Package ‘REEMtree’

October 12, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Regression Trees with Random Effects for Longitudinal (Panel) Data</td>
</tr>
<tr>
<td>Version</td>
<td>0.90.4</td>
</tr>
<tr>
<td>Date</td>
<td>2021-01-08</td>
</tr>
<tr>
<td>Author</td>
<td>Rebecca Sela, Jeffrey Simonoff and Wenbo Jing</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Wenbo Jing wj2093@stern.nyu.edu</td>
</tr>
<tr>
<td>Depends</td>
<td>nlme, rpart, methods, graphics, stats</td>
</tr>
<tr>
<td>Suggests</td>
<td>AER</td>
</tr>
<tr>
<td>License</td>
<td>GPL</td>
</tr>
<tr>
<td>URL</td>
<td>http://pages.stern.nyu.edu/~jsimonof/REEMtree/</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2021-01-10 15:40:15 UTC</td>
</tr>
</tbody>
</table>

R topics documented:

<table>
<thead>
<tr>
<th>REEMtree-package</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoCorrelationLRtest</td>
<td>3</td>
</tr>
<tr>
<td>fitted.REEMtree</td>
<td>4</td>
</tr>
<tr>
<td>is</td>
<td>5</td>
</tr>
<tr>
<td>logLik</td>
<td>6</td>
</tr>
<tr>
<td>plot</td>
<td>7</td>
</tr>
<tr>
<td>predict</td>
<td>8</td>
</tr>
<tr>
<td>print</td>
<td>9</td>
</tr>
<tr>
<td>ranef.REEMtree</td>
<td>10</td>
</tr>
</tbody>
</table>

1
REEMtree-package

Regression Trees with Random Effects for Longitudinal (Panel) Data

Description

This package estimates regression trees with random effects as a way to use data mining techniques to describe longitudinal or panel data.

Details

Package: REEMtree
Type: Package
Version: 1.0
Date: 2009-05-07
License: GPL

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

Examples

data(simpleREEMdata)
REEMresult<REEMtree(Y~D+t+X, data=simpleREEMdata, random=~1|ID)
print(REEMresult)
AutoCorrelationLRtest Test for autocorrelation in the residuals of a RE-EM tree

Description
This function tests for autocorrelation in the residuals of a RE-EM tree using a likelihood ratio test. The test keeps the tree structure of the RE-EM tree object fixed and uses a standard likelihood ratio test on the linear random effects model.

Usage
AutoCorrelationLRtest(object, newdata=NULL, correlation=corAR1())

Arguments
- object: A RE-EM tree
- newdata: Dataset on which the test is to be performed; if none is given, the original dataset is used
- correlation: Type of correlation to be tested for in the residuals. The correlation can be any of type corClasses.

Details
In general, newdata is likely to be the data used to estimate object. The RE-EM tree can be estimated with or without allowing for autocorrelation. Because the estimated tree may differ depending on whether autocorrelation is allowed in the RE-EM tree estimation process, but we recommend testing based on the tree estimated with autocorrelation allowed and the tree estimated without autocorrelation allowed.

Value
- correlation: Type of correlation used in testing
- loglik0: Likelihood of the random effects model if there is no autocorrelation
- loglikAR: Likelihood of the random effects model if autocorrelation (of type AR(1)) is estimated
- pvalue: P-value of the likelihood ratio test

Author(s)
Rebecca Sela <rsela@stern.nyu.edu>

References
See Also

corClasses

Examples

data(simpleREEMdata)

Estimation without autocorrelation
simpleEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=~1|ID)
Estimation with autocorrelation
simpleEMresult2<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=~1|ID, correlation=corAR1())

Autocorrelation test based on the first tree
AutoCorrelationLRtest(simpleEMresult, simpleREEMdata)
Autocorrelation test based on the second tree
AutoCorrelationLRtest(simpleEMresult2, simpleREEMdata)
Autocorrelation test with an alternative correlation structure
AutoCorrelationLRtest(simpleEMresult, simpleREEMdata, correlation=corCAR1())

fitted.REEMtree

Extract the fitted values from a RE-EM tree

Description

This function extracts the fitted values from the LME object underlying the RE-EM tree. The fitted values are the fixed effects (from the tree) plus the estimated contributions of the random effects to the fitted values at grouping levels less or equal to the level given.

