Package ‘REddyProc’

October 12, 2022

Type Package
Version 1.3.2
Title Post Processing of (Half-)Hourly Eddy-Covariance Measurements
Description Standard and extensible Eddy-Covariance data post-processing
includes uStar-filtering, gap-filling, and flux-partitioning.
The Eddy-Covariance (EC) micrometeorological technique quantifies continuous exchange fluxes of gases, energy, and momentum between an ecosystem and the atmosphere. It is important for understanding ecosystem dynamics and upscaling exchange fluxes.
This package inputs pre-processed (half-)hourly data and supports further processing.
First, a quality-check and filtering is performed based on the relationship between measured flux and friction velocity (uStar) to discard biased data
Second, gaps in the data are filled based on information from environmental conditions
Third, the net flux of carbon dioxide is partitioned into its gross fluxes in and out of the ecosystem by night-time based and day-time based approaches

URL https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb,
https://github.com/bgctw/REddyProc

License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
VignetteBuilder knitr
LinkingTo Rcpp
Depends R (>= 3.0.0), methods
Imports
Rcpp, dplyr, purrr, rlang, readr, tibble, magrittr, solartime, bigleaf (>= 0.7)

Suggests
testthat, minpack.lm, segmented, knitr, rmarkdown, lognorm, gePlot2, tidyR, markdown, mlegp

Collate
'CheckVal.R' 'DataFunctions.R' 'aEddy.R' 'EddyGapfilling.R'
'EddyPartitioning.R' 'EddyPlotting.R'
'EddyUStarFilterChangePointDetection.R' 'EddyUStarFilterDP.R'
'Example.R' 'FileHandling.R' 'FileHandlingFormats.R'
'GeoFunctions.R' 'LRC_base.R' 'LRC_logisticSigmoid.R'
'LRC_nonrectangular.R' 'LRC_rectangular.R'
'PartitioningLasslop10.R' 'PartitioningLasslop10Nighttime.R'
'RcppExports.R' 'estimate_vpd_from_dew.R' 'imports.R'
'logitnorm.R' 'variableNames.R' 'zzzDebugCode.R'

NeedsCompilation
yes

Author
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany
[cph],
Thomas Wutzler [aut, cre],
Markus Reichstein [aut],
Antje Maria Moffat [aut, trl],
Olaf Menzer [ctb],
Mirco Migliavacca [aut],
Kerstin Sickel [ctb, trl],
Ladislav <u+0160>igut [ctb]

Maintainer
Thomas Wutzler <twutz@bgc-jena.mpg.de>

Repository
CRAN

Date/Publication
2022-03-09 12:00:06 UTC

R topics documented:

