 - individual data. If the individual data is not given, then summary data has to be provided (see below).
- **n**
 - sample size.
- **...**
 - includes arguments which depend on the specific case, see description below.
Details

A conjugate prior-likelihood pair has the convenient property that the posterior is in the same distributional class as the prior. This property also applies to mixtures of conjugate priors. Let

\[p(\theta; w, a, b) \]

denote a conjugate mixture prior density for data

\[y|\theta \sim f(y|\theta), \]

where \(f(y|\theta) \) is the likelihood. Then the posterior is again a mixture with each component \(k \) equal to the respective posterior of the \(k \)th prior component and updated weights \(w'_k \),

\[p(\theta; w', a', b'|y) = \sum_{k=1}^{K} w'_k p_k(\theta; a'_k, b'_k|y). \]

The weight \(w'_k \) for \(k \)th component is determined by the marginal likelihood of the new data \(y \) under the \(k \)th prior distribution which is given by the predictive distribution of the \(k \)th component,

\[w'_k \propto w_k \int p_k(\theta; a_k, b_k) f(y|\theta) \, d\theta \equiv w^*_k. \]

The final weight \(w'_k \) is then given by appropriate normalization, \(w'_k = w^*_k / \sum_{k=1}^{K} w^*_k \). In other words, the weight of component \(k \) is proportional to the likelihood that data \(y \) is generated from the respective component, i.e. the marginal probability; for details, see for example Schmidli et al., 2015.

Note: The prior weights \(w_k \) are fixed, but the posterior weights \(w'_k \neq w_k \) still change due to the changing normalization.

The data \(y \) can either be given as individual data or as summary data (sufficient statistics). See below for details for the implemented conjugate mixture prior densities.

Methods (by class)

- **betaMix**: Calculates the posterior beta mixture distribution. The individual data vector is expected to be a vector of 0 and 1, i.e. a series of Bernoulli experiments. Alternatively, the sufficient statistics \(n \) and \(r \) can be given, i.e. number of trials and successes, respectively.
- **normMix**: Calculates the posterior normal mixture distribution with the sampling likelihood being a normal with fixed standard deviation. Either an individual data vector \(data \) can be given or the sufficient statistics which are the standard error \(se \) and sample mean \(m \). If the sample size \(n \) is used instead of the sample standard error, then the reference scale of the prior is used to calculate the standard error. Should standard error \(se \) and sample size \(n \) be given, then the reference scale of the prior is updated; however it is recommended to use the command **sigma** to set the reference standard deviation.
postmix

- **gammaMix**: Calculates the posterior gamma mixture distribution for Poisson and exponential likelihoods. Only the Poisson case is supported in this version.

Supported Conjugate Prior-Likelihood Pairs

<table>
<thead>
<tr>
<th>Prior/Posterior</th>
<th>Likelihood</th>
<th>Predictive</th>
<th>Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>Binomial</td>
<td>Beta-Binomial</td>
<td>n, r</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal (fixed σ)</td>
<td>Normal</td>
<td>n, m, se</td>
</tr>
<tr>
<td>Gamma</td>
<td>Poisson</td>
<td>Gamma-Poisson</td>
<td>n, m</td>
</tr>
<tr>
<td>Gamma</td>
<td>Exponential</td>
<td>Gamma-Exp (not supported)</td>
<td>n, m</td>
</tr>
</tbody>
</table>

References

Examples

```r
# binary example with individual data (1=event, 0=no event), uniform prior
prior.unif <- mixbeta(c(1, 1, 1))
data.indiv <- c(1, 0, 1, 1, 0, 1)
posterior.indiv <- postmix(prior.unif, data.indiv)
print(posterior.indiv)
# or with summary data (number of events and number of patients)
r <- sum(data.indiv); n <- length(data.indiv)
posterior.sum <- postmix(prior.unif, n=n, r=r)
print(posterior.sum)

# binary example with robust informative prior and conflicting data
prior.rob <- mixbeta(c(0.5, 4, 10), c(0.5, 1, 1))
posterior.rob <- postmix(prior.rob, n=20, r=18)
print(posterior.rob)

# normal example with individual data
sigma <- 88
prior.mean <- -49
prior.se <- sigma/sqrt(20)
prior <- mixnorm(c(1, prior.mean, prior.se), sigma=sigma)
data.indiv <- c(-46, -227, 41, -65, -103, -22, 7, -169, -69, 90)
posterior.indiv <- postmix(prior, data.indiv)
# or with summary data (mean and number of patients)
mn <- mean(data.indiv); n <- length(data.indiv)
posterior.sum <- postmix(prior, m=mn, n=n)
print(posterior.sum)
```
Predictive Distributions for Mixture Distributions

Description

Predictive distribution for mixture of conjugate distributions (beta, normal, gamma).

