Package ‘RClone’

May 15, 2021

Version 1.0.3
Date 2022-07-22
Title Partially Clonal Populations Analysis
Author Sophie Arnaud-Haond [aut],
Diane Bailleul [aut, cre],
Solenn Stoeckel [ctb]
Maintainer Diane Bailleul <diane.bailleul.pro@gmail.com>
Description R version of 'GenClone' (a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization, Arnaud-Haond & Belkhir 2007, <https://www.ifremer.fr/Clonix/content/download/68205/903914/file/GenClone2.0.setup.zip>), this package allows clone handling as 'GenClone' does, plus the possibility to work with several populations, MultiLocus Lineages (MLL) custom definition and use, and p-value calculation for psex statistic (probability of originating from distinct sexual events) and psex_Fis statistic (taking account of Hardy-Weinberg equilibrium departure) as 'MLGsim'/MLGsim2' (a program for detecting clones using a simulation approach, Stenberg et al. 2003).
License GPL (>= 2.0)
LazyLoad yes
Depends R (>= 3.2.0), graphics, stats, grDevices, utils, datasets, methods
URL https://github.com/dbailleul/RClone
Suggests knitr, rmarkdown, pander, testthat
VignetteBuilder knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2021-05-15 13:00:02 UTC

R topics documented:

RClone-package .. 2
agg_index .. 3
autocorrelation ... 5
Description

RClone is a R package gathering all the functions of GenClone program to handle data (haploid and diploid) with clones.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>RClone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Title:</td>
<td>GenClone</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-07-31</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>=2.0)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>
This package contains several types of functions:

- import/export functions to handle data from GenClone (see `transcript_GC`) and Adegenet and export RClone data for Genetix and Arlequin (for example see `export_genclone_genetix`),
- functions to help defining MLL (MultiLocus Lineage) as `psex` and `genet_dist`,
- descriptive functions to compute genotypic richness and diversity: `clonal_index`, `genclone` and `Pareto_index`,
- functions for spatial analyses of clonal structure (see for example `autocorrelation`).

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Review: "Standardizing methods to address clonality in population studies" 2007, Molecular Ecology, S. Arnaud-Haond, C.M. Duarte, F. Alberto and E.A. Serrao

agg_index

Aggregation of clones

Description

`agg_index` computes A_c (aggregation of clonal lineages) assessed by comparing the probability of clonal identity between nearest units pairs.

Usage

```r
agg_index(data1, coords = NULL, vecpop = NULL, nbrepeat = 1, bar = FALSE, listMLL = NULL)
```

Arguments

- `data1`: a Rclone table with one allele per column, haploid or diploid data.
- `coords`: a table with coordinates of every units in `data1`.
- `vecpop`: vector, option, `vecpop` indicates the population name of each unit of `data1`, if `data1` contains several populations. If `data1` contains only one population, leave `vecpop = NULL`.
- `nbrepeat`: numeric, the number of repeats.
- `bar`: option, if TRUE, adds a progression bar.
- `listMLL`: option, a custom list of MLL.
The probability of clonal identity is set as 0 if ramets belong to the same MLG/MLL and 1 otherwise.

\(A_c \) is computed as \(A_c = (P_{sg} - P_{sp}) / P_{sg} \) with \(P_{sg} \) the average probability of clonal identity of all pairs and \(P_{sp} \) among pairwise nearest neighbours.

Coordinates of units are randomly permuted \(nb\text{repeat} \) times to provide an upper p-value for \(A_c \) (Monte Carlo).

Value

A list (one population) or a list of lists (multi-populations) of:

- results a table with \(A_c \) value, p-value and the number of permutations.
- simulations a vector of \(nb\text{repeat} \) values of sim-\(A_c \).

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

autocorrelation, clonal_sub and edge_effect

Examples

data(posidonia)
data(coord_posidonia)

agg_index(posidonia, coords = coord_posidonia)
#agg_index(posidonia, coords = coord_posidonia, nbrepeat = 1000, bar = TRUE) #takes time
autocorrelation

Spatial Autocorrelation

Description
autocorrelation computes kinship coefficients (Loiselle or Ritland) between pairs of individuals within specific ranges of geographic distance.

Usage
autocorrelation(data1, haploid = FALSE, coords = NULL, vecpop = NULL, listMLL = NULL, Loiselle = FALSE, Ritland = FALSE, genet = FALSE, central_coords = FALSE, random_unit = FALSE, weighted = FALSE, class1 = FALSE, class2 = FALSE, d = NULL, vecdist = NULL, graph = FALSE, nbrepeat = NULL, export = FALSE)

Arguments
data1 a Rclone table with one allele per column.
haploid logical, option, haploid indicates the ploidy level of data1.
coords a table with coordinates of every units in data1.
vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.
listMLL option, a custom list of MLL.
Loiselle logical, if TRUE, Loiselle kinship coefficients are computed.
Ritland logical, if TRUE, Ritland kinship coefficients are computed.
genet option, TRUE keeps only MLG of data1.
central_coords option, if genet = TRUE, central_coords computes central coordinates for each MLG/MLL.
random_unit option, if genet = TRUE, random_unit keeps coordinates of only one unit per MLG/MLL.
weighted option, if genet = TRUE, weighted computes a weighted matrix over ramets.
class1 option, if TRUE, computes distance classes of d equidistant classes.
class2 option, if TRUE, computes distance classes of d classes with the same number of units pairs each.
d numeric, option, number of distance classes. By default, d = 10.
vecdist option, a custom vector distance to construct distance classes.
graph option, if TRUE, displays kinship coefficient between pairs plotted against distance.
nbrepeat numeric, option, if pvalue = TRUE, nbrepeat is the number of resampling to enable pvalues computation.
export option, if TRUE, graph is saved as .eps into working directory.
Details

By default, \(d = 10 \) and autocorrelation computes 10 equidistant distance classes for all the ramets pairs. The function proposes 3 others options:

- **class1** fixing \(d \) equidistant classes,
- **class2** fixing \(d \) distance classes with the same number of units pairs,
- **maxdist = TRUE** allowing the user to give a vector vecdist of intervals.

The function computes one of the two average kinship coefficients: Loiselle and Ritland.

Autocorrelation can be compute on ramets level, or genet level with:

- central coordinates of each MLG/MLL,
- a re-sampling approach which randomly allocates one of the unit’s coordinates per MLG/MLL (Alberto 2005),
- keeping all the ramets but weighting the matrix distances by a weighted matrix (Wagner 2005) where units of the same MLG/MLL are set to 0.

A permutation approach could be perform to assess pvalue and confidence intervals by permutation of the geographic coordinates among units. For the re-sampling approach, a unit of each MLG/MLL is randomly picked at each permutation. The p-value of mean kinship coefficients is related with the overall mean kinship coefficient: upper p-value (Monte Carlo) if greater or equal to the overall; otherwise, lower p-value. For \(b \) and \(Sp \), their p-value correspond to upper p-value.