REddyProc-package .. 5
BerkeleyJulianDateToPOSIXct ... 7
DEGebExample .. 8
estimate_vpd_from_dew ... 8
Example_DETha98 ... 9
extract_FN15 .. 10
fCalcAVPfromVMFandPress .. 10
fCalcETfromLE .. 11
fCalcExtradiation .. 12
fCalcPotRadiation ... 13
fCalcRHfromAVPandTair .. 14
fCalcSVPfromTair ... 15
fCalcVPDfromRHandTair .. 15
fCheckHHTimeSeries .. 16
fConvertCtoK .. 17
fConvertGlobalToVisible .. 18
fConvertKtoC .. 18
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fConvertTimeToPosix</td>
<td>19</td>
</tr>
<tr>
<td>fConvertVisibleWm2toPhotons</td>
<td>21</td>
</tr>
<tr>
<td>filterLongRuns</td>
<td>21</td>
</tr>
<tr>
<td>filterLongRunsInVector</td>
<td>22</td>
</tr>
<tr>
<td>fLloydTaylor</td>
<td>23</td>
</tr>
<tr>
<td>fLoadAmeriflux22</td>
<td>24</td>
</tr>
<tr>
<td>fLoadEuroFlux16</td>
<td>24</td>
</tr>
<tr>
<td>fLoadFluxnet15</td>
<td>25</td>
</tr>
<tr>
<td>fLoadTXTIntoDataframe</td>
<td>26</td>
</tr>
<tr>
<td>fWriteDataframeToFile</td>
<td>27</td>
</tr>
<tr>
<td>getAmerifluxToBGC05VariableNameMapping</td>
<td>28</td>
</tr>
<tr>
<td>getBGC05ToAmerifluxVariableNameMapping</td>
<td>29</td>
</tr>
<tr>
<td>getExamplePath</td>
<td>30</td>
</tr>
<tr>
<td>getFilledExampleDETha98Data</td>
<td>31</td>
</tr>
<tr>
<td>getREddyProcExampleDir</td>
<td>32</td>
</tr>
<tr>
<td>getTZone</td>
<td>33</td>
</tr>
<tr>
<td>get_timestep_hours</td>
<td>33</td>
</tr>
<tr>
<td>globalDummyVars</td>
<td>34</td>
</tr>
<tr>
<td>LightResponseCurveFitter</td>
<td>34</td>
</tr>
<tr>
<td>LightResponseCurveFitter-class</td>
<td>35</td>
</tr>
<tr>
<td>LightResponseCurveFitter_computeCost</td>
<td>36</td>
</tr>
<tr>
<td>LightResponseCurveFitter_computeLRCGradient</td>
<td>37</td>
</tr>
<tr>
<td>LightResponseCurveFitter_fitLRC</td>
<td>38</td>
</tr>
<tr>
<td>LightResponseCurveFitter_getOptimizedParameterPositions</td>
<td>39</td>
</tr>
<tr>
<td>LightResponseCurveFitter_getParameterInitials</td>
<td>40</td>
</tr>
<tr>
<td>LightResponseCurveFitter_getParameterNames</td>
<td>41</td>
</tr>
<tr>
<td>LightResponseCurveFitter_getPriorLocation</td>
<td>41</td>
</tr>
<tr>
<td>LightResponseCurveFitter_getPriorScale</td>
<td>42</td>
</tr>
<tr>
<td>LightResponseCurveFitter_isParameterInBounds</td>
<td>43</td>
</tr>
<tr>
<td>LightResponseCurveFitter_optimLRC</td>
<td>44</td>
</tr>
<tr>
<td>LightResponseCurveFitter_optimLRCBounds</td>
<td>45</td>
</tr>
<tr>
<td>LightResponseCurveFitter_optimLRCOnAdjustedPrior</td>
<td>46</td>
</tr>
<tr>
<td>LightResponseCurveFitter_predictGPP</td>
<td>47</td>
</tr>
<tr>
<td>LightResponseCurveFitter_predictLRC</td>
<td>48</td>
</tr>
<tr>
<td>LogisticSigmoidLRCFitter</td>
<td>49</td>
</tr>
<tr>
<td>LogisticSigmoidLRCFitter-class</td>
<td>49</td>
</tr>
<tr>
<td>NonrectangularLRCFitter</td>
<td>50</td>
</tr>
<tr>
<td>NonrectangularLRCFitter-class</td>
<td>51</td>
</tr>
<tr>
<td>NonrectangularLRCFitter_getParameterNames</td>
<td>52</td>
</tr>
<tr>
<td>NonrectangularLRCFitter_predictGPP</td>
<td>53</td>
</tr>
<tr>
<td>partGLControl</td>
<td>54</td>
</tr>
<tr>
<td>partGLControlLasslopCompatible</td>
<td>56</td>
</tr>
<tr>
<td>partGLEXtractStandardData</td>
<td>58</td>
</tr>
<tr>
<td>partitionNEEGL</td>
<td>60</td>
</tr>
<tr>
<td>POSIXctToBerkeleyJulianDate</td>
<td>63</td>
</tr>
<tr>
<td>read_from_ameriflux22</td>
<td>63</td>
</tr>
<tr>
<td>read_from_fluxnet15</td>
<td>64</td>
</tr>
</tbody>
</table>
Post Processing of (Half-)Hourly Eddy-Covariance Measurements

Description

The Eddy-Covariance (EC) micrometeorological technique quantifies continuous exchange fluxes of gases, energy, and momentum between an ecosystem and the atmosphere. It is important for understanding ecosystem dynamics and upscaling exchange fluxes. (Aubinet et al. (2012) <doi:10.1007/978-94-007-2351-1>).