Usage

```r
## S3 method for class 'REEMtree'
fitted(object, level, asList, ...)
```

Arguments

- `object` an object of class REEMtree
- `level` the level of random effects used in creating fitted values. Level 0 is fixed effects; levels increase with the grouping of random effects. Default is the highest level.
- `asList` an optional logical value. If TRUE and a single value is given in level, the returned object is a list with the fitted values split by groups; otherwise the returned value is either a vector or a data frame, according to the length of level. Defaults to FALSE.
- `...` some methods for this generic require additional arguments; none are used here.
is

Value

If the level is a single value, the result is a vector or list (depending on asList) with the fitted values. Otherwise, the result is a data frame with columns given by the fitted values at different levels.

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

fitted, REEMtree.object

Examples

data(simpleREEMdata)
REEMresult <- REEMtree(Y~D+t+X, data=simpleREEMdata, random=-1|ID)
fitted(REEMresult)

is Is a RE-EM tree object

Description

This function tests whether an object is of the REEMtree class.

Usage

S3 method for class 'REEMtree'
is(object)

Arguments

object any R object

Value

TRUE if the object is of the REEMtree type

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>
logLik

References

Examples

data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=-1|ID)
is.REEMtree(REEMresult)

logLik

Log-likelihood of a RE-EM tree

Description

This returns the log-likelihood of the effects model of a RE-EM tree. This is the log-likelihood of the random effects model estimated in the RE-EM tree. (The regression tree is not associated with a log-likelihood.)

Usage

```r
## S3 method for class 'REEMtree'
logLik(object,...)
```

Arguments

- `object` an object of class REEMtree
- `...` further arguments passed to or from other methods

Value

the log-likelihood of the fitted effects model associated with `x`

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

`REEMtree.object`
plot

Examples

```r
data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=-1|ID)
logLik(REEMresult)

plot(REEMresult)
```

Description

Plots the regression tree associated with a RE-EM tree.

Usage

```r
## S3 method for class 'REEMtree'
plot(x, text = TRUE, ...)
```

Arguments

- `x`: a fitted object of class `REEMtree`
- `text`: if TRUE, the text of the tree will be plotted on the tree automatically.
- `...`: further arguments passed to or from other methods

Value

the coordinates of the nodes are returned as a list, with components `x` and `y`.

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

- `REEMtree`, `plot.rpart`

Examples

```r
data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=-1|ID)
plot(REEMresult)
```
predictions from a regression tree with individual-specific effects

Description

Returns a vector of predictions from a fitted RE-EM Tree. Predictions are based on the node of the
tree in which the new observation would fall and (optionally) an estimated random effect for the
observation.

Usage

```r
# S3 method for class 'REEMtree'
predict(object, newdata, id = NULL,
        EstimateRandomEffects = TRUE, ...)
```

Arguments

- `object`: a fitted REEMtree
- `newdata`: an data frame to be used for obtaining the predictions. All variables used in the
 fixed and random effects models, including the group identifier, must be present
 in the data frame. New values of the group identifier are allowed. Unlike in
 `predict.lme` and `predict.rpart`, the data frame is required
- `id`: a string containing the name of the variable that is used to identify the groups.
 This is required if `EstimateRandomEffects=TRUE` and `newdata` does not match
 the data used to estimate the random effects model that created `object`.
- `EstimateRandomEffects`: if TRUE, the fitted effects will be included in the estimates and effects for new
 groups will be estimated wherever the target variable is not missing. If FALSE
 or if the random effect cannot be estimated, random effects are set to 0, so that
 only the fixed effects based on the regression tree are used.
- `...`: additional arguments that will be passed through to `rpart`

Details

If `EstimateRandomEffects=TRUE` and a group was not used in the original estimation, its random
effect must be estimated. If there are no non-missing values of the target variable for this group,
then the new effect is set to 0.

If there are non-missing values of the target variable, then the random effect is estimated based on
the estimated variance of the errors and variance of the random effects in the fitted model. See
Equation 3.2 of Laird and Ware (1982) for the precise relationship.

Important note: In this implementation, estimation of group effects for new groups can be used only
with group-specific intercepts are estimated with only one grouping variable.

Value

a vector containing the predicted values
print

Print a RE-EM Tree object

Description

This function prints a description of a fitted RE-EM tree object.

Usage

```r
## S3 method for class 'REEMtree'
print(x,...)
```
Arguments

- `x` fitted model of class `REEMtree`
- `...` further arguments passed to or from other methods

Details

This function is a method for the generic function `print` for class `REEMtree`. It can be invoked by calling `print` for an object of class `REEMtree`, or by calling `print.REEMtree` directly for an object of the corresponding type.

Side Effects

Prints representations of the regression tree and the random effects model that comprise a RE-EM tree.