Value

autocorrelation returns a list (one population) or lists of list (several populations) of:

- **Main_results**, a table with for each class, min, max, mean and Ln(mean) of distance between two units, the number of pairs, the mean kinship coefficient and if pvalue = TRUE, the pvalue.
- **Slope_and_Sp_index**, a table with slopes of the regression between genetic and geographic/log(geographic) distances and \(Sp \) and \(Sp _log \) (used to quantify Spatial Genetic Structure, Vekemans and Hardy, 2004) as observed values, mean and standard deviation of the simulated values, 95% and 90% confidence intervals and p-value.
- **Slope_resample**, a table with slopes of the regression between genetic and geographic/log(geographic) distances at each pvalue.
- **Kinship_resample**, a table with for each class in column and each pvalue in row the mean kinship coefficient.
- **Matrix_kinship_results**, a dist object with kinship coefficients.
- **Class_kinship_results**, a list of kinship coefficients by distance class.
- **Class_distance_results**, a list of geographical distances by distance class.
Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Loiselle et al., 1995, Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae).
Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.
Vekemans & Hardy, 2004, New insights from fine-scale spatial genetic structure analyses in plant populations.

See Also

kinship_Loiselle, kinship_Ritland

Examples

data(posidonia)
data(coord_posidonia)
distGC <- c(0,10,15,20,30,50,70,76.0411073)
#res1 <- autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE, nbrepeat = 1000)
#res2 <- autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
#class2 = TRUE, d = 7)
#res2[[1]] #Main_results
#res1[[2]] #Slope_and_Sp_index
#res2[[3]] #Slope_and_Sp_index

#res3 <- autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
#vecdist = distGC, graph = TRUE)

clonal_index

Indices for clonal data

Description

clonal_index computes main genotypic diversity and richness indices.
clonal_index

Usage

clonal_index(data1, vecpop = NULL, listMLL = NULL)

Arguments

data1 a RClone table with one allele per column, haploid or diploid data.
vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.
listMLL option, a custom list of MLL.

Details

clonal_index returns:

- the number of units N,
- the number of unique genotypes G,
- the clonal diversity index R (Dorken & Eckert 2001; Ellstrand & Roose 1987),
- the Shannon-Wiener index estimator H' ' (Pielou 1966),
- the Pielou evenness index J' (Pielou 1975),
- the Simpson complement unbiased D' (Pielou 1969; Gini 1912; Peet 1974),
- the Simpson complement index V (Hurlbert 1971; Fager 1972),
- the reciprocal of Simpson index unbiased Hil1 (Hurlbert 1971; Hill 1973).

Value

a table (one population) or a list of tables (several population) with genotypic indices.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

Pareto_index
Examples

data(posidonia)

clonal_index(posidonia)

clonal_sub **Clonal Subrange**

Description

clonal_sub computes the clonal subrange analysis with spatial distance intervals and the corresponding probabilities of clonal identity.

Usage

clonal_sub(data1, coords = NULL, vecpop = NULL, listMLL = NULL, class1 = FALSE, class2 = FALSE, d = NULL, vecdist = NULL)

Arguments

data1

a Rclone table with one allele per column, haploid or diploid data.

coords

a table with coordinates of every units in data1.

vecpop

vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.

listMLL

option, a custom list of MLL.

class1

option, if TRUE, computes distance classes of d equidistant classes.

class2

option, if TRUE, computes distance classes of d classes with the same number of units pairs each.

d

numeric, number of distance classes.

vecdist

option, a custom vector distance intervals to construct distance classes.

Details

By default, d = 10 and clonal_sub computes 10 equidistant distance classes for all the ramets pairs.

The function proposes 3 others options:

- class1 fixing d equidistant classes,
- class2 fixing d distance classes with the same number of units pairs,
- vecdist ! = NULL allowing the user to give a vector, vecdist of intervals. vecdist must start with 0 and end with max(dist).
Value

A list of:

- **clonal_sub_res** clonal subrange, i.e. maximum distance between two units sharing the same MLG/MLL (Alberto et al., 2005)

- **clonal_sub_tab** table of results with, per class, the number of units pairs, the min, max and mean distances between pairs and $Fr/\log(Fr)$ the fraction of pairs of ramets sharing the same MLG/MLL.

For multi-population data, a list of lists per population.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Alberto et al., 2005, Spatial genetic structure, neighbourhood size and clonal subrange in seagrass (*Cymodocea nodosa*) populations.

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

autocorrelation, agg_index and edge_effect

Examples

```r
data(posidonia)
data(coord_posidonia)
distGC <- c(0,10,15,20,30,50,70,76.0411073)
clonal_sub(posidonia, coords = coord_posidonia)
clonal_sub(posidonia, coords = coord_posidonia, vecdist = distGC)
```
convert_GC

File conversion into RClone files

Description

convert_GC helps files conversion into RClone format.
RClone functions work on tables with one allele per column.

convert_GC converts tables with one locus per column into tables with one allele per column, handling separation elements.

convert_GC also sorts alleles at a locus per increasing order.

Usage

convert_GC(data1, num, ele)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data1</td>
<td>a table, with units in row and one locus per column.</td>
</tr>
<tr>
<td>num</td>
<td>numeric, the length of each allele.</td>
</tr>
<tr>
<td>ele</td>
<td>option, the alleles separator in the original table.</td>
</tr>
</tbody>
</table>

Value

a table with one allele per column, alleles sorted by increasing order.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

See Also

sort_all for tables with one allele per column.
transcript_GC uses convert_GC as internal function.

Examples

test <- matrix("232/231", ncol = 2, nrow = 2)
convert_GC(test, 3, "/")
#"232" is a allele of length 3 and "/" is the separator.

test2 <- matrix("192235", ncol = 2, nrow = 2)
convert_GC(test2, 3)
coord_posidonia

no separator

with data1, a genind object from adegenet:
test <- genind2df(data1)
convert_GC(test, 3, "/")

coord_posidonia

Posidonia coordinates

Description

The quadra coordinates of a sub-dataset of *Posidonia oceanica* sampled in Mediterranean sea.

Usage

```r
data("coord_posidonia")
```

Format

A data frame with 40 observations on the following 2 variables:

- **x** a numeric vector, x-coordinate
- **y** a numeric vector, y-coordinate

Source

Dryad Digital Repository: doi: 10.5061/dryad.3b8k6

References

Examples

```r
data(coord_posidonia)
```
edge_effect

Description

`edge_effect` tests the occurrence of Edge Effect.

Usage

```r
edge_effect(data1, coords = NULL, center = NULL, vecpop = NULL, nbrepeat = 1, bar = FALSE, listMLL = NULL)
```

Arguments

- `data1`: a `Rclone` table with one allele per column, haploid or diploid data.
- `coords`: a table with coordinates of every units in `data1`.
- `center`: a vector or a list of vectors, with `c(x,y)` coordinates of the centre of the sampling area.
- `vecpop`: vector, option, `vecpop` indicates the population name of each unit of `data1`, if `data1` contains several populations. If `data1` contains only one population, leave `vecpop = NULL`.
- `nbrepeat`: numeric, option, the number of repeats.
- `bar`: logical, option, if `TRUE`, adds a progression bar.
- `listMLL`: option, a custom list of MLL.

Details

The index of edge effect E_e estimates the effect of sampling (scheme and strategy) on genotypic richness estimation and in particular overestimation due to large clones sampled only once at the edge of the sampling area.

E_e is estimated as $E_e = (Du-Da)/Da$ with Du average geographic distances between unique MLG/MLL and the centre, and Da between all sampling units and the centre.

As for the aggregation index A_c, coordinates of units are randomly permuted `nbrepeat` times to provide a upper p-value (Monte Carlo).