This package inputs pre-processed (half-)hourly data and supports further processing. First, a quality-check and filtering is performed based on the relationship between measured flux and friction velocity (uStar) to discard biased data (Papale et al. (2006) <doi:10.5194/bg-3-571-2006>).

Second, gaps in the data are filled based on information from environmental conditions (Reichstein et al. (2005) <doi:10.1111/j.1365-2486.2005.001002.x>).

Third, the net flux of carbon dioxide is partitioned into its gross fluxes in and out of the ecosystem by night-time based and day-time based approaches (Lasslop et al. (2010) <doi:10.1111/j.1365-2486.2009.02041.x>).

A general description and an online tool based on this package can be found here: https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb.

Details

A detailed example of the processing can be found in the useCase vignette.

A first overview of the REddyProc functions:

These functions help with the preparation of your data for the analysis:
• Loading text files into dataframes: \texttt{fLoadTXTIntoDataframe}
• Preparing a proper time stamp: \texttt{fConvertTimeToPosix}
• Calculating latent variables, e.g. VPD: \texttt{fCalcVPDfromRHandTair}

Then the data can be processed with the \texttt{sEddyProc-class} R5 reference class:

• Initializing the R5 reference class: \texttt{sEddyProc_initialize}
• Estimating the turbulence criterion, Ustar threshold, for omitting data from periods of low turbulence: Functions \texttt{sEddyProc_sEstUstarThreshold} and \texttt{sEddyProc_sEstUstarThresholdDistribution}.

• Gap filling: \texttt{sEddyProc_sMDSGapFill} and \texttt{sEddyProc_sMDSGapFillAfterUstar}.
• Flux partitioning based on Night-Time: \texttt{sEddyProc_sMRFluxPartition}
• Flux partitioning based on Day-Time: \texttt{sEddyProc_sGLFluxPartition}

Processing across different scenarios of u* threshold estimate is supported by

• Estimating the turbulence criterion, Ustar threshold, for omitting data from periods of low turbulence: \texttt{sEddyProc_sEstimateUstarScenarios} and associated
 – query the thresholds to be used \texttt{sEddyProc_sGetUstarScenarios}
 – set the thresholds to be used \texttt{sEddyProc_sSetUstarScenarios}
 – query the estimated thresholds all different aggregation levels \texttt{sEddyProc_sGetEstimatedUstarThresholdDistribution}

• Gap-Filling: \texttt{sEddyProc_sMDSGapFillUStarScens}
• Flux partitioning based on Night-Time (Reichstein 2005): \texttt{sEddyProc_sMRFluxPartitionUStarScens}
• Flux partitioning based on Day-Time (Lasslop 2010): \texttt{sEddyProc_sGLFluxPartitionUStarScens}
• Flux partitioning based on modified Day-Time (Keenan 2019): \texttt{sEddyProc_sTKFluxPartitionUStarScens}

Before or after processing, the data can be plotted:

• Fingerprint: \texttt{sEddyProc_sPlotFingerprint}
• Half-hourly fluxes and their daily means: \texttt{sEddyProc_sPlotHHFluxes}
• Daily sums (and their uncertainties): \texttt{sEddyProc_sPlotDailySums}
• Diurnal cycle: \texttt{sEddyProc_sPlotDiurnalCycle}

A complete list of REddyProc functions be viewed by clicking on the Index link at the bottom of this help page.

Also have a look at the package vignettes.

Author(s)
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany

References
BerkeleyJulianDateToPOSIXct

Description

convert JulianDate format used in Berkeley release to POSIXct

Usage

BerkeleyJulianDateToPOSIXct(julianDate, tz = "UTC", ...)

