Package ‘RESI’

October 12, 2022

Type Package
Title Robust Effect Size Index (RESI) Estimation
Version 1.0.5
License GPL-3
Encoding UTF-8
LazyData true
Collate 'internal_functions.R' 'summary.resi.R' 'resi.R' 'resi_pe.R'
 'Anova.resi.R' 'data.R' 'chisq2S.R' 't2S.R' 't2S_alt.R'
 'z2S.R' 'z2S_alt.R' 'Rsq2S.R' 'S2Rsq.R' 'S2d.R' 'S2fsq.R'
 'd2S.R' 'fsq2S.R' 'plot.R' 'print.R'
Imports aod, car, clubSandwich, lmtest, nlme, regtools, sandwich
Suggests gee, geepack, knitr, lme4, pscl, rmarkdown, splines,
survival, testthat (>= 3.0.0)
RoxygenNote 7.2.0
Depends R (>= 2.10)
Config/testthat/edition 3
NeedsCompilation no
Author Megan Jones [aut, cre],
 Kaidi Kang [aut],
 Simon Vandekar [aut]
Maintainer Megan Jones <megan.n.taylor@vanderbilt.edu>
Repository CRAN
Date/Publication 2022-09-06 07:00:02 UTC

R topics documented:

anova.resi ... 2
chisq2S ... 3
Description

After running the `resi` function on a fitted model, this function can be used to print the Anova-style table component. If the resi function was run with the ‘store.boot = TRUE’ option to store the full matrix of bootstrapped estimates, the user can specify a different alpha level for this function’s confidence intervals.

Usage

```r
## S3 method for class 'resi'
anova(object, alpha = NULL, ...)
```

Arguments

- `object`: an object resulting from resi function
- `alpha`: an optional new specification for the confidence level. Can be vector-valued
- `...`: ignored

Details

The resi function uses the `car::Anova` function to compute the Anova table.

Value

Returns an ‘anova’ object containing the computed Anova-style table
Examples

```r
# fit a model
mod = lm(charges ~ bmi + sex, data = RESI::insurance)

# run resi with the store.boot = TRUE option
resi.obj = resi(mod, nboot = 100, store.boot = TRUE, alpha = 0.01)

# run anova, specifying a different alpha level if desired
anova(resi.obj, alpha = 0.05)
```

chisq2S

Compute the robust effect size index estimate from chi-squared statistic.

Description

This function computes the robust effect size index from Vandekar, Rao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R. For mixed effects models, RESI is conditional on the average correlation structure within subjects.

Usage

```r
chisq2S(chisq, df, n)
```

Arguments

- `chisq`: The chi-square statistic for the parameter of interest.
- `df`: Number of degrees of freedom of the chi-square statistic.
- `n`: Number of independent samples.

Details

The formula for converting a Chi-square statistic to RESI is:

```
S = \sqrt{\max(0, (\text{chisq} - \text{df})/n))}
```

Value

Returns a scalar or vector argument of the the robust effect size index estimate.

Examples

```r
# obtain Chi-sq value by fitting an lm and running a Wald test
mod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)

# run a Wald test with robust variance
wt = lmtest::waldtest(mod, vcov = sandwich::vcovHC, test = 'Chisq')
```
```r
# get Chi-sq value and degrees of freedom
chisq = wt$Chisq[2]
df = abs(wt$Df[2])

# run chisq2S to convert to RESI
chisq2S(chisq, df = df, n = nrow(mod$model))
```

d2S

Convert Cohen’s d to |S|

Description

Converts Cohen’s d robust effect size index (S) using the formula from Vandekar, Rao, & Blume (2020).

Usage

d2S(d, pi = 0.5)

Arguments

- **d**: Numeric, value of Cohen’s d.
- **pi**: Numeric, the sampling proportions.

Details

The pi parameter comes from the fact that Cohen’s d doesn’t account for unequal sample proportions in the population, but S does.

The default is set to a natural value 1/2, which corresponds to a case control design, for example, where sampling proportions always are controlled by the experimenter.