Value

A list (one population) or list of lists (several populations) with

- results a table with E_e value, pvalue and the number of permutations.
- simulations a vector of `nbrepeat` values of sim-E_e.
Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

autocorrelation, clonal_sub and agg_index

Examples

data(posidonia)
data(coord_posidonia)

center1 <- c(40,10)
#Our sample quadra ranges from 0 to 80 and 0 to 20

data(posidonia, coords = coord_posidonia, center = center1, nbrepeat = 1000, bar = TRUE)

#But if, for some reasons you don't know where the middle of the sampling
##area is, you can try some of these:
center <- c(mean(coord_posidonia[,1]), mean(coord_posidonia[,2])) #or
center <- c(mean(c(min(coord_posidonia[,1]), max(coord_posidonia[,1]))),
mean(c(min(coord_posidonia[,2]), max(coord_posidonia[,2])))) #or
center <- c((max(coord_posidonia[,1])-min(coord_posidonia[,1]))/2,
(max(coord_posidonia[,2])-min(coord_posidonia[,2]))/2)

Description

These functions allow to transform a RClone table into files to work with Adegenet (R package),
Genetix and Arlequin softwares.

Usage

export_genclone_genind(data1, ele)
export_genclone_genetix(data1, haploid = FALSE, ele, name)
export_genclone_arlequin(data1, haploid = FALSE, name)
export_genclone

Arguments

data1 a RClone table with only one population.
haploid logical, option, if haploid = FALSE, data1 contains diploid data; if haploid = TRUE, haploid data.
ele option, separator element for export.
name option, name of the exported file.

Value

a genind object or a file for Genetix or Arlequin.

Note

For multi-population files, we recommend to use split function to cut the table into several tables, one for each population, and then combine lapply with the export functions.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

Examples

data(posidonia)

#RClone to Adegenet:
res <- export_genclone_genind(posidonia, "/")
#library(adegenet)
#res2 <- df2genind(res, ploidy = 2, sep = "/")
#nAll(res2)

#RClone to Genetix:
export_genclone_genetix(posidonia, name = "test.txt")
#or
write.table(export_genclone_genetix(posidonia), "test2.txt", row.names = FALSE,
sep = "\t", quote = FALSE)
#for genets only:
export_genclone_genetix(unique(posidonia), name = "test.txt")

#Rclone to Arlequin:
write.table(export_genclone_arlequin(posidonia), "file1.arp", row.names = FALSE,
Fis computes observed Heterozygosity (Hobs), expected Heterozygosity (Hexp; Nei, 1978) and Fis from ramets or genets.

Usage

```r
Fis(data1, vecpop, genet = FALSE, RR = FALSE)
```

Arguments

- `data1`: a `Rclone` table with one allele per column for diploid data.
- `vecpop`: vector, option, `vecpop` indicates the population name of each unit of `data1`, if `data1` contains several populations. If `data1` contains only one population, leave `vecpop = NULL`.
- `genet`: option, if `TRUE`, `data1` is reduced to genets.
- `RR`: option, if `TRUE`, Fis and allelic frequencies are computed with Round-Robin method.

Details

Allelic frequencies are computed:

- on ramet level,
- on genet level (`genet = TRUE`),
- with Round-Robin method (`RR = TRUE`, see `freq_RR`).
freq_RR

Value

a table with Hobs, Hexp and Fis for each locus.

If RR = TRUE, a list of the Hobs/Hexp/Fis table and another table with Round-Robin frequencies.

If data1 is a multi-population table, a list of table(s) for each population.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

freq_RR, pgen, pgen_Fis, psex and psex_Fis

Examples

data(posidonia)

Fis(posidonia)
Fis(posidonia, genet = TRUE)
Fis(posidonia, RR = TRUE)

freq_RR Allelic Frequencies

Description

freq_RR returns a table of allelic frequencies computed with or without Round-Robin method.

Usage

freq_RR(data1, haploid = FALSE, vecpop = NULL, genet = FALSE, RR = FALSE)
freq_RR

Arguments

data1 a Rclone table with one allele per column.

haploid logical, option, haploid indicates the ploidy level of data1.

vecpop vector, option, vecpop indicates the population name of each unit of data1,
if data1 contains several populations. If data1 contains only one population,
leave vecpop = NULL.

genet option, if TRUE, data1 is reduced to genets.

RR option, if TRUE, indicates frequencies are computed with Round-Robin method.

Details

Round-Robin method (Parks & Werth 1993) is a sub-sampling approach which avoids overesti-
ation of rare alleles.
Each locus frequency is estimated on MLG lists constructed without the locus sampled.
This calculation is repeated for all loci.

Value

a table (one population) or a list of tables (several populations) with three columns:
• a first column with the number of the locus considered (written as "locus_1"),
• a second column with the list of the unique alleles of the locus,
• a last column with the frequency of the allele in row.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Parks & Werth, 1993, A study of spatial features of clones in a population of Bracken fern, Pterid-
ium aquilinum (Dennstaedtiaceae). Arnaud-Haond et al., 2007, Standardizing methods to address
clonality in population studies.

See Also

pgen and pgen_Fis

Examples

data(posidonia)

freq_RR(posidonia, RR = TRUE)
freq_RR(posidonia)
GenClone

Summary function of RClone package

Description

genclone computes main genetic/genotypic diversity/richness indices.

Usage

GenClone(data1, haploid = FALSE, coords = NULL, vecpop = NULL, listMLL = NULL, nbrepeat = NULL, bar = FALSE)

Arguments

data1 a Rclone table with one allele per column.

haploid logical, option, haploid indicates the ploidy level of data1.

coords a table with coordinates of every units in data1.

vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.

nbrepeat numeric, option, if pvalue = TRUE, nbrepeat is the number of resampling to enable pvalues computation.

listMLL option, a custom list of MLL.

bar option, if TRUE, displays a progression bar.

Details

GenClone returns results of several functions of RClone: a summary of MLG_tab, Fis on ramets and genets with pvalues (resample the population nbrepeat times, with simulated sexual events), B_Pareto from Pareto_index, Sp from autocorrelation and indexes from clonal_index.

If no coordinate at all are available, let coords = NULL as it or create a table with always the same number (i.e. "999", "-1", etc.). If coordinates are available for some populations only, for the population with missing coordinates: replace all the coordinates by the same number, as "999".

GenClone cannot handle mix situation with missing coordinates only for some units of the population.

Value

GenClone returns a table with:

- N, the number of units in data1,
- Lineage, MLG or MLL,
- nb_L, the number of MLG/MLL,
- nb_all, the mean number of alleles,
• SE, the standard error of nb_all,
• Fis, on ramets if diploid data
• pval_2sides, the two-sided p-value of Fis if nbrepeat,
• Fis_WR, on genets if diploid data
• pval_2sides, the two-sided p-value of Fis_WR if nbrepeat,
• R, the clonal diversity index (Dorken & Eckert 2001; Ellstrand & Roose 1987),
• Pareto_index, the index of Pareto
• Sp_Loiselle, Sp index computed on ramets with Loiselle kinship results used to quantify Spatial Genetic Structure (Vekemans and Hardy, 2004)
• pval_2sides, the two-sided p-value of Sp_Loiselle if nbrepeat,
• Sp_Ritland, Sp index computed on ramets with Ritland kinship results used to quantify SGS
• pval_2sides, the two-sided p-value of Sp_Ritland if nbrepeat,
• Sp_L_WR, Sp index computed on genets with Loiselles kinship results used to quantify SGS
• pval_2sides, the two-sided p-value of Sp_L_WR if nbrepeat,
• Sp_R_WR, Sp index computed on genets with Ritland kinship results used to quantify SGS
• pval_2sides, the two-sided p-value of Sp_R_WR if nbrepeat,
• H′, the Shannon-Wiener index estimator (Pielou 1966),
• J′, the Pielou evenness index(Pielou 1975),
• D′, the Simpson complement unbiased (Pielou 1969; Gini 1912; Peet 1974),
• V, the Simpson complement index (Hurlbert 1971; Fager 1972),
• Hill, the reciprocal of Simpson index unbiased (Hurlbert 1971; Hill 1973).