Usage

preddist(mix, ...)

S3 method for class 'betaMix'
preddist(mix, n = 1, ...)

S3 method for class 'normMix'
preddist(mix, n = 1, sigma, ...)

S3 method for class 'gammaMix'
preddist(mix, n = 1, ...)

Arguments

mix mixture distribution
... includes arguments which depend on the specific prior-likelihood pair, see de-
ncription below.
n predictive sample size, set by default to 1
sigma The fixed reference scale of a normal mixture. If left unspecified, the default
reference scale of the mixture is assumed.

Details

Given a mixture density (either a posterior or a prior)

\[p(\theta, w, a, b) \]

and a data likelihood of

\[y|\theta \sim f(y|\theta), \]

the predictive distribution of a one-dimensional summary \(y_n \) of \(n \) future observations is distributed as

\[y_n \sim \int p(\theta, w, a, b) f(y_n|\theta) \, d\theta. \]

This distribution is the marginal distribution of the data under the mixture density. For binary and Poisson data \(y_n = \sum_{i=1}^{n} y_i \) is the sum over future events. For normal data, it is the mean \(\bar{y}_n = 1/n \sum_{i=1}^{n} y_i \).
Value

The function returns for a normal, beta or gamma mixture the matching predictive distribution for y_n.

Methods (by class)

- **betaMix**: Obtain the matching predictive distribution for a beta distribution, the BetaBinomial.
- **normMix**: Obtain the matching predictive distribution for a Normal with constant standard deviation. Note that the reference scale of the returned Normal mixture is meaningless as the individual components are updated appropriately.
- **gammaMix**: Obtain the matching predictive distribution for a Gamma. Only Poisson likelihoods are supported.

Supported Conjugate Prior-Likelihood Pairs

<table>
<thead>
<tr>
<th>Prior/Posterior</th>
<th>Likelihood</th>
<th>Predictive</th>
<th>Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>Binomial</td>
<td>Beta-Binomial</td>
<td>n, r</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal (fixed σ)</td>
<td>Normal</td>
<td>n, m, se</td>
</tr>
<tr>
<td>Gamma</td>
<td>Poisson</td>
<td>Gamma-Poisson</td>
<td>n, m</td>
</tr>
<tr>
<td>Gamma</td>
<td>Exponential</td>
<td>Gamma-Exp (not supported)</td>
<td>n, m</td>
</tr>
</tbody>
</table>

Examples

```r
# Example 1: predictive distribution from uniform prior.
bm <- mixbeta(c(1,1,1))
bmPred <- preddist(bm, n=10)
# predictive probabilities and cumulative predictive probabilities
x <- 0:10
d <- dmix(bmPred, x)
names(d) <- x
barplot(d)
cd <- pmix(bmPred, x)
names(cd) <- x
barplot(cd)
# median
mdn <- qmix(bmPred, 0.5)
mdn

# Example 2: 2-comp Beta mixture
bm <- mixbeta( inf=c(0.8,15,50), rob=c(0.2,1,1))
plot(bm)
bmPred <- preddist(bm, n=10)
plot(bmPred)
mdn <- qmix(bmPred, 0.5)
```
predict.gMAP

Predictions from gMAP analyses

Description

Produces a sample of the predictive distribution.