The formula to convert Cohen’s d to S is:

\[
S = \frac{d}{\sqrt{(1/\pi + 1/(1 - \pi))}}
\]

Value

Returns an estimate the robust effect size index

Examples

```r
# Consider an experiment with equal sampling proportions and a medium effect size
# corresponding to a Cohen's d of 0.5.
# convert to RESI (S)
d2S(d = 0.5)

# This corresponds to a RESI of 0.25.
```
Description
A longitudinal dataset comparing two treatments for depression.

Usage
depression

Format
A data frame with 1020 rows and 5 variables:
- **diagnose** diagnosed depression severity
- **drug** treatment; standard or new
- **id** patient id
- **time** time point of treatment
- **depression** depression response at time of treatment. 1 = Normal, 0 = Abnormal

Source
http://static.lib.virginia.edu/statlab/materials/data/depression.csv

References

__

f2S
Compute the robust effect size index estimate from F-statistic

Description
This function computes the robust effect size index from Vandekar, Rao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.

Usage
f2S(f, df, rdf)
Arguments

- **f**: The F statistic for the parameter of interest.
- **df**: Number of degrees of freedom of the chi-square statistic.
- **rdf**: Model residual degrees of freedom or number of independent samples.

Details

The formula for converting an F statistic to S is:

\[S = \sqrt{\max(0, (f \times df \times (rdf - 2)/rdf - 1))/rdf} \]

Value

Returns a scalar or vector argument of the the robust effect size index estimate. To obtain example F values, first fit a glm:

```
mod = glm(charges ~ region * age + bmi + sex, data = RESI::insurance)
```

run Anova, using a robust variance-covariance function
get the F values and Df values
fs = car::Anova(mod, vcov. = sandwich::vcovHC)$F
dfs = car::Anova(mod, vcov. = sandwich::vcovHC)$Df
get RESI estimates
f2S(fs, df = dfs, rdf = mod$df.residual)

`f2S` **Converts** Cohen’s f^2 to S

Description

Converts Cohen’s f^2 to robust effect size index (S) using the formula from Vandekar, Rao, & Blume (2020).

Usage

```
f2S(fsq)
```

Arguments

- **fsq**: Numeric, value of Cohen’s f^2.

Details

The formula for the conversion is:

\[S = \sqrt{f^2} \]

Value

Returns an estimate the robust effect size index

Examples

consider a moderate effect size of $f^2 = 0.3$
```
f2S(0.3)
```
This corresponds to a RESI of 0.5477226
insurance

US Health Insurance Data

Description
A dataset with 1338 observations on health insurance charges and demographic factors.

Usage
insurance

Format
A data frame with 1338 rows and 7 variables:

- **age**: age of primary beneficiary in years
- **sex**: insurance contractor sex, male/female
- **bmi**: body mass index
- **children**: number of dependents
- **smoker**: smoker/non-smoker
- **region**: beneficiary's region of US
- **charges**: individual medical costs billed by health insurance

Source
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset

resi

Robust Effect Size Index (RESI) point and interval estimation for models

Description
This function will estimate the robust effect size (RESI) from Vandekar, Rao, & Blume (2020) and its confidence interval in various ways for a fitted model object. The overall RESI is estimated via a Wald test. RESI is (optionally) estimated for each factor in coefficients-style table. RESI is (optionally) estimated for each variable/interaction in an Anova-style table for models with existing Anova methods. CIs can be calculated using either non-parametric or Bayesian bootstrapping.
Usage

resi(model.full, ...)