Arguments

julianDate numeric vector representing times (see details for format)
tz time zone used to represent the dates
... further arguments to strptime

Details

In the Berkeley-Release of the Fluxnet data, the time is stored as an number with base10-digits representing YYYYMMddhhmm

Author(s)

TW, Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

POSIXctToBerkeleyJulianDate fConvertTimeToPosix
DEGebExample: Eddy covariance data from Gebesee crop site, Germany

Description

The data frame 'DEGebExample' contains half-hourly eddy covariance measurements from Gebesee of the years 2004 to 2006.

Usage

```r
data(DEGebExample)
```

Format

For each column, the attributes 'varnames' for the variable names and 'units' for the variable units are provided.

Time stamp

DateTime: POSIXct-time of the end of the half-hour period, Use as.POSIXlt(DateTime)$year to get hour, day of year, ...

Flux measurements

NEE

Meteo measurements

Rg, Tair, rH, VPD, Ustar

For processing of the example data see vignette("DEGebExample").

Details

DISCLAIMER: This example dataset should only be used for test purposes of the REddyProc R package. For other uses, the data is openly available through the European Fluxes Database (http://www.europe-fluxdata.eu/home/site-details?id=3) and upon registration the current version can be downloaded there.

Source

The data was downloaded from http://www.europe-fluxdata.eu at date 2016-01-25.

estimate_vpd_from_dew: Estimate VPD from assuming dewpoint at daily minimum temperature

Description

VPD is required for daytime NEE flux partitioning. Hence, it is necessary to estimate VPD also for long gaps in data. With two assumptions, VPD can be estimated from temperature 1). The change of water mass in air is negligible during the day. VPD is the difference of actual vapour pressure to saturation vapour pressure. 2.) At morning minimum temperature, vapour pressure is at minimum in many cases at saturation. Hence

\[
VPD = Esat(Tair) - E \approx Esat(Tair) - Esat_{daymin} \approx Esat(Tair) - Esat(Tair_{min})
\]
Usage

 estimate_vpd_from_dew(df, pNonMissing = 0.1)

Arguments

 df data.frame with columns DateTime, VPD, Tair, and Tair_f
 pNonMissing numeric scalar of the necessary fraction of finite VPD and Tair. If fraction is
 lower then a warning is thrown.

Details

Since sometimes Esat_daymin is lower than Esat(Tair_min) the estimated VPDfromDew is under-
estimated. This function applies a linear model of the existing VPD and estimated VPD to correct
for this bias: VPD ~ 0 + VPDfromDew * Tair_f * hourOfDay * TminOftheDay * TRangeDay

Value

numeric vector of length(nrow(data)) of estimated VPD

Example_DETha98 Eddy covariance data from Tharandt, Germany

Description

The data frame 'EddyData.F' contains half-hourly eddy covariance measurements from Tharandt
of the year 1998.

Usage

 data(Example_DETha98)

Format

For each column, the attributes 'varnames' for the variable names and 'units' for the variable units
are provided.

 Time stamp Year - Year provided with century 1998.
 DoY - Day of year provided as 1 to 365 (or 1 to 366 in leap years).
 Hour - Hour provided as decimal 0.0 to 23.5.
 Flux measurements NEE, LE, H
 Meteo measurements Rg, Tair, Tsoil, rH, VPD, Ustar

For processing of the example data see useCase vignette.