Author(s)
Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References
Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also
clonal_index
Examples

```r
data(posidonia)
data(coord_posidonia)

#GenClone(posidonia) #without coordinates
#GenClone(posidonia, coords = coord_posidonia) #with coordinates
#GenClone(posidonia, coords = coord_posidonia, nbrepeat = 1000)
##time consuming
```

genet_dist
Genetic distance

Description

Defining MLL (MultiLocus Lineage): ascertaining that each distinct MLG (MultiLocus Genotype) belongs to a distinct genet (Halkett et al., 2005a).

Usage

```r
genet_dist(data1, haploid = FALSE, vecpop = NULL, manh = FALSE, manh_w = FALSE, graph = FALSE, breaking = NULL, alpha1 = NULL, alpha2 = NULL, export = FALSE)
genet_dist_sim(data1, haploid = FALSE, vecpop = NULL, nbrepeat = 1000, genet = FALSE, manh = FALSE, manh_w = FALSE, graph = FALSE, breaking = NULL, export = FALSE)
```

Arguments

- `data1`: a `Rclone` table with one allele per column.
- `haploid`: logical, option, `haploid` indicates the ploidy level of `data1`.
- `vecpop`: vector, option, `vecpop` indicates the population name of each unit of `data1`, if `data1` contains several populations. If `data1` contains only one population, leave `vecpop = NULL`.
- `manh`: option, if `TRUE`, computes genetic distances among MLG in terms of divergence of microsatellites motifs (Rozenfeld et al., 2007).
- `manh_w`: option, if `TRUE`, computes genetic distances among MLG in terms of weighted divergence of microsatellites motifs (Rozenfeld et al., 2007).
- `graph`: option, if `TRUE`, displays a barplot with `breaking` and `pas` arguments.
- `breaking`: numeric, option, if `breaking` != `NULL`, adds `breaks` argument for `barplot` as `breaks = seq(0, max, X)`, with `X`, the numerical value of `breaking`.
- `alpha1`: numeric, option, if `alpha1` is not `NULL`, a vertical significativity line is added on `graph` at `alpha1`.
- `alpha2`: numeric, option, if `alpha2` is not `NULL`, a vertical significativity line is added on `graph` at `alpha2`.
- `nbrepeat`: numeric, the number of repeats for simulation (i.e. reproduction event).
- `genet`: option, if `FALSE`, selfing is taking into account in simulation through ramets.
- `export`: option, if `TRUE`, graph is saved as `.eps` into working directory.
Details

genet_dist and genet_dist_sim help determining MLL, i.e. if slightly different MLG belong or not to the same lineage.

genet_dist computes genetic distances between pairs of units in terms of number of alleles (Chakraborty and Jin, 1993) by default.

If manh = TRUE or manh_w = TRUE, divergence of SSR motifs (Rozenfeld et al., 2007) is used as genetic distance.

These distance distributions help defining MLL with significativity of alpha: every pair under alpha could be ramets of a genet.

genet_dist_sim computes genetic distances but after a reproduction event between the units.

The simulated distance distribution allows to distinguish slightly differences due to somatic mutation or scoring errors by stacking the two distributions.

Value

genet_dist returns:

• distance_matrix, a dist object with genetic distances by pair of units.
• potential_clones, a table containing names and genetic distances of pairs of units under alpha1 distribution or of maximal genetic distance of alpha2.
• all_pairs, a table containing names and genetic distances of every pairs of units.
• sign, the numeric value of alpha1 or alpha2.

If vecpop != NULL, a list for every population.

genet_dist_sim returns a dist object of genetic distances by pair of units after a sexual reproduction event.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

Rozenfeld et al., 2007, Spectrum of genetic diversity and networks of clonal populations.
Examples

data(posidonia)

res <- genet_dist(posidonia, manh = TRUE, graph = TRUE, alpha1 = 0.05)

Combining functions:
res1 <- genet_dist(posidonia, manh = TRUE)$distance_matrix
res2 <- genet_dist_sim_core(posidonia, nbrepeat = 100, manh = TRUE, genet = TRUE)$distance_matrix

p1 <- hist(res1, freq = FALSE, col = rgb(0,0.4,1,1), breaks = seq(0, max(res1), 2))
p2 <- hist(res2, freq = FALSE, col = rgb(0.7,0.9,1,0.5), breaks = seq(0, max(res2), 2))

limx <- max(max(res1), max(res2))
plot(p1, col = rgb(0,0.4,1,1), freq = FALSE, xlim = c(0,limx))
plot(p2, col = rgb(0.7,0.9,1,0.5), freq = FALSE, add = TRUE)

Other way:
p1 <- as.data.frame(table(res1))
p2 <- as.data.frame(table(res2))
barplot(p1$freq/sum(p1$freq), col=rgb(0,0.4,1,1), axis.lty = 1,
names.arg = as.numeric(as.character(p1[,1])))
barplot(p2$freq/sum(p2$freq), col=rgb(0.7,0.9,1,0.5), add = TRUE)
title("Genetic distances between pairs of MLG")

Adding a legend:
leg.txt <- c("original data","simulated data")
col <- c(rgb(0,0.4,1,1), rgb(0.7,0.9,1,0.5))
legend("topright", fill = col, leg.txt, plot = TRUE, bty = "o", box.lwd = 1.5,
bg = "white")

infile

Infile GenClone style file

Description

A GenClone file of 40 units of *Posidonia oceanica* (genotypes of seven loci and x/y coordinates) sampled in Mediterranean sea.

Usage

data("infile")

Format

A data frame with 41 observations on the following 12 variables (not relevant).

<table>
<thead>
<tr>
<th>V1</th>
<th>a numeric vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>V3</td>
<td>a numeric vector</td>
</tr>
</tbody>
</table>
V4 a numeric vector
V5 a numeric vector
V6 a factor with levels 208208 208210 208212 210216 210218 212216 216218 222226 Po15
V7 a factor with levels 234234 234236 234242 Po5
V8 a factor with levels 159159 159163 159165 163163 163165 165165 Po5-49
V9 a factor with levels 168168 168170 168172 170170 170172 172172 Po5-40
V10 a factor with levels 178178 178180 180180 Po5-10
V11 a factor with levels Po4-3
V12 a factor with levels Po5-39

Details

This data is given as illustration of GenClone file formatted to work with RClone (the R package version of GenClone).

Source

Dryad Digital Repository: doi: 10.5061/dryad.3b8k6

References

Examples

data(infile)
#This is nearly a GenClone file, type:
#write.table(infile, "infile2.csv", col.names = FALSE, row.names = FALSE, sep = ";")
#Now you have a formatted GenClone file.
kinship

Loiselle and Ritland kinship coefficients

Description

`kinship_Loiselle` and `kinship_Ritland` compute average genetic distances or kinship coefficients.