Default S3 method:
resi(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
 nboot = 1000,
 vcovfunc = sandwich::vcovHC,
 alpha = 0.05,
 store.boot = FALSE,
 Anova.args = list(),
 vcov.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'glm'
resi(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
 nboot = 1000,
 vcovfunc = sandwich::vcovHC,
 alpha = 0.05,
 store.boot = FALSE,
 Anova.args = list(),
 vcov.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'lm'
resi(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
 nboot = 1000,
 boot.method = "nonparam",
 vcovfunc = sandwich::vcovHC,
 alpha = 0.05,
store.boot = FALSE,
Anova.args = list(),
vcov.args = list(),
unbiased = TRUE,
...
)

S3 method for class 'nls'
resi(
 model.full,
 model.reduced = NULL,
 data,
 coefficients = TRUE,
nboot = 1000,
 boot.method = "nonparam",
 vcovfunc = regtools::nlshc,
 alpha = 0.05,
 store.boot = FALSE,
 vcov.args = list(),
 unbiased = TRUE,
...
)

S3 method for class 'survreg'
resi(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
nboot = 1000,
 vcovfunc = vcov,
 alpha = 0.05,
 store.boot = FALSE,
 Anova.args = list(),
 unbiased = TRUE,
...
)

S3 method for class 'coxph'
resi(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
nboot = 1000,
 vcovfunc = vcov,
alpha = 0.05,
store.boot = FALSE,
Anova.args = list(),
unbiased = TRUE,
...)

S3 method for class 'hurdle'
resi(
 model.full,
 model.reduced = NULL,
 data,
 coefficients = TRUE,
 nboot = 1000,
 vcovfunc = sandwich::sandwich,
 alpha = 0.05,
 store.boot = FALSE,
 vcov.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'zeroinfl'
resi(
 model.full,
 model.reduced = NULL,
 data,
 coefficients = TRUE,
 nboot = 1000,
 vcovfunc = sandwich::sandwich,
 alpha = 0.05,
 store.boot = FALSE,
 vcov.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'geeglm'
resi(model.full, alpha = 0.05, nboot = 1000, ...)

S3 method for class 'gee'
resi(model.full, data, alpha = 0.05, nboot = 1000, ...)

S3 method for class 'lme'
resi(
 model.full,
 alpha = 0.05,
 nboot = 1000,
Arguments

- **model.full**: lm, glm, nls, survreg, coxph, hurdle, zeroinfl, gee, geeglm or lme model object.
- **model.reduced**: Fitted model object of same type as model.full. By default ‘NULL’; the same model as the full model but only having intercept.
- **data**: Data.frame or object coercible to data.frame of model.full data (required for some model types).
- **anova**: Logical, whether to produce an Anova table with the RESI columns added. By default = ‘TRUE’.
- **coefficients**: Logical, whether to produce a coefficients (summary) table with the RESI columns added. By default = ‘TRUE’.
- **nboot**: Numeric, the number of bootstrap replicates. By default, 1000.
- **vcovfunc**: The variance estimator function for constructing the Wald test statistic. By default, sandwich::vcovHC (the robust (sandwich) variance estimator).
- **alpha**: Numeric, significance level of the constructed CIs. By default, 0.05.
- **store.boot**: Logical, whether to store all the bootstrapped estimates. By default, ‘FALSE’.
- **Anova.args**: List, additional arguments to be passed to Anova function.
- **vcov.args**: List, additional arguments to be passed to vcovfunc.
- **unbiased**: Logical, whether to use the unbiased or alternative T/Z statistic to RESI conversion. By default, ‘TRUE’. See details.
- **boot.method**: String, which type of bootstrap to use: ‘nonparam’ = non-parametric bootstrap (default); ‘bayes’ = Bayesian bootstrap.

Details

The RESI, denoted as \(S \), is applicable across many model types. It is a unitless index and can be easily be compared across models. The RESI can also be converted to Cohen’s \(d \) (52d) under model homoskedasticity.

This function computes the RESI point estimates and bootstrapped confidence intervals based on Chi-square, F, T, or Z statistics. The robust (sandwich) variance is used by default, allowing for consistency under model-misspecification. The RESI is related to the non-centrality parameter of the test statistic. The RESI estimate is consistent for all four (Chi-square, F, T, and Z) types of statistics used. The Chi-square and F-based calculations rely on asymptotic theory, so they may be biased in small samples. When possible, the T and Z statistics are used. There are two formulas for both the T and Z statistic conversion. The first (default, unbiased = TRUE) are based on solving the expected value of the T or Z statistic for the RESI. The alternative is based on squaring the T or Z statistic and using the F or Chi-square statistic conversion. Both of these methods are consistent, but the alternative exhibits a notable amount of finite sample bias. The alternative may be appealing...
because its absolute value will be equal to the RESI based on the F or Chi-square statistic. The RESI based on the Chi-Square and F statistics is always greater than or equal to 0. The type of statistic used is listed with the output. See f2S, chisq2S, t2S, z2S, t2S_alt, and z2S_alt for more details on the formulas.