Source

The data originates from the CARBODATA CD.
extract_FN15

extract processing results with columns corresponding to Fluxnet15 release

Description

extract processing results with columns corresponding to Fluxnet15 release

Usage

```r
extract_FN15(
  EProc = .self,
  is_export_nonfilled = TRUE,
  keep_other_cols = FALSE
)
```

Arguments

- `EProc`: sEddyProc class with uncertainty also in meteo variables and both nighttime and daytime partitioning columns present
- `is_export_nonfilled`: set to FALSE to not export columns before gapfilling
- `keep_other_cols`: set to TRUE to report also other columns

Value

data.frame with columns names of Fluxnet15. Timestamps are in ISO string format `POSIXctToBerkeleyJulianDate`

fCalcAVPfromVMFandPress

Description

Calculate AVP from VMF and Press

Usage

```r
fCalcAVPfromVMFandPress(VMF = VMF.V.n, Press = Press.V.n, VMF.V.n, Press.V.n)
```
Arguments

- **VMF**
 Vapor mole fraction (VMF, mol / mol)
- **Press**
 Atmospheric pressure (Press, hPa)
- **VMF.V.n**
 deprecated
- **Press.V.n**
 deprecated

Value

Data vector of actual vapor pressure (AVP, hPa (mbar))

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <reichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Calculate ET from LE and Tair

Usage

\[
f\text{CalcETfromLE}(LE = LE.V.n, Tair = Tair.V.n,
LE.V.n, Tair.V.n)
\]

Arguments

- **LE**
 Data vector of latent heat (LE, W m⁻²)
- **Tair**
 Data vector of air temperature (Tair, degC)
- **LE.V.n**
 deprecated
- **Tair.V.n**
 deprecated

Value

Data vector of evapotranspiration (ET, mmol H₂O m⁻² s⁻¹)
Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Calculate the extraterrestrial solar radiation with the eccentricity correction

Usage

fCalcExtRadiation(DoY = DoY.V.n, DoY.V.n)

Arguments

DoY

DoY.V.n Data vector with day of year (DoY)

Value

Data vector of extraterrestrial radiation (ExtRad, W_m-2)

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Description

Calculate the potential radiation

Usage

`fCalcPotRadiation(DoY = DoY.V.n, Hour = Hour.V.n, LatDeg = Lat_deg.n, LongDeg = Long_deg.n, TimeZone = TimeZone_h.n, useSolartime = TRUE, DoY.V.n, Hour.V.n, Lat_deg.n, Long_deg.n, TimeZone_h.n, useSolartime.b = TRUE)`

Arguments

- **DoY** Data vector with day of year (DoY), same length as Hour or length 1
- **Hour** Data vector with time as decimal hour of local time zone
- **LatDeg** Latitude in (decimal) degrees
- **LongDeg** Longitude in (decimal) degrees
- **TimeZone** Time zone (in hours)
- **useSolartime** DoY.V.n deprecated
- **Hour.V.n** deprecated
- **Lat_deg.n** deprecated
- **Long_deg.n** deprecated
- **TimeZone_h.n** deprecated
- **useSolartime.b** deprecated

Value

Data vector of potential radiation (PotRad, W_m-2)

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Examples

```r
hour <- seq(8, 16, by = 0.1)
potRadSolar <- fCalcPotRadiation(160, hour, 39.94, -5.77, TimeZone = +1)
potRadLocal <- fCalcPotRadiation(160, hour, 39.94, -5.77, TimeZone = +1,
    useSolartime = FALSE)
plot(potRadSolar ~ hour, type = "l")
abline(v = 13, lty = "dotted")
lines(potRadLocal ~ hour, col = "blue")
abline(v = 12, col = "blue", lty = "dotted")
legend("bottomright", legend = c("solar time", "local winter time"),
    col = c("black", "blue"), inset = 0.05, lty = 1)
```

Description

Calculate relative humidity from actual vapour pressure and air temperature

Usage

```r
fCalcRHfromAVPandTair(AVP = AVP.V.n, Tair = Tair.V.n,
    AVP.V.n, Tair.V.n)
```

Arguments

- `AVP` : Data vector of actual vapour pressure (AVP, hPa (mbar))
- `Tair` : Data vector of air temperature (Tair, degC)
- `AVP.V.n` : Data vector of actual vapour pressure (AVP, hPa (mbar))
- `Tair.V.n` : Data vector of air temperature (Tair, degC)

Value

Data vector of relative humidity (rH, %)

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <meichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <comenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
fCalcSVPfromTair

