Package ‘RColorBrewer’

October 12, 2022

Version 1.1-3
Date 2022-04-03
Title ColorBrewer Palettes
Author Erich Neuwirth [aut, cre]
Maintainer Erich Neuwirth <erich.neuwirth@univie.ac.at>
Depends R (>= 2.0.0)
Description Provides color schemes for maps (and other graphics)
 designed by Cynthia Brewer as described at http://colorbrewer2.org.
License Apache License 2.0
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-03 19:20:13 UTC

R topics documented:

RColorBrewer .. 1

Index

RColorBrewer

ColorBrewer palettes

Description

Creates nice looking color palettes especially for thematic maps

Usage

brewer.pal(n, name)
display.brewer.pal(n, name)
display.brewer.all(n=NULL, type="all", select=NULL, exact.n=TRUE,
colorblindFriendly=FALSE)
brewer.pal.info
Arguments

n
Number of different colors in the palette, minimum 3, maximum depending on palette

name
A palette name from the lists below

type
One of the strings "div", "qual", "seq", or "all"

select
A list of names of existing palettes

exact.n
If TRUE, only display palettes with a color number given by n

colorblindFriendly
if TRUE, display only colorblind friendly palettes

Details

`brewer.pal` makes the color palettes from ColorBrewer available as R palettes.

`display.brewer.pal()` displays the selected palette in a graphics window.

`display.brewer.all()` displays the a few palettes simultaneously in a graphics window.

`brewer.pal.info` returns information about the available palettes as a dataframe. `brewer.pal.info` is not a function, it is a variable. This might change in the future.

For details and an interactive palette selection tools see http://colorbrewer.org. It is free to use, although ColorBrewer's designers would appreciate it if you could cite the ColorBrewer project if you decide to use one of our color schemes.

There are 3 types of palettes, sequential, diverging, and qualitative.

1. Sequential palettes are suited to ordered data that progress from low to high. Lightness steps dominate the look of these schemes, with light colors for low data values to dark colors for high data values.

2. Diverging palettes put equal emphasis on mid-range critical values and extremes at both ends of the data range. The critical class or break in the middle of the legend is emphasized with light colors and low and high extremes are emphasized with dark colors that have contrasting hues.

3. Qualitative palettes do not imply magnitude differences between legend classes, and hues are used to create the primary visual differences between classes. Qualitative schemes are best suited to representing nominal or categorical data.

The sequential palettes names are

- Blues
- BuGn
- BuPu
- GnBu
- Greens
- Greys
- Oranges
- OrRd
- PuBu
- PuBuGn
- PuRd
- Purples
- RdPu
- Reds
- YlGn
- YlGnBu
- YlOrBr
- YlOrRd

All the sequential palettes are available in variations from 3 different values up to 9 different values.

The diverging palettes are

- BrBG
- PiYG
- PRGn
- PuOr
- RdBu
- RdGy
- RdYIBu
- RdYIGn
- Spectral

All the diverging palettes are available in variations from 3 different values up to 11 different values.

For qualitative palettes, the lowest number of distinct values available always is 3, but the largest number is different for different palettes. It is given together with the palette names in the following table.

```
<table>
<thead>
<tr>
<th>Palette</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accent</td>
<td>8</td>
</tr>
<tr>
<td>Dark2</td>
<td>8</td>
</tr>
</tbody>
</table>
```
ColorBrewer is Copyright (c) 2002 Cynthia Brewer, Mark Harrower, and The Pennsylvania State University. All rights reserved. The ColorBrewer palettes have been included in this R package with permission of the copyright holder. For license details see the file COPYING included in this package.

Value

A palette
You will get an error when you ask for a nonexisting palette, and you will get a warning if a palette you asked for exists but not with as many different leves as you asked for.

Note

Author(s)

Erich Neuwirth, University of Vienna, <erich.neuwirth@univie.ac.at>, with contributions by John Maindonald, Australian National University, <john.maindonald@anu.edu.au>

Examples

```r
## create a sequential palette for usage and show colors
mypalette<-brewer.pal(7,"Greens")
image(1:7,1,as.matrix(1:7),col=mypalette,xlab="Greens (sequential)",
 ylab="",xaxt="n",yaxt="n",bty="n")
## display a divergent palette
display.brewer.pal(7,"BrBG")
devAskNewPage(ask=TRUE)
## display a qualitative palette
display.brewer.pal(7,"Accent")
devAskNewPage(ask=TRUE)
## display a palettes simultaneously
display.brewer.all(n=10, exact.n=FALSE)
devAskNewPage(ask=TRUE)
display.brewer.all(n=10)
devAskNewPage(ask=TRUE)
display.brewer.all()
devAskNewPage(ask=TRUE)
display.brewer.all(type="div")
devAskNewPage(ask=TRUE)
display.brewer.all(type="seq")
devAskNewPage(ask=TRUE)
```
display.brewer.all(type="qual")
devAskNewPage(ask=TRUE)
display.brewer.all(n=5,type="div",exact.n=TRUE)
devAskNewPage(ask=TRUE)
display.brewer.all(colorblindFriendly=TRUE)
devAskNewPage(ask=TRUE)
brewer.pal.info
brewer.pal.info["Blues",]
brewer.pal.info["Blues",]$maxcolors
Index

* color
 RColorBrewer, 1

brewer (RColorBrewer), 1

ColorBrewer (RColorBrewer), 1

colors (RColorBrewer), 1

display.brewer.all (RColorBrewer), 1

display.brewer.pal (RColorBrewer), 1

RColorBrewer, 1