Usage

```r
kkinship_Loiselle(data1, haploid = FALSE, vecpop = NULL)
kkinship_Ritland(data1, haploid = FALSE, vecpop = NULL)
```

Arguments

- `data1`: a Rclone table with one allele per column.
- `haploid`: logical, option, `haploid` indicates the ploidy level of `data1`.
- `vecpop`: vector, option, `vecpop` indicates the population name of each unit of `data1`, if `data1` contains several populations. If `data1` contains only one population, leave `vecpop = NULL`.

Value

A `dist` object (or a list of `dist` objects for multi-population `data1`) with genetic distances between pairs of units.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

autocorrelation
Examples

data(posidonia)

#kinship_Loiselle(posidonia)
#kinship_Ritland(posidonia)

list_all
Listing unique alleles

Description

list_all_tab returns a table with loci in column and unique alleles in row.

Usage

```r
list_all_tab(data1, haploid = FALSE, vecpop = NULL)
```

Arguments

- `data1`: a Rclone table, with one allele per column.
- `haploid`: logical, option, haploid indicates the ploidy level of `data1`.
- `vecpop`: vector, option, vecpop indicates the population name of each unit of `data1`, if `data1` contains several populations. If `data1` contains only one population, leave `vecpop = NULL`.

Value

a table (one population) or a list of tables (several populations) with the unique alleles per locus.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

Examples

data(posidonia)

```r
list_all_obj(posidonia, haploid = FALSE)
list_all_tab(posidonia, haploid = FALSE)
corresp_loci(posidonia, haploid = FALSE)
```
Table of MLG (MultiLocus Genotypes)

Description

MLG_tab returns a table with one row per MLG and several columns if there’s several units per MLG.

Usage

MLG_tab(data1, vecpop = NULL)

Arguments

data1 a Rclone table with one allele per column, haploid or diploid data.
vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.

Value

a table (one population) or a list of tables (several populations) with one row per MLG and several columns if several units share the same MLG.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

Examples

data(posidonia)

res <- MLG_tab(posidonia)
res
MLL_generator

Clonal Lineage Generation

Description

Defining MLL (MultiLocus Lineage): ascertaining that each distinct MLG (MultiLocus Genotype) belongs to a distinct genet (Halkett et al., 2005a).

Usage

MLL_generator(data1, haploid = FALSE, vecpop = NULL, manh = FALSE, manh_w = FALSE, alpha1 = NULL, alpha2 = NULL)

MLL_generator2(potential_clones = NULL, res_mlg = NULL, vecpop = NULL)

Arguments

data1 a Rclone table with one allele per column.
haploid logical, option, haploid indicates the ploidy level of data1.
vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.
manh option, if TRUE, computes genetic distances among MLG in terms of divergence of microsatellites motifs (Rozenfeld et al., 2007).
manh_w option, if TRUE, computes genetic distances among MLG in terms of weighted divergence of microsatellites motifs (Rozenfeld et al., 2007).
alpha1 numeric, option, if alpha1 is not NULL, a vertical significance line is added on graph at alpha1
alpha2 numeric, option, if alpha2 is not NULL, a vertical significance line is added on graph at alpha2.
potential_clones table, a result table from genet_dist named potential_clones.
res_mlg list, a list of MLG, result from MLG_list.

Details

MLL_generator creates automatically MLL from a given genetic distance (alpha2) or a percentage of the distribution of genetic distance (alpha1).

If several populations (vecpop != NULL), MLL_generator is the only function in the package RClone to accept different arguments for an option. alpha1 and alpha2 thus are vectors of several numeric values, one per populations.

If manh = TRUE or manh_w = TRUE, divergence of SSR motifs (Rozenfeld et al., 2007) is used as genetic distance.

MLL_generator2 computes a list of MLL from previous results of genet_dist and MLG_list.

MLL_generator and MLL_generator2 compute a list of MLL to use with others RClone functions.
Pareto_index

Value

MLL_generator and MLL_generator2 return a list of MLL (one population) or a list of lists (several populations).

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.
Rozenfeld et al., 2007, Spectrum of genetic diversity and networks of clonal populations.

See Also

genet_dist

Examples

data(popsim)

#MLLlist <- MLL_generator(popsim, alpha2 = 4)
#or
#res <- genet_dist(popsim, alpha2 = 4)
#MLLlist <- MLL_generator2(res$potential_clones, MLG_list(popsim))
#take few seconds

Pareto_index

Description

Pareto_index computes parameters of the Pareto distribution.

Usage

Pareto_index(data1, vecpop = NULL, listMLL = NULL, full = FALSE, graph = FALSE, legends = 1, export = FALSE)
Arguments

data1 a Rclone table with one allele per column, haploid or diploid data.
vecpop vector, option, vecpop indicates the population name of each unit of data1,
 if data1 contains several populations. If data1 contains only one population,
 leave vecpop = NULL.
listMLL option, a custom list of MLL.
full option, if TRUE, gives more detailed results.
graph option, if TRUE, displays plot of the inverse cumulated frequency of the number
 of lineages.
export option, if TRUE, graph is saved as .eps into working directory.
legends option, numerical, with graph = TRUE, legends = 1 gives the log-log regression
 equation;
 legends = 2 gives the Pareto index, the r2 and the p-value of the regression.

Details

Pareto’s Beta is given as -slope of the linear regression of the inverse cumulated frequency of the
number of lineages (Pareto 1897 in Vidondo 1997).

The distribution of clonal size in the population c_Pareto is computed as slope+1 (Schroeder

Value

A list of:
Pareto Pareto’s Beta,
c_Pareto distribution of clonal size in the population,
coefficients and regression_results
 summary of the linear regression,
coords_Pareto x and y coordinates of the inverse cumulated frequencies.

For several populations, a list of lists per population.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.
See Also

clonal_index

Examples

data(posidonia)

Pareto_index(posidonia, graph = TRUE, legends = 2)

res <- Pareto_index(posidonia, full = TRUE)[[4]]

xi <- res[,1]
yi <- res[,2]
exp(summary(lm(log10(yi)~log10(xi)))$coefficients[1]) ##true b of y=ax+b

Description

pgen and pgen_Fis compute the probability of a genotype under the Hardy-Weinberg equilibrium assumption (with or without taking account of departures from H-W equilibrium).

Usage

pgen(data1, haploid = FALSE, vecpop = NULL, genet = FALSE, RR = FALSE)
pgen_Fis(data1, vecpop = NULL, genet = FALSE, RR = FALSE)

Arguments

data1 a Rclone table with one allele per column.

haploid logical, option, haploid indicates the ploidy level of data1. Not edible for pgen_Fis.

vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.

genet option, if genet = TRUE, computes pgen on genet level.

RR option, if RR = TRUE, computes pgen with Round-Robin method.

Value

da table (one population) or a list of tables (several populations) with pgen computed for each genotype.
Note

We strongly recommend to use RR = TRUE option to compute allelic frequencies for clonal data. Otherwise, we let the options to work with frequencies at genet level (genet = TRUE) or ramet level (RR = FALSE and genet = FALSE).

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

freq_RR, psex and psex_Fis

Examples

data(posidonia)

pgen(posidonia, RR = TRUE)
pgen_Fis(posidonia, RR = TRUE)

Description

A theoretical diploid population of 100 units, 100 loci and 10 alleles max per locus, with c = 0.9999 (c, clonality rate) after 10000 generations.