For most lm and nls model types, there is a Bayesian bootstrap option available as an alternative to the default, standard non-parametric bootstrap. The interpretation of a Bayesian bootstrapped interval is similar to that of a credible interval.

Certain model types require the data used for the model be entered as an argument. These are: nls, survreg, and coxph. Additionally, if a model includes certain functions (splines, factor, I), the data needs to be provided.

If running into convergence issues with nls models, it is advised to refit the nls model with starting values equal to the estimates provided by the model and then try rerunning resi.

Value

Returns a list that includes function arguments, RESI point estimates, and confidence intervals in coefficients/anova-style tables

Methods (by class)

• default: RESI point and interval estimation for models
• glm: RESI point and interval estimation for models
• lm: RESI point and interval estimation for lm models
• nls: RESI point and interval estimation for nls models
• survreg: RESI point and interval estimation for survreg models
• coxph: RESI point and interval estimation for coxph models
• hurdle: RESI point and interval estimation for hurdle models
• zeroinfl: RESI point and interval estimation for zeroinfl models
• geeglm: RESI point and interval estimation for GEE models
• gee: RESI point and interval estimation for GEE models
• lme: RESI point and interval estimation for LME (nlme) models

References

See Also

resi_pe, vcovHC, nlshc, f2S, chisq2S, z2S, t2S
Examples

for timing purposes, a small number of bootstrap replicates is used in the examples. Run them with a higher or default `nboot` argument for better performance

RESI on a linear model
fit linear model
mod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)

run resi on fitted model with desired number of bootstrap replicates
resi(mod, nboot = 50)

fit a reduced model for comparison
mod.red = lm(charges ~ bmi, data = RESI::insurance)

running resi and including the reduced model will provide almost the exact same output as not including a reduced model. The difference is that the "overall" portion of the output will compare the full model to the reduced model.
The "summary" and "anova" RESI estimates will be the same. (The bootstrapped confidence intervals may differ.)
resi(model.full = mod, model.reduced = mod.red, nboot = 10)

for some model types and formula structures, data argument is required
library(splines)
fit logistic regression model with splines
mod = glm(smoker ~ ns(age, df = 3) + region, data = RESI::insurance, family = "binomial")

store bootstrap results for calculating different CIs later
specify additional arguments to the variance-covariance function via vcov.args
resi.obj = resi(mod, data = RESI::insurance, store.boot = TRUE, alpha = 0.01, vcov.args = list(type = "HC0"), nboot = 25)
summary(resi.obj, alpha = c(0.1))
car::Anova(resi.obj, alpha = 0.1)

the result of resi, as well as the summary or Anova of a `resi` object can be plotted
if the resi object was created with the store.boot = `TRUE` option, any alpha can be specified
plot(resi.obj, alpha = 0.05)
if the variable names on the y-axis are too long, you can reduce their size with
the yex.axis argument (or use regular common solutions like changing the margins)
plot(resi.obj, alpha = 0.05, yex.axis = 0.5)

RESI on a survival model with alternate Z2S
load survival library
library(survival)

fit coxph model on example data from survival package
Note: for survival models, you need to specify robust variance in the model
creation. resi will ignore the vcovfunc argument for this reason.
mod.coxph = coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, robust = TRUE)

run resi on the model
to use the alternative Z to RESI formula (which is equal in absolute value to the
chi-square to RESI (S) formula), specify unbiased = FALSE.
resi(mod.coxph, data = lung, unbiased = FALSE, nboot = 10)

resi_pe

Robust Effect Size Index (RESI) Point Estimation

Description

This function will estimate the robust effect size (RESI) from Vandekar, Rao, & Blume (2020). The overall RESI is estimated via a Wald test. RESI is (optionally) estimated for each factor in coefficients-style table. RESI is (optionally) estimated for each variable/interaction in an Anova-style table for models with existing Anova methods. This function is the building block for the `resi` function.