Description
Calculate SVP (of water) from Tair

Usage
fCalcSVPfromTair(Tair = Tair.V.n, Tair.V.n)

Arguments
- `Tair` Data vector of air temperature (Tair, degC)
- `Tair.V.n` deprecated

Value
Data vector of saturation vapor pressure (SVP, hPa (mbar))

Author(s)
AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

fCalcVPDfromRHandTair

Description
Calculate VPD from rH and Tair

Usage
fCalcVPDfromRHandTair(rH = RH.V.n, Tair = Tair.V.n, RH.V.n, Tair.V.n)

Arguments
- `rH` Data vector of relative humidity (rH, %)
- `Tair` Data vector of air temperature (Tair, degC)
- `RH.V.n` deprecated
- `Tair.V.n` deprecated
Value

Data vector of vapour pressure deficit (VPD, hPa (mbar))

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Check half-hourly time series data

Usage

fCheckHHTimeSeries(Time = Time.V.p, DTS = DTS.n,
CallFunction = if (!missing(CallFunction.s)) CallFunction.s else "",
Time.V.p, DTS.n, CallFunction.s)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time vector in POSIX format</td>
</tr>
<tr>
<td>DTS</td>
<td>Number of daily time steps (24 or 48)</td>
</tr>
<tr>
<td>CallFunction</td>
<td>Time.V.p deprecated</td>
</tr>
<tr>
<td>DTS.n</td>
<td>deprecated</td>
</tr>
<tr>
<td>CallFunction.s</td>
<td>deprecated</td>
</tr>
</tbody>
</table>

Details

The number of steps per day can be 24 (hourly) or 48 (half-hourly).
The time stamp needs to be provided in POSIX time format, equidistant half-hours, and stamped on the half hour.
The sEddyProc procedures require at least three months of data.
Full days of data are preferred: the total amount of data rows should be a multiple of the daily time step, and in accordance with FLUXNET standards, the dataset is spanning from the end of the first (half-)hour (0:30 or 1:00, respectively) and to midnight (0:00).
fConvertCtoK

Value

Function stops on errors.

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Convert degree Celsius to degree Kelvin

Usage

\[fConvertCtoK(Celsius = \text{Celsius} _\text{V.n}, \text{Celsius} _\text{V.n}) \]

Arguments

- **Celsius**
 Data vector in Celsius (degC)
- **Celsius.V.n**
 deprecated way of specifying Celsius

Value

Data vector in temperature Kelvin (Temp_K, degK)

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
fConvertGlobalToVisible

Description
Partition global (solar) radiation into only visible (the rest is UV and infrared)

Usage

\[
f\text{ConvertGlobalToVisible}(\text{Global} = \text{Global.V.n}, \\
\quad \text{Global.V.n})
\]

Arguments
- `Global` : Data vector of global radiation (W m-2)
- `Global.V.n` : deprecated

Value
Data vector of visible part of solar radiation (VisRad, W m-2)

Author(s)
AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

fConvertKtoC

Description
Convert degree Kelvin to degree Celsius

Usage

\[
f\text{ConvertKtoC}(\text{Kelvin} = \text{Kelvin.V.n}, \\
\quad \text{Kelvin.V.n})
\]

Arguments
- `Kelvin` : Data vector in Kelvin (degK)
- `Kelvin.V.n` : deprecated, use Kelvin instead
Value

Data vector in temperature Celsius (Temp_C, degC)

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmigliia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Convert different time formats to POSIX

Usage

fConvertTimeToPosix(Data.F, TFormat = TFormat.s,
 Year = if (!missing(Year.s)) Year.s else "none",
 Month = if (!missing(Month.s)) Month.s else "none",
 Day = if (!missing(Day.s)) Day.s else "none",
 Hour = if (!missing(Hour.s)) Hour.s else "none",
 Min = if (!missing(Min.s)) Min.s else "none",
 TName = if (!missing(TName.s)) TName.s else "DateTime",
 TFormat.s, Year.s, Month.s, Day.s, Hour.s,
 Min.s, TName.s, tz = "GMT")