Usage

data("popsim")

Format

A data frame with 100 observations on the following 200 variables.

loc_1_1 first allele of locus
loc_1_2 second allele of locus
loc_2_1 first allele of locus
<table>
<thead>
<tr>
<th>Locus 1</th>
<th>Locus 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>loc_2_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_3_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_3_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_4_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_4_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_5_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_5_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_6_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_6_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_7_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_7_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_8_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_8_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_9_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_9_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_10_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_10_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_11_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_11_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_12_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_12_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_13_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_13_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_14_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_14_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_15_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_15_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_16_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_16_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_17_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_17_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_18_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_18_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_19_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_19_2</td>
<td>second allele of locus</td>
</tr>
<tr>
<td>loc_20_1</td>
<td>first allele of locus</td>
</tr>
<tr>
<td>loc_20_2</td>
<td>second allele of locus</td>
</tr>
</tbody>
</table>
loc_21_1 first allele of locus
loc_21_2 second allele of locus
loc_22_1 first allele of locus
loc_22_2 second allele of locus
loc_23_1 first allele of locus
loc_23_2 second allele of locus
loc_24_1 first allele of locus
loc_24_2 second allele of locus
loc_25_1 first allele of locus
loc_25_2 second allele of locus
loc_26_1 first allele of locus
loc_26_2 second allele of locus
loc_27_1 first allele of locus
loc_27_2 second allele of locus
loc_28_1 first allele of locus
loc_28_2 second allele of locus
loc_29_1 first allele of locus
loc_29_2 second allele of locus
loc_30_1 first allele of locus
loc_30_2 second allele of locus
loc_31_1 first allele of locus
loc_31_2 second allele of locus
loc_32_1 first allele of locus
loc_32_2 second allele of locus
loc_33_1 first allele of locus
loc_33_2 second allele of locus
loc_34_1 first allele of locus
loc_34_2 second allele of locus
loc_35_1 first allele of locus
loc_35_2 second allele of locus
loc_36_1 first allele of locus
loc_36_2 second allele of locus
loc_37_1 first allele of locus
loc_37_2 second allele of locus
loc_38_1 first allele of locus
loc_38_2 second allele of locus
loc_39_1 first allele of locus
loc_39_2 second allele of locus
loc_40_1 first allele of locus
loc_40_2 second allele of locus
loc_41_1 first allele of locus
loc_41_2 second allele of locus
loc_42_1 first allele of locus
loc_42_2 second allele of locus
loc_43_1 first allele of locus
loc_43_2 second allele of locus
loc_44_1 first allele of locus
loc_44_2 second allele of locus
loc_45_1 first allele of locus
loc_45_2 second allele of locus
loc_46_1 first allele of locus
loc_46_2 second allele of locus
loc_47_1 first allele of locus
loc_47_2 second allele of locus
loc_48_1 first allele of locus
loc_48_2 second allele of locus
loc_49_1 first allele of locus
loc_49_2 second allele of locus
loc_50_1 first allele of locus
loc_50_2 second allele of locus
loc_51_1 first allele of locus
loc_51_2 second allele of locus
loc_52_1 first allele of locus
loc_52_2 second allele of locus
loc_53_1 first allele of locus
loc_53_2 second allele of locus
loc_54_1 first allele of locus
loc_54_2 second allele of locus
loc_55_1 first allele of locus
loc_55_2 second allele of locus
loc_56_1 first allele of locus
loc_56_2 second allele of locus
loc_57_1 first allele of locus
loc_57_2 second allele of locus
<table>
<thead>
<tr>
<th>Locus</th>
<th>First Allele of Locus</th>
<th>Second Allele of Locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>loc_58_1</td>
<td>first allele of locus</td>
<td>loc_58_2 second allele of locus</td>
</tr>
<tr>
<td>loc_59_1</td>
<td>first allele of locus</td>
<td>loc_59_2 second allele of locus</td>
</tr>
<tr>
<td>loc_60_1</td>
<td>first allele of locus</td>
<td>loc_60_2 second allele of locus</td>
</tr>
<tr>
<td>loc_61_1</td>
<td>first allele of locus</td>
<td>loc_61_2 second allele of locus</td>
</tr>
<tr>
<td>loc_62_1</td>
<td>first allele of locus</td>
<td>loc_62_2 second allele of locus</td>
</tr>
<tr>
<td>loc_63_1</td>
<td>first allele of locus</td>
<td>loc_63_2 second allele of locus</td>
</tr>
<tr>
<td>loc_64_1</td>
<td>first allele of locus</td>
<td>loc_64_2 second allele of locus</td>
</tr>
<tr>
<td>loc_65_1</td>
<td>first allele of locus</td>
<td>loc_65_2 second allele of locus</td>
</tr>
<tr>
<td>loc_66_1</td>
<td>first allele of locus</td>
<td>loc_66_2 second allele of locus</td>
</tr>
<tr>
<td>loc_67_1</td>
<td>first allele of locus</td>
<td>loc_67_2 second allele of locus</td>
</tr>
<tr>
<td>loc_68_1</td>
<td>first allele of locus</td>
<td>loc_68_2 second allele of locus</td>
</tr>
<tr>
<td>loc_69_1</td>
<td>first allele of locus</td>
<td>loc_69_2 second allele of locus</td>
</tr>
<tr>
<td>loc_70_1</td>
<td>first allele of locus</td>
<td>loc_70_2 second allele of locus</td>
</tr>
<tr>
<td>loc_71_1</td>
<td>first allele of locus</td>
<td>loc_71_2 second allele of locus</td>
</tr>
<tr>
<td>loc_72_1</td>
<td>first allele of locus</td>
<td>loc_72_2 second allele of locus</td>
</tr>
<tr>
<td>loc_73_1</td>
<td>first allele of locus</td>
<td>loc_73_2 second allele of locus</td>
</tr>
<tr>
<td>loc_74_1</td>
<td>first allele of locus</td>
<td>loc_74_2 second allele of locus</td>
</tr>
<tr>
<td>loc_75_1</td>
<td>first allele of locus</td>
<td>loc_75_2 second allele of locus</td>
</tr>
<tr>
<td>loc_76_1</td>
<td>first allele of locus</td>
<td>loc_76_2 second allele of locus</td>
</tr>
</tbody>
</table>
loc_76_2 second allele of locus
loc_77_1 first allele of locus
loc_77_2 second allele of locus
loc_78_1 first allele of locus
loc_78_2 second allele of locus
loc_79_1 first allele of locus
loc_79_2 second allele of locus
loc_80_1 first allele of locus
loc_80_2 second allele of locus
loc_81_1 first allele of locus
loc_81_2 second allele of locus
loc_82_1 first allele of locus
loc_82_2 second allele of locus
loc_83_1 first allele of locus
loc_83_2 second allele of locus
loc_84_1 first allele of locus
loc_84_2 second allele of locus
loc_85_1 first allele of locus
loc_85_2 second allele of locus
loc_86_1 first allele of locus
loc_86_2 second allele of locus
loc_87_1 first allele of locus
loc_87_2 second allele of locus
loc_88_1 first allele of locus
loc_88_2 second allele of locus
loc_89_1 first allele of locus
loc_89_2 second allele of locus
loc_90_1 first allele of locus
loc_90_2 second allele of locus
loc_91_1 first allele of locus
loc_91_2 second allele of locus
loc_92_1 first allele of locus
loc_92_2 second allele of locus
loc_93_1 first allele of locus
loc_93_2 second allele of locus
loc_94_1 first allele of locus
loc_94_2 second allele of locus
loc_95_1 first allele of locus
loc_95_2 second allele of locus
loc_96_1 first allele of locus
loc_96_2 second allele of locus
loc_97_1 first allele of locus
loc_97_2 second allele of locus
loc_98_1 first allele of locus
loc_98_2 second allele of locus
loc_99_1 first allele of locus
loc_99_2 second allele of locus
loc_100_1 first allele of locus
loc_100_2 second allele of locus

Source
Computed with python and provided by S. Stoeckel.