Usage

```r
resi_pe(model.full, ...)
```

```r
## Default S3 method:
resi_pe(model.full, model.reduced = NULL, data, coefficients = TRUE, vcovfunc = sandwich::vcovHC, Anova.args = list(), vcov.args = list(), unbiased = TRUE, ...)
```

```r
## S3 method for class 'glm'
resi_pe(model.full, model.reduced = NULL, data, anova = TRUE, coefficients = TRUE, vcovfunc = sandwich::vcovHC, Anova.args = list(), vcov.args = list(), unbiased = TRUE, ...)
```

```r
## S3 method for class 'lm'
resi_pe(model.full, model.reduced = NULL, data, coefficients = TRUE, vcovfunc = sandwich::vcovHC, Anova.args = list(), vcov.args = list(), unbiased = TRUE, ...)
```
resi_pe

resi_pe(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
 vcovfunc = sandwich::vcovHC,
 Anova.args = list(),
 vcov.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'nls'
resi_pe(
 model.full,
 model.reduced = NULL,
 data,
 coefficients = TRUE,
 vcovfunc = regtools::nlshc,
 vcov.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'survreg'
resi_pe(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
 vcovfunc = vcov,
 Anova.args = list(),
 unbiased = TRUE,
 ...
)

S3 method for class 'coxph'
resi_pe(
 model.full,
 model.reduced = NULL,
 data,
 anova = TRUE,
 coefficients = TRUE,
 vcovfunc = vcov,
 Anova.args = list(),
 unbiased = TRUE,
S3 method for class 'hurdle'
resi_pe(model.full,
model.reduced = NULL,
data,
coefficients = TRUE,
vcovfunc = sandwich::sandwich,
vcov.args = list(),
unbiased = TRUE,
...
)

S3 method for class 'zeroinfl'
resi_pe(model.full,
model.reduced = NULL,
data,
coefficients = TRUE,
vcovfunc = sandwich::sandwich,
vcov.args = list(),
unbiased = TRUE,
...
)

S3 method for class 'geeglm'
resi_pe(model.full, ...)

S3 method for class 'gee'
resi_pe(model.full, ...)

S3 method for class 'lme'
resi_pe(model.full, vcovfunc = clubSandwich::vcovCR, vcov.args = list(), ...)

S3 method for class 'lmerMod'
resi_pe(model.full, vcovfunc = clubSandwich::vcovCR, vcov.args = list(), ...)

Arguments

- `model.full`
 lm, glm, nls, survreg, coxph, hurdle, zeroinfl, gee, geeglm or lme model object.
- `...`
 Ignored.
- `model.reduced`
 Fitted model object of same type as model.full. By default 'NULL'; the same model as the full model but only having intercept.
- `data`
 Data.frame or object coercible to data.frame of model.full data (required for some model types).
resi_pe

coefficients Logical, whether to produce a coefficients (summary) table with the RESI columns added. By default = ‘TRUE’.

vcovfunc The variance estimator function for constructing the Wald test statistic. By default, sandwich::vcovHC (the robust (sandwich) variance estimator).

Anova.args List, additional arguments to be passed to Anova function.

vcov.args List, additional arguments to be passed to vcovfunc.

unbiased Logical, whether to use the unbiased or alternative T/Z statistic to RESI conversion. By default, ‘TRUE’. See details.

anova Logical, whether to produce an Anova table with the RESI columns added. By default = ‘TRUE’.

Details

The Robust Effect Size Index (RESI) is an effect size measure based on M-estimators. This function is called by resi a specified number of times to form bootstrapped confidence intervals. Called by itself, this function will only calculate point estimates.