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

- `print.rpart.REEMtree.object`

Examples

```r
data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=~1|ID)
print(REEMresult)
```

```
ranef.REEMtree
Extract the estimated random effects from a RE-EM tree
```

Description

This function extracts the estimated random effects from a fitted RE-EM tree.

Usage

```r
## S3 method for class 'REEMtree'
ranef(object,...)
```
Arguments

object an object of class REEMtree

... further arguments passed to or from other methods

Value

a vector containing the estimated random effects

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

random.effects, REEMtree.object

Examples

data(simpleREEMdata)
REEMresult<REEMtree(Y~D+t+X, data=simpleREEMdata, random=-1|ID)
ranef(REEMresult)

REEMtree

Create a RE-EM tree

Description

Fit a RE-EM tree to data. This estimates a regression tree combined with a linear random effects model.

Usage

REEMtree(formula, data, random, subset=NULL, initialRandomEffects=rep(0,TotalObs), ErrorTolerance=0.001, MaxIterations=1000, verbose=FALSE, tree.control=rpart.control(), cv=TRUE, cpmin = 0.001, no.SE =1, lme.control=lmeControl(returnObject=TRUE), method="REML", correlation=NULL)
Arguments

formula a formula, as in the \texttt{lm} or \texttt{rpart} function

data a data frame in which to interpret the variables named in the formula (unlike in \texttt{lm} or \texttt{rpart}, this is not optional)

random a description of the random effects, as a formula of the form \texttt{~1|g}, where \texttt{g} is the grouping variable

subset an optional logical vector indicating the subset of the rows of data that should be used in the fit. All observations are included by default.

\textit{initialRandomEffects} an optional vector giving initial values for the random effects to use in estimation

\textit{ErrorTolerance} when the difference in the likelihoods of the linear models of two consecutive iterations is less than this value, the RE-EM tree has converged

\textit{MaxIterations} maximum number of iterations allowed in estimation

\textit{verbose} if \texttt{TRUE}, the current estimate of the RE-EM tree will be printed after each iteration

\textit{tree.control} a list of control values for the estimation algorithm to replace the default values used to control the \texttt{rpart} algorithm. Defaults to an empty list.

cv if \texttt{TRUE} then cross-validation will be used for estimating the tree at each iteration. Default is \texttt{TRUE}.

cpmin complexity parameter used in building a tree before cross-validation

\textit{no.SE} number of standard errors used in pruning (0 if unused)

\textit{lme.control} a list of control values for the estimation algorithm to replace the default values returned by the function \texttt{lmeControl}. Defaults to an empty list.

\textit{method} whether the linear model should be estimated with \texttt{ML} or \texttt{REML}

\textit{correlation} an optional \texttt{corStruct} object describing the within-group correlation structure; the available classes are given in \texttt{corClasses}

Value

an object of class \texttt{REEMtree}

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

\texttt{rpart, nlme, REEMtree.object, corClasses}
Examples

data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+X, data=simpleREEMdata, random=-1|ID)

Estimation allowing for autocorrelation
REEMresult<-REEMtree(Y~D+X, data=simpleREEMdata, random=-1|ID, correlation=corAR1())

Random parameters model for the random effects
REEMresult<-REEMtree(Y~D+X, data=simpleREEMdata, random=-1+X|ID)

Estimation with a subset
sub <- rep(c(rep(TRUE, 10), rep(FALSE, 2)), 50)
REEMresult<-REEMtree(Y~D+X, data=simpleREEMdata, random=-1|ID, subset=sub)

Dataset from the R library "AER"
data("Grunfeld", package = "AER")
REEMtree(invest ~ value + capital, data=Grunfeld, random=-1|firm)
REEMtree(invest ~ value + capital, data=Grunfeld, random=-1|firm, correlation=corAR1())
REEMtree(invest ~ value + capital, data=Grunfeld, random=-1+year|firm)
REEMtree(invest ~ value + capital, data=Grunfeld, random=-1|firm/year)

REEMtree.object

Random Effects/Expectation Maximization (RE-EM) Tree Object

Description

Object representing a fitted REEMtree.