Arguments

Data.F Data frame with time columns to be converted
TFormat Abbreviation for implemented time formats, see details
Year Column name of year
Month Column name of month
Day Column name of day
Hour Column name of hour
Min Column name of min
TName Column name of new column
TFormat.s deprecated
Year.s deprecated
Month.s deprecated
Day.s deprecated
Hour.s deprecated
Min.s deprecated
TName.s deprecated
tz timezone used to store the data. Advised to keep GMT to avoid daytime shifting issues

Details

The different time formats are converted to POSIX (GMT) and a ‘TimeDate’ column is prefixed to the data frame.

Implemented time formats:

YDH year, day of year, hour in decimal (e.g. 1998, 1, 10.5). The day (of year) format is (1-365 or 1-366 in leap years). The hour format is decimal time (0.0-23.5).

YMDH year, month, day of month, hour in decimal (e.g. 1998, 1, 1, 10.5) The month format is (1-12) The day (of month) format is (1-31).

YMDHM year, month, day of month, integer hour, minute (e.g. 1998, 1, 1, 10, 30) The hour format is (0-23) The minute format is (0-59)

Value

Data frame with prefixed POSIX time column.

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

BerkeleyJulianDateToPOSIXct

Examples

See unit test in test_fConvertTimeToPosix for example
fConvertVisibleWm2toPhotons

Description

Convert units of visible radiation from irradiance to photons flux

Usage

fConvertVisibleWm2toPhotons(Wm2 = Wm2.V.n, Wm2.V.n)

Arguments

Wm2 Data vector in units of irradiance (W m⁻²)
Wm2.V.n deprecated

Value

Data vector in units of photons flux (PPFD, umol photons m⁻² s⁻¹)

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <u+0160>igut <sigut.l@czechglobe.cz> [ctb]

filterLongRuns

Description

replace runs, i.e sequences of numerically equal values, by NA

Usage

filterLongRuns(data, colNames, ...)

Arguments

data data.frame with columns to filter
colNames string vector of names indicating which columns to filter
... further arguments to filterLongRunsInVector such as minNRunLength.
Details

Longer runs, i.e. sequences of numerically identical values, in a series of measurements hint to problems during a noisy measurement, e.g. by sensor malfunction due to freezing. This function, replaces such values in such runs to indicate missing values.

Value

data.frame ans with long runs in specified columns replaced by NA

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

filterLongRunsInVector

Description

replace runs of numerically equal values by NA

Usage

filterLongRunsInVector(x, minNRunLength = 8, replacement = NA, na.rm = TRUE)

Arguments

x
vector in which to replace long runs

minNRunLength
minimum length of a run to replace. Defaults to 4 hours in half-hourly spaced data.

replacement
value replacing the original values in long run

na.rm
set to FALSE if NA values interrupt runs

Value

vector x with long runs replaced by NA
fLloydTaylor

Temperature dependence of soil respiration

Description

Temperature dependence of soil respiration after Equation 11 in Lloyd & Taylor (1994)

Usage

\[
\text{fLloydTaylor}(RRef = R_ref.n, E0 = E_0.n, \\
TSoil = Tsoil.n, TRef = \text{if (missing(T_ref.n))} 273.15 + \\
T0 \text{ else } T_ref.n, T0 = \text{if (missing(T_0.n))} 227.13 \text{ else } T_0.n, \\
R_ref.n, E_0.n, Tsoil.n, T_ref.n, T_0.n)
\]

Arguments

- **RRef**: Respiration rate at reference temperature
- **E0**: Temperature sensitivity ("activation energy") in Kelvin (degK)
- **TSoil**: Soil temperature in Kelvin (degK)
- **TRef**:
- **T0**:
- **R_ref.n**: deprecated way to specify RRef
- **E_0.n**: deprecated way to specify E0
- **Tsoil.n**: deprecated way to specify TSoil
- **T_ref.n**: deprecated way to specify TRef
- **T_0.n**: deprecated way to specify T0