The RESI, denoted as S, is applicable across many model types. It is a unitless index and can be easily be compared across models. The RESI can also be converted to Cohen’s d (S^2_d) under model homoskedasticity.

The RESI is related to the non-centrality parameter of the test statistic. The RESI estimate is consistent for all four (Chi-square, F, T, and Z) types of statistics used. The Chi-square and F-based calculations rely on asymptotic theory, so they may be biased in small samples. When possible, the T and Z statistics are used. There are two formulas for both the T and Z statistic conversion. The first (default, unbiased = TRUE) are based on solving the expected value of the T or Z statistic for the RESI. The alternative is based on squaring the T or Z statistic and using the F or Chi-square statistic conversion. Both of these methods are consistent, but the alternative exhibits a notable amount of finite sample bias. The alternative may be appealing because its absolute value will be equal to the RESI based on the F or Chi-square statistic. The RESI based on the Chi-Square and F statistics is always greater than or equal to 0. The type of statistic used is listed with the output. See f2S, chisq2S, t2S, z2S, t2S_alt, and z2S_alt for more details on the formulas.

Value

Returns a list containing RESI point estimates

Methods (by class)

• default: RESI point estimation
• glm: RESI point estimation for generalized linear models
• lm: RESI point estimation for linear models
• nls: RESI point estimation for nonlinear least squares models
• survreg: RESI point estimation for survreg
• coxph: RESI point estimation for coxph models
• hurdle: RESI point estimation for hurdle models
• zeroinfl: RESI point estimation for zeroinfl models
• geeglm: RESI point estimation for geeglm object
• gee: RESI point estimation for gee object
• lme: RESI point estimation for lme object
• lmerMod: RESI point estimation for lmerMod object

References

Examples

This function produces point estimates for the RESI. The resi function will
provide the same point estimates but adds confidence intervals. See resi for
more detailed examples.

resi.pe for a linear model
fit linear model
mod <- lm(charges ~ region * age + bmi + sex, data = RESI::insurance)
run resi.pe on the model
resi.pe(mod)

if you want to have RESI estimates in the coefficient table that are equal in absolute
value to those in the Anova table (except for those with >1 df and/or included in other
interaction terms), you can specify unbiased = FALSE to use the alternate conversion.
resi.pe(mod, unbiased = FALSE)

Rsq2S

* Convert R^2 to S*

Description

Converts R^2, the partial coefficient of determination, to robust effect size index (S) using the formula from Vandekar, Rao, & Blume (2020).

Usage

```r
Rsq2S(Rsq)
```

Arguments

- `Rsq` Numeric, R^2

Details

The formula for the conversion is:

\[S = \sqrt{(-R^2)/(R^2 - 1)} \]
Value

Returns an estimate of R^2 based on the RESI

Examples

consider a moderate effect size of $R^2 = 0.1$
Rsq2S(0.1)
this corresponds to a RESI of 0.333

S2d

Convert S to Cohen’s d

Description

Converts the robust effect size index (S) to Cohen’s d using the formula from Vandekar, Rao, & Blume (2020).

Usage

S2d(S, pi = 0.5)

Arguments

S Numeric, the robust effect size index.
pi Numeric, the sampling proportions.

Details

The pi parameter comes from the fact that Cohen’s d doesn’t account for unequal sample proportions in the population, but S does.

The default is set to a natural value 1/2, which corresponds to a case control design, for example, where sampling proportions always are controlled by the experimenter.

The formula for the conversion is:
\[
d = |S \times \sqrt{1/\pi + 1/(1 - \pi)}|
\]

Value

Returns an estimate of Cohen’s d based on the RESI.
Examples

fit a simple linear regression with a binary predictor
mod = lm(charges ~ sex, data = RESI::insurance)

calculate t-value
t = summary(mod)$coefficients[2, "t value"]

calculate RESI (S)
S = t2S(t, n = 1338, rdf = 1336)

determine sample proportions
pi = length(which(RESI::insurance[, "sex"] == "male")) / 1338

convert S to Cohen's d
S2d(S = S, pi = pi)

S2fsq

Convert S to Cohen’s f^2

Description

Converts robust effect size index (S) to Cohen’s f^2 (effect size for multiple regression) using the formula from Vandekar, Rao, & Blume (2020).