Usage

```
## S3 method for class 'gMAP'
predict(object, newdata, type = c("response", "link"),
         probs = c(0.025, 0.5, 0.975), na.action = na.pass, thin, ...)

## S3 method for class 'gMAPpred'
print(x, digits = 3, ...)

## S3 method for class 'gMAPpred'
summary(object, ...)

## S3 method for class 'gMAPpred'
as.matrix(x, ...)
```

Arguments

- `newdata`: data.frame which must contain the same columns as input into the gMAP analysis. If left out, then a posterior prediction for the fitted data entries from the gMAP object is performed (shrinkage estimates).
predict.gMAP

<table>
<thead>
<tr>
<th>type</th>
<th>sets reported scale (response (default) or link).</th>
</tr>
</thead>
<tbody>
<tr>
<td>probs</td>
<td>defines quantiles to be reported.</td>
</tr>
<tr>
<td>na.action</td>
<td>how to handle missings.</td>
</tr>
<tr>
<td>thin</td>
<td>thinning applied is derived from the gMAP object.</td>
</tr>
<tr>
<td>x, object</td>
<td>gMAP analysis object for which predictions are performed</td>
</tr>
<tr>
<td>digits</td>
<td>number of displayed significant digits.</td>
</tr>
</tbody>
</table>

Details

Predictions are made using the \(\tau \) prediction stratum of the gMAP object. For details on the syntax, please refer to `predict.glm` and the example below.

See Also

`gMAP`, `predict.glm`

Examples

```r
# create a fake data set with a covariate
trans_cov <- transform(transplant, country=cut(1:11, c(0,5,8,Inf), c("CH", "US", "DE")))
set.seed(34246)
map <- gMAP(cbind(r, n-r) ~ 1 + country | study,
data=trans_cov,
  tau.dist="HalfNormal",
  tau.prior=1,
  # Note on priors: we make the overall intercept weakly-informative
  # and the regression coefficients must have tighter sd as these are
  # deviations in the default contrast parametrization
  beta.prior=rbind(c(0,2), c(0,1), c(0,1)),
  family=binomial,
  ## ensure fast example runtime
  thin=1, chains=1)

# posterior predictive distribution for each input data item (shrinkage estimates)
pred_cov <- predict(map)
pred_cov

# extract sample as matrix
samp <- as.matrix(pred_cov)

# predictive distribution for each input data item (if the input studies were new ones)
pred_cov_pred <- predict(map, trans_cov)
pred_cov_pred

# a summary function returns the results as matrix
summary(pred_cov)

# obtain a prediction for new data with specific covariates
```
robustify <- predict(map, data.frame(country="CH", study=12))
robustify

robustify ...

Description

Add a non-informative component to a mixture prior.

Usage

`robustify(priormix, weight, mean, n = 1, ...)`

```r
## S3 method for class 'betaMix'
robustify(priormix, weight, mean, n = 1, ...)

## S3 method for class 'gammaMix'
robustify(priormix, weight, mean, n = 1, ...)

## S3 method for class 'normMix'
robustify(priormix, weight, mean, n = 1, ..., sigma)
```

Arguments

- `priormix`: prior (mixture of conjugate distributions).
- `weight`: weight given to the non-informative component (0 < weight < 1).
- `mean`: mean of the non-informative component. It is recommended to set this parameter explicitly.
- `n`: number of observations the non-informative prior corresponds to, defaults to 1.
- `...`: optional arguments are ignored.
- `sigma`: Sampling standard deviation for the case of Normal mixtures.

Details

It is recommended to robustify informative priors derived with `gMAP` using unit-information priors. This protects against prior-data conflict, see for example Schmidli et al., 2015.

The procedure can be used with beta, gamma and normal mixture priors. A unit-information prior (see Kass and Wasserman, 1995) corresponds to a prior which represents the observation of n=1 at the null hypothesis. As the null is problem dependent we strongly recommend to make use of the mean argument accordingly. See below for the definition of the default mean.

The weights of the mixture priors are rescaled to (1-weight) while the non-informative prior is assigned the weight given.
Value

New mixture with an extra non-informative component named robust.

Methods (by class)

• betaMix: The default mean is set to 1/2 which represents no difference between the occurrence rates for one of the two outcomes. As the uniform Beta(1, 1) is more appropriate in practical applications, RBesT uses n+1 as the sample size such that the default robust prior is the uniform instead of the Beta(1/2, 1/2) which strictly defined would be the unit information prior in this case.

• gammaMix: The default mean is set to the mean of the prior mixture. It is strongly recommended to explicitly set the mean to the location of the null hypothesis.