Examples
data(popsim)

posidonia Posidonia

Description
A sub-sample table of a large dataset of *Posidonia oceanica* sampled in mediterranean sea.

Usage
data("posidonia")

Format
A data frame with 40 observations on the following 14 variables.

Po15_1 first allele of locus Po15
Po15_2 second allele of locus Po15
‘Po4-3_1’ first allele of locus Po4-3
‘Po4-3_2’ second allele of locus Po4-3
‘Po5-10_1’ first allele of locus Po5-10
‘Po5-10_2’ second allele of locus Po5-10
‘Po5-39_1’ first allele of locus Po5-39
‘Po5-39_2’ second allele of locus Po5-39
‘Po5-40_1’ first allele of locus Po5-40
‘Po5-40_2’ second allele of locus Po5-40
‘Po5-49_1’ first allele of locus Po5-49
‘Po5-49_2’ second allele of locus Po5-49
Po5_1 first allele of locus Po5
Po5_2 second allele of locus Po5

Source

Data from: Disentangling the influence of mutation and migration in clonal seagrasses using the Genetic Distance Spectrum for microsatellites.
Dryad Digital Repository. doi: 10.5061/dryad.3b8k6

References

Examples

data(posidonia)

e

psex Probability of originating from distinct sexual events

Description

psex and psex_Fis compute the probability that repeated genotypes originate from distinct sexual events (i.e. being different genets and not ramets of the same MLG), with or without taking account of H-W equilibrium departures.

Usage

psex(data1, haploid = FALSE, vecpop = NULL, genet = FALSE, RR = FALSE, MLGsim = FALSE, nbrepeat = NULL, bar = FALSE)
psex_Fis(data1, vecpop = NULL, genet = FALSE, RR = FALSE, MLGsim = FALSE, nbrepeat = NULL, bar = FALSE)
Arguments

data1 a Rclone table with one allele per column.
haploid logical, option, haploid indicates the ploidy level of data1. Not edible for psex_Fis.
vecpop vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.
genet option, if genet = TRUE, computes pgen on genet level.
RR option, if RR = TRUE, computes pgen with Round-Robin method.
MLGsim option, the method of psex calculation (see details).
nbrepeat option, numeric, the population is simulated nbrepeat times, based on frequency values.
bar option, if TRUE, a progression bar appears.

Details

We strongly recommend to use RR = TRUE option to compute allelic frequencies for clonal data. Otherwise, we let the options to work with frequencies at genet level (genet = TRUE) or ramet level (RR = FALSE and genet = FALSE).

if MLGsim = TRUE, psex are computed as probability for two units to be derived from distinct sexual reproductive event to be $C(N,2)$ (Stenberg et al. 2003).
If MLGsim = FALSE, psex are computed with more conservative $C(n,1)$ (Parks & Werth 1993) with n, "number of separated fragments with identical genotype to some previously encountered ramet".

The pvalue method calculation is largely inspired from MLGsim (Stenberg et al., 2003) and MLGsim2.0 (Ivens et al., 2012), with authors agreements.
For each repeat, a population is simulated with allelic frequencies.
If clones occurred, a simulated psex is computed and kept in memory.
At the end, a distribution of sim psex is constructed and p-value is computed as upper p-value (Monte Carlo).

psex and psex_Fis could be time consuming with a certain number of repeats.
Values must differ from MLGsim and MLGsim2.0 because of Round-Robin frequencies and Fis calculation (see freq_RR and Fis).

Value

For one population:

- if nbrepeat is not provided, a table with psex values,
- if nbrepeat is provided, a list of a table with psex values and p-values and a vector of sim psex.

If data1 is a multi-population table (vecpop != NULL), a list of either tables/tables and vectors for each population.
Warning

If sim_psex are less than 100, a warning message pops, as clones are not necessarily generated each simulation.

If no repeated genotype is generated during simulations, a warning message pops as well.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Stenberg et al., 2003, MLGsim: a program for detecting clones using a simulation approach.
Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

Fis, freq_RR, pgen and pgen_Fis

Examples

data(posidonia)

psex(posidonia, RR = TRUE)
psex(posidonia, RR = TRUE, MLGsim = TRUE)
#psex(posidonia, RR = TRUE, nbrepeat = 1000, bar = TRUE)
##time consuming

resvigncont

Results contained in vignette Quick Manual

Description

This file contains data to fast generate the vignette: RClone_quickmanual.

Usage

data("resvigncont")
The format is: List of 14 $ resee :List of 2 ..$ results :`data.frame`: 1 obs. of 3 variables: ...
$ Ee :
num 0.0779 ..$ $ pval_Ee : num 0.434 ..$ $ nbrepeat: num 1000 ..$ simulations: num [1:1000] 0.0316 -0.1692 -0.1172 -0.1289 ...
$ resee :List of 2 ..$ results :`data.frame`: 1 obs. of 24 variables: ...
$ resvigncont
sample_LU

Monte Carlo procedure to ensure that the sets of loci (sample_units) or units (sample_loci) provide enough power to discriminate MLG (MultiLocus Genotypes).

Usage

```r
sample_loci(data1, haploid = FALSE, vecpop = NULL, nbrepeat = 1000, He = FALSE, graph = FALSE, export = FALSE, bar = FALSE)
```

```r
sample_units(data1, haploid = FALSE, vecpop = NULL, nbrepeat = 1000, He = FALSE, graph = FALSE, export = FALSE, bar = FALSE)
```

Arguments

data1
a Rclone table with one allele per column.

haploid
logical, option, haploid indicates the ploidy level of data1. Not edible for pgen_Fis.

vecpop
vector, option, vecpop indicates the population name of each unit of data1, if data1 contains several populations. If data1 contains only one population, leave vecpop = NULL.

nbrepeat
numeric, the number of sampling.

He
option, if TRUE, computes Hexp (expected Heterozygositi, Nei 1978).
graph option, if TRUE, displays a boxplot of average MLG number using X loci.

export option, if TRUE, graph is saved as pdf into working directory.

bar option, if TRUE, displays a progression bar.

Value

a list of:

res_MLG with min, max, mean and SE (Standard Error) of MLG,

res_alleles with min, max, mean and Satterthwaite approximation of SE of the number of alleles and of Hexp if option He = TRUE,

raw_He a table with number of loci/units sampled in column and each re-sampling in row for He,

raw_MLG a table with number of loci/units sampled in column and each re-sampling in row for MLG number,

raw_all a table with number of loci/units sampled in column and each re-sampling in row for alleles number.

If data1 is a multi-population table, a list of lists for each population.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

Examples

data(posidonia)

sample_loci(posidonia, nbrepeat = 10, graph = TRUE)[[2]]
sample_units(posidonia, nbrepeat = 10, graph = TRUE, bar = TRUE, He = TRUE)[[1]]

#Graph :
res <- sample_loci(posidonia, nbrepeat = 100)
boxplot(res$raw_MLG, range = 3, ylab = "Number of multilocus genotypes", xlab = "Number of loci sampled")
title(paste("Genotype accumulation curve for", "posidonia"))
sort_all
Sorting alleles

Description

sort_all sorts alleles of diploid data by increasing order.