Usage

S2fsq(S)

Arguments

S Numeric, the robust effect size index.

Details

The formula for the conversion is:
\[f^2 = S^2 \]

Value

Returns an estimate of Cohen’s f^2 based on the RESI
Examples

fit a linear regression model with continuous outcome and predictor
mod = lm(charges ~ age, data = RESI::insurance)

obtain t value for calculating RESI
t = summary(mod)$coefficients[2, "t value"]

calculate RESI
S = t2S(t, n = 1338, rdf = 1336)

convert to f^2
S2fsq(S)

S2Rsq

Convert S to R^2.

Description

Converts robust effect size index (S) to R^2, the partial coefficient of determination, using the formula from Vandekar, Rao, & Blume (2020).

Usage

S2Rsq(S)

Arguments

S Numeric, the robust effect size index.

Details

The formula for the conversion is:

$$R^2 = \frac{S^2}{1 + S^2}$$

Value

Returns an estimate of R^2 based on the RESI

Examples

fit a simple linear regression with a binary predictor
mod = lm(charges ~ sex, data = RESI::insurance)

calculate t-value
t = summary(mod)$coefficients[2, "t value"]

calculate RESI (S)
S = t2S(t, n = 1338, rdf = 1336)
convert S to R^2
S2Rsq(S)

summary.resi Summary method for resi objects

Description

After running the resi function on a fitted model, this function can be used to print the coefficients table component. If the resi function was run with the `store.boot = TRUE` option to store the full matrix of bootstrapped estimates, the user can specify a different alpha level for this function's confidence intervals.

Usage

```r
## S3 method for class 'resi'
summary(object, alpha = NULL, ...)
```

Arguments

- `object`: an object resulting from resi function
- `alpha`: an optional new specification for the confidence level. Can be vector-valued
- `...`: ignored

Value

Returns a `summary.resi` object containing the computed coefficients table

Examples

```r
# fit a model
mod = lm(charges ~ bmi + sex, data = RESI::insurance)

# run resi with the store.boot = TRUE option
resi.obj = resi(mod, nboot = 100, store.boot = TRUE, alpha = 0.01)

# run summary, specifying a different alpha level if desired
summary(resi.obj, alpha = 0.05)
```
Compute the robust effect size index estimate from t statistic (default)

Description

This function computes the robust effect size index from Vandekar, Rao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.

Usage

t2S(t, n, rdf)

Arguments

t The t statistic for the parameter of interest.

n Number of independent samples.

rdf Model residual degrees of freedom/degrees of freedom of the T statistic.

Details

This function computes S, the RESI, from a T statistic using the default formula. There is another function, t2S_alt, that uses an alternative formula. This function’s formula is derived by solving the expected value of the T statistic for S. It is unbiased and consistent.

The formula for the conversion is:

\[S = \frac{t \sqrt{2} \Gamma(\frac{\text{rdf}}{2})}{\sqrt{n \times \text{rdf}} \Gamma(\frac{\text{rdf} - 1}{2})} \]

Value

Returns a scalar or vector argument of the the robust effect size index estimate.

Examples

```r
# to obtain t values, first fit a lm
mod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)
# run lmtest::coeftest to get t values, using a robust variance-covariance formula
ts = lmtest::coeftest(mod, vcov. = sandwich::vcovHC)[,'t value']

# get RESI estimates
t2S(ts, n = nrow(RESI::insurance), rdf = mod$df.residual)
```
t2S_alt

Compute the robust effect size index estimate from t statistic (alternative)

Description

This function computes the robust effect size index from Vandekar, Rao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.

Usage

t2S_alt(t, rdf)

Arguments

t

The t statistic for the parameter of interest.

rdf

Model residual degrees of freedom or number of independent samples.