• normMix: The default mean is set to the mean of the prior mixture. It is strongly recommended to explicitly set the mean to the location of the null hypothesis, which is very often equal to 0. It is also recommended to explicitly set the sampling standard deviation using the sigma argument.

References

See Also

mixcombine

Examples

```r
bmix <- mixbeta(inf1=c(0.2, 8, 3), inf2=c(0.8, 10, 2))
plot(bmix)
rbmix <- robustify(bmix, weight=0.1, mean=0.5)
rbmix
plot(rbmix)

gmmix <- mixgamma(inf1=c(0.2, 2, 3), inf2=c(0.8, 2, 5), param="mn")
plot(gmmix)
grmmix <- robustify(gmmix, weight=0.1, mean=2)
grmmix
plot(grmmix)

mm <- mixnorm(inf1=c(0.2, 0.5, 0.7), inf2=c(0.8, 2, 1), sigma=2)
plot(mm)
rmix <- robustify(mm, weight=0.1, mean=0, sigma=2)
rmix
plot(rmix)
```
Description

Data set containing historical information for standard treatment for a phase IV trial in de novo transplant patients. The primary outcome is treatment failure (binary).

Usage

transplant

Format

A data frame with 4 rows and 3 variables:

- study study
- n study size
- r number of events

References

Index

*Topic datasets
 AS, 4
colitis, 7
crohn, 7
transplant, 66

[[Nmix (mix), 31

acf, 39
AS, 4
as.matrix.gMAP (gMAP), 21
as.matrix.gMAPpred (predict.gMAP), 62
automixfit, 5, 27

BinaryExactCI, 6
coeff.gMAP (gMAP), 21
colitis, 7
crohn, 7
decision1S, 8, 11, 12, 44, 53, 54
decision1S_boundary, 9, 11, 44, 54
decision2S, 13, 16, 17, 46, 47, 55, 56
decision2S_boundary, 14, 15, 47, 56
dmix (mix), 31
dmixdiff (mixdiff), 35
drop, 6

ess, 17

fitted.gMAP (gMAP), 21
forest_plot, 20, 27, 50

ggplot, 49–51
glm, 21, 24
gMAP, 3, 20, 21, 21, 38, 39, 49, 50, 63, 64

integrate, 36
inv_logit (lodds), 30

likelihood, 28
likelihood<- (likelihood), 28

lodds, 30
logit (lodds), 30

mix, 31, 34, 35, 41, 42, 51
mixbeta, 32, 33, 35, 41, 42, 51
mixcombine, 32, 34, 34, 41, 42, 51, 65
mixdiff, 35
mixfit, 5, 37, 48, 49
mixgamma, 32, 34, 35, 39, 42, 51
mixnorm, 32, 34, 35, 41, 41, 51
mn2beta (mixbeta), 33
mn2gamma (mixgamma), 39
mn2norm (mixnorm), 41
model.matrix.default, 23
ms2beta (mixbeta), 33
ms2gamma (mixgamma), 39

oc1S, 9, 12, 43, 54
oc1Sdecision (decision1S), 8
oc2S, 14, 17, 46, 55, 56
oc2Sdecision (decision2S), 13

pbinom, 12
plot.EM, 39, 48
plot.gMAP, 27, 50
plot.mix, 32, 34, 35, 41, 42, 51
pmix (mix), 31
pmixdiff (mixdiff), 35
pos1S, 9, 12, 44, 52
pos2S, 14, 17, 47, 54
postmix, 57
preddist, 32, 60
predict.glm, 63
predict.gMAP (gMAP), 27, 62
print.gMAP (gMAP), 21
print.gMAPpred (predict.gMAP), 62

qmix (mix), 31
qmixdiff (mixdiff), 35
qplot, 51
RBest, 26
RBest-package, 3
rmix (mix), 31
rmixdiff (mixdiff), 35
robustify, 35, 64
rstan, 26
set.seed, 26
sigma, 58
sigma (mixnorm), 41
sigma<-(mixnorm), 41
stan, 23
summary.betaBinomialMix (mixbeta), 33
summary.betaMix (mixbeta), 33
summary.gammaMix (mixgamma), 39
summary.gammaPoissonMix (mixgamma), 39
summary.gMAP (gMAP), 21
summary.gMAPpred (predict.gMAP), 62
summary.normMix (mixnorm), 41

transplant, 66