Usage

```
sort_all(data1)
```

Arguments

- `data1`
a RClone table with one allele per column.

Details

To use properly RClone functions on diploid data, you **MUST** be sure that your alleles are sorted by increasing order.

Run this function before any analysis.

Value

a table of exact format of data1, but with alleles sorted.

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>

Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>

Contributor: Solenn Stoeckel

The R implementation of RClone was written by Diane Bailleul.

The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).

References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

- `convert_GC` for tables with one locus per column.

Examples

```r
data(posidonia)
posidonia == sort_all(posidonia)
```
transcript_GC allows conversion from GenClone files to RClone files.

Usage

transcript_GC(obj, ele, num1, num2, num3)

Arguments

obj a .csv file from GenClone (.txt saved as .csv).
ele option, separator element for import.
um1 numeric, the number of loci.
um2 numeric, the ploidy level. 2 for diploids and 1 for haploids.
um3 numeric, the length of each allele.

Details

GenClone files are generally .txt files named infile.txt. You must save it as .csv file with ";" as separators and, if necessary, change "," by ".".

Value

transcript_GC returns a list of:

data_genet a table of genotypes, one allele per column and one unit per row,
data_coord a table of x/y coordinates,
names_loci a vector of names of the loci,
names_units a vector of names of the units.

Note

transcript_GC works only with infile files full of informations (loci names, ploidy names, etc.).

Author(s)

Creator/Author: Diane Bailleul <diane.bailleul.pro@gmail.com>
Author: Sophie Arnaud-Haond <sophie.arnaud@ifremer.fr>
Contributor: Solenn Stoeckel
The R implementation of RClone was written by Diane Bailleul.
The design was inspired by GenClone program described in Arnaud-Haond & Belkhir (2007).
References

Arnaud-Haond et al., 2007, Standardizing methods to address clonality in population studies.

See Also

sort_all for sorting users tables with one allele per column.

Examples

data(infile)
This is nearly a GenClone file, type:
write.table(infile, "infile.csv", col.names = FALSE, row.names = FALSE, sep = ";")
Now you have a formatted GenClone file:
res <- transcript_GC("infile.csv", ";", 2, 7, 3)
data1 <- res$data_genet
coord <- res$data_coord

zostera Zostera Dataset

Description

A sub-sample table of a large dataset of Zostera marina sampled in Brittany, France.

Usage

data("zostera")

Format

A data frame with 59 observations on the following 12 variables.

population a character vector indicating the population
x a character vector indicating the population
y a character vector indicating the population
GA12 first locus
GA16 second locus
GA17D third locus
GA17H fourth locus
GA19 fifth locus
GA2 sixth locus
GA20 seventh locus
GA23 eighth locus
GA35 ninth allele of locus
Source

Data from: Scaling of processes shaping the clonal dynamics and genetic mosaic of seagrasses through temporal genetic monitoring.
Dryad Digital Repository. doi: 10.5061/dryad.1vp70

References

doi: 10.1038/hdy.2013.82

Examples

data(zostera)
popvec <- zostera[,1]
coord_zostera <- zostera[,2:3]
zostera <- convert_GC(zostera[4:ncol(zostera)], 3)
Index

* datasets
 coord_posidonia, 12
 infile, 23
 popsim, 32
 posidonia, 38
 resvigncont, 41
 zostera, 48

* documentation
 agg_index, 3
 autocorrelation, 5
 clonal_index, 7
 clonal_sub, 9
 convert_GC, 11
 edge_effect, 13
 export_genclone, 14
 Fis, 16
 freq_RR, 17
 GenClone, 19
 genet_dist, 21
 kinship, 25
 list_all, 26
 MLG_tab, 27
 MLL_generator, 28
 Pareto_index, 29
 pgen, 31
 psex, 39
 sample_LU, 44
 sort_all, 46
 transcript_GC, 47

* package
 RCClone-package, 2

agg_index, 3, 10, 14
agg_index_core (agg_index), 3
autocorrelation, 3, 4, 5, 10, 14, 25
autocorrelation_core (autocorrelation), 5
clonal_index, 3, 7, 20, 31
clonal_index_core (clonal_index), 7
clonal_sub, 4, 9, 14
clonal_sub_core (clonal_sub), 9
convert_GC, 11, 46
coord_posidonia, 12
corresp_loci (list_all), 26
d_edge_effect, 4, 10, 13
d_edge_effect_core (edge_effect), 13
d_export_genclone, 14
d_export_genclone_arlequin (export_genclone), 14
d_export_genclone_genetix, 3
d_export_genclone_genetix (export_genclone), 14
d_export_genclone_genind (export_genclone), 14
Fis, 16, 40, 41
Fis_core (Fis), 16
d_freq_finder (freq_RR), 17
d_freq_RR, 16, 17, 17, 32, 40, 41
d_freq_RR_core (freq_RR), 17
GencClone, 19
genclone, 3
genclone (GencClone), 19
GencClone_core (GencClone), 19
genclone_core (GencClone), 19
genet_dist, 3, 21, 29
genet_dist_core (genet_dist), 21
genet_dist_sim (genet_dist), 21
genet_dist_sim_core (genet_dist), 21
graph_autocorrelation (autocorrelation), 5
graph_genet_dist (genet_dist), 21
id_clonal (agg_index), 3
id_clonal_MLL (agg_index), 3
INDEX

id_clonal_mod (clonal_sub), 9
id_clonal_mod_MLL (clonal_sub), 9
infile, 23

kinship, 25
kinship_Loiselle, 7
kinship_Loiselle (kinship), 25
kinship_Loiselle_core (kinship), 25
kinship_Ritland, 7
kinship_Ritland (kinship), 25
kinship_Ritland_core (kinship), 25

list_all, 26
list_all_obj (list_all), 26
list_all_obj_core (list_all), 26
list_all_tab (list_all), 26
list_all_tab2 (list_all), 26
list_all_tab2_core (list_all), 26
list_all_tab_core (list_all), 26

MLG_list (MLG_tab), 27
MLG_list_core (MLG_tab), 27
MLG_tab, 27
MLG_tab_core (MLG_tab), 27
MLL_generator, 28
MLL_generator2 (MLL_generator), 28
MLL_generator2_core (MLL_generator), 28
MLL_generator_core (MLL_generator), 28

nearest_unit (agg_index), 3

Pareto_index, 3, 8, 29
Pareto_index_core (Pareto_index), 29
pgen, 17, 18, 31, 41
pgen_core (pgen), 31
pgen_Fis, 17, 18, 41
pgen_Fis (pgen), 31
pgen_Fis_core (pgen), 31
popsim, 32
popsimgen (GenClone), 19
posidonia, 38
psex, 3, 17, 32, 39
psex_core (psex), 39
psex_Fis, 17, 32
psex_Fis (psex), 39
psex_Fis_core (psex), 39

RCClone (RCClone-package), 2
RCClone-package, 2
RCClone_quickmanual (RCClone-package), 2
red_MLL (autocorrelation), 5
red_MLL_mod (autocorrelation), 5
resvigncont, 41
resvigncont2 (resvigncont), 41
sample_loci (sample_LU), 44
sample_loci_core (sample_LU), 44
sample_LU, 44
sample_units (sample_LU), 44
sample_units_core (sample_LU), 44
setdiff_mod (genet_dist), 21
sort_all, 11, 46, 48

transcript_GC, 3, 11, 47
zostera, 48