Details

This function computes S, the RESI, from a T statistic using the alternative formula. There is another function, t2S, that is the default for resi. This function’s formula is derived by squaring the T statistic and using the f2S formula. This function may be appealing for its intuitive relationship to the F statistic; the absolute value of RESI estimates using this formula will be equal to a RESI estimate using an F statistic for the same model. However, this estimator does have finite sample bias, which is an important consideration for the coverage of the bootstrapping that resi uses.

The formula for this conversion is:

$$\sqrt{\max(0, (t^2 \cdot (\text{rdf} - 2) / \text{rdf} - 1) / \text{rdf})}$$

Value

Returns a scalar or vector argument of the the robust effect size index estimate.

Examples

to obtain t values, first fit a lm
mod = lm(charges ~ region * age + bmi + sex, data = RESI::insurance)
run lmtest::coeftest to get t values, using a robust variance-covariance formula
ts = lmtest::coeftest(mod, vcov. = sandwich::vcovHC)[,'t value']

get RESI estimates
 t2S_alt(ts, rdf = mod$df.residual)
Describe the robust effect size index estimate from Z statistic

Description

This function computes the robust effect size index from Vandekar, Rao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.

Usage

z2S(z, n)

Arguments

z
The Z statistic for the parameter of interest.

n
Number of independent samples.

Details

This function computes S, the RESI, from Z statistic using the default formula. There is another function, z2S_alt, that uses an alternative formula. This function’s formula is derived by solving the expected value of the Z statistic for S. It is unbiased and consistent.

The formula for this conversion is:

\[S = \frac{Z}{\sqrt{n}} \]

Value

Returns a scalar or vector argument of the the robust effect size index estimate.

Examples

to obtain example z values, first fit a glm
mod = glm(charges ~ region * age + bmi + sex, data = RESI::insurance)
run coeftest to get z values using a robust variance-covariance function
zs = lmtest::coeftest(mod, vcov. = sandwich::vcovHC)[,'z value']

get RESI estimates
z2S(zs, n = nrow(RESI::insurance))
z2S_alt

Compute the robust effect size index estimate from Z statistic (alternative)

Description

This function computes the robust effect size index from Vandekar, Rao, & Blume (2020). Vector arguments are accepted. If different length arguments are passed they are dealt with in the usual way of R.

Usage

z2S_alt(z, n)

Arguments

z
The Z statistic for the parameter of interest.
n
Number of independent samples.

Details

This function computes S, the RESI, from a Z statistic using the alternative formula. There is another function, z2S, that is the default for resi. This function's formula is derived by squaring the Z statistic and using the chisq2S formula. This function may be appealing for its intuitive relationship to the Chi-square statistic; the absolute value of RESI estimates using this formula will be equal to a RESI estimate using a Chi-square statistic for the same model. However, this estimator does have finite sample bias, which is an important consideration for the coverage of the bootstrapping that resi uses.

The formula for this conversion is:

$$\sqrt{\max(0, (Z^2 - 1)/n)} \cdot \text{sign}(Z)$$

Value

Returns a scalar or vector argument of the the robust effect size index estimate.

Examples

to obtain example z values, first fit a glm
mod = glm(charges ~ region * age + bmi + sex, data = RESI::insurance)
run coeftest to get z values using a robust variance-covariance function
zs = lmtest::coeftest(mod, vcov. = sandwich::vcovHC)[,'z value']
get RESI estimates
z2S(zs, n = nrow(RESI::insurance))
Index

* RESI functions
 resi, 7

* datasets
 depression, 5
 insurance, 7

Anova, 11
anova.resi, 2

chisq2S, 3, 12, 17, 26

d2S, 4
depression, 5

f2S, 5, 12, 17, 24
fsq2S, 6

insurance, 7

nlshc, 12

resi, 2, 7, 14, 17, 22, 24, 26
resi_pe, 12, 14
Rsq2S, 18

S2d, 11, 17, 19
S2fsq, 20
S2Rsq, 21
summary.resi, 22

t2S, 12, 17, 23, 24
t2S_alt, 12, 17, 23, 24

vcovHC, 12

z2S, 12, 17, 25, 26
z2S_alt, 12, 17, 25, 26