Value

- **Tree**
 - Fitted rpart tree associated with the fitted RE-EM tree
- **EffectModel**
 - Fitted lme object associated with the fitted RE-EM tree
- **RandomEffects**
 - Vector of estimated random effects
- **BetweenMatrix**
 - Estimated variance of the random effects
- **ErrorVariance**
 - Estimated variance of the errors
- **data**
 - The data frame used to estimate the RE-EM tree
- **logLik**
 - Log likelihood of the linear model for the random effects
- **IterationsUsed**
 - Number of iterations required to fit the REEMtree
- **Formula**
 - Formula used in fitting the REEMtree
- **Random**
 - Description of the random effects used in fitting the REEMtree
- **Groups**
 - The vector of group identifiers used in estimation
- **Subset**
 - The logical vector indicating the subset of the rows of data used in the fit
residuals.REEMtree

ErrorTolerance the error tolerance used in estimation
correlation the correlation structure used in fitting the linear model
residuals estimated residuals
method method (ML or REML) used in estimating the linear random effects model
lme.control parameters used to control fitting the linear random effects model
tree.control parameters used to control fitting the regression tree

Author(s)
Rebecca Sela <rsela@stern.nyu.edu>

References

See Also
rpart, nlme, REEMtree

Examples

data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=-1|ID)

residuals.REEMtree Extract the residuals from a RE-EM tree

Description
This function extracts the residuals from the LME object underlying the RE-EM tree. The residuals depend on the fixed effects (from the tree) plus the estimated contributions of the random effects to the fitted values at grouping levels less or equal to the level given.

Usage

```r
## S3 method for class 'REEMtree'
residuals(object, level, type, asList, ...)
```

Arguments

- **object**: an object of class REEMtree
- **level**: the level of random effects used in creating residuals. Level 0 is fixed effects only; levels increase with the grouping of random effects. Default is the highest level.
optional character string specifying the type of residuals to be used. If "response", the "raw" residuals (observed - fitted) are used. If "pearson", the standardized residuals (raw residuals divided by the corresponding standard errors) are used. If "normalized", the normalized residuals (standardized residuals pre-multiplied by the inverse square-root factor of the estimated error correlation matrix) are used. Only the first character needs to be provided. Defaults to "pearson".

an optional logical value. If TRUE and a single value is given in level, the returned object is a list with the residuals split by groups; otherwise the returned value is either a vector or a data frame, according to the length of level. Defaults to FALSE.

some methods for this generic require additional arguments; none are used here.

If the level is a single value, the result is a vector or list (depending on asList) with the residuals. Otherwise, the result is a data frame with columns given by the residuals at different levels.

Rebecca Sela <rsela@stern.nyu.edu>

residuals, REEMtree.object

data(simpleREEMdata)
REEMresult<-REEMtree(Y~D+t+X, data=simpleREEMdata, random=~1|ID)
residuals(REEMresult)
Format

The data has 600 rows and 5 columns. The columns are:

- Y: the target variable
- t: a numeric predictor ("time")
- D: a categorical predictor with two levels, 0 and 1
- ID: the identifier for each individual
- X: another covariate (which is intentionally unrelated to the target variable)

References

tree

Extract the regression tree associated with a RE-EM tree

Description

Returns the fitted rpart object associated with a REEMtree object.

Usage

```r
tree(object, ...)
```

Arguments

- `object`: an object of class REEMtree
- `...`: further arguments passed to or from other methods

Value

the fitted regression tree associated with the REEMtree object

Author(s)

Rebecca Sela <rsela@stern.nyu.edu>

References

See Also

`rpart.object`, `REEMtree.object`
Examples

data(simpleREEMdata)
REEMresult<-REEMtree(Y-D+t+X, data=simpleREEMdata, random=~1|ID)
tree.REEMtree(REEMresult)
tree(REEMresult)
Index

* classes
 is, 5
* datasets
 simpleREEMdata, 15
* hplot
 plot, 7
* htest
 AutoCorrelationLRtest, 3
* models
 AutoCorrelationLRtest, 3
 fitted.REEMtree, 4
 is, 5
 logLik, 6
 predict, 8
 ranef.REEMtree, 10
 REEMtree, 11
 REEMtree.object, 13
 residuals.REEMtree, 14
 tree, 16
* print
 print, 9
* tree
 AutoCorrelationLRtest, 3
 is, 5
 logLik, 6
 predict, 8
 plot, 7
 print, 9
 REEMtree, 11
 REEMtree-package, 2
 REEMtree.object, 13
 tree, 16

AutoCorrelationLRtest, 3

corClasses, 3, 4, 12

fitted, 5
fitted.REEMtree, 4

is, 5

logLik, 6

nlme, 12, 14

plot, 7
plot.rpart, 7
predict, 8
predict.nlme, 9
predict.rpart, 9
print, 9
print.rpart, 10

random.effects, 11
ranef.REEMtree, 10
REEMtree, 7, 11, 14
REEMtree-package, 2
REEMtree.object, 5, 6, 10–12, 13, 15, 16
residuals, 15
residuals.REEMtree, 14
rpart, 12, 14
rpart.object, 16

simpleREEMdata, 15

tree, 16