Value

Data vector of soil respiration rate (R, umol CO2 m\(^{-2}\) s\(^{-1}\))
Author(s)

AMM reference « Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc-jena.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Examples

```r
T <- c(-10:30)
resp <- fLloydTaylor(10, 330, T + 273.15)
plot(resp ~ T)
```

fLoadAmeriflux22 Read basic variables from Ameriflux standard (as of 2022) files

Description

Reads Variables from file into data.frame from file and passes it to `read_from_ameriflux22`.

Usage

```r
fLoadAmeriflux22(file_path, ...)
```

Arguments

- `file_path` scalar string: the path to the csv file
- `...` further arguments to `read_csv`

Value

see `read_from_ameriflux22`

fLoadEuroFlux16 fLoadEuroFlux16

Description

reads a sequence of annual files in the format of Europe-fluxdata 2016

Usage

```r
fLoadEuroFlux16(siteName, dirName = "", additionalColumnNames = character(0))
```
Arguments

siteName scalar string: the name of the site, i.e. start of the filename before _<year>_
dirName scalar string: the directory where the files reside
additionalColumnNames character vector: column names to read in addition to c("Month", "Day", "Hour", "NEE_st", "qf_NEE_st", "ustar", "Ta", 'Rg')

Details

The filenames should correspond to the pattern <sitename>_<YYYY>_. * .txt And hold columns c("Month", "Day", "Hour", "NEE_st", "qf_NEE_st", "ustar", "Ta", 'Rg'). By default only those columns are read and reported only c("DateTime", "NEE", "Ustar", "Tair", "Rg", "qf_NEE_st" (Note the renaming). NEE is set to NA for all values with "qf_NEE_st != 0. Values of -9999.0 are replaced by NA

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [ctb, trl], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav U+0160igut <sigut.l@czechglobe.cz> [ctb]

fLoadFluxnet15

Read a file in the format of Fluxnet 2015 release

Description

Assigns default units to the columns and keeps variable name attributes as in original file.

Usage

fLoadFluxnet15(
 file_path,
 additional_columns = character(0),
 colname_NEE = "NEE",
 ...
)

Arguments

file_path scalar string: the path to the csv file
additional_columns character vector of columns to read in addition of standard columns of read_from_fluxnet15. Can be a character vector or a object returned by cols
colname_NEE name (scalar string) of column that reports NEE observations
... further arguments to read_csv
Examples

```r
ds_fn15 <- Example_DETha98 %>%
  fConvertTimeToPosix('YDH', Year = 'Year', DoY = 'DoY', Hour = 'Hour') %>%
  dplyr::mutate(
    TIMESTAMP_END = POSIXctToBerkeleyJulianDate(.data$DateTime),
    season = factor(199801)
  ) %>%
  dplyr::rename(SW_IN = .data$Rg, TA = .data$Tair, USTAR = .data$Ustar) %>%
  dplyr::select(dplyr::one_of(c(
    "TIMESTAMP_END","NEE","SW_IN","TA","VPD","USTAR","season")))
head(ds_fn15)
fname <- tempfile()
readr::write_csv(ds_fn15, fname)
# standard columns are renamed to REddyProc defaults
ds_eproc <- fLoadFluxnet15(fname)
head(ds_eproc)
EProc <- sEddyProc$new("DE-Tha", ds_eproc)
head(EProc$sExportData())
# Additional columns can be specified, e.g. factor column season
ds_eproc <- fLoadFluxnet15(fname,
  additional_columns = readr::cols(season = readr::col_factor()))
head(ds_eproc)
EProc <- sEddyProc$new("DE-Tha", ds_eproc,
  c("NEE", "Rg", "Tair", "VPD", "Ustar", "season"),
  ColNamesNonNumeric = "season"
)
head(EProc$sExportData())
```

Description

If gaps with the flag -9999.0 exist, these are set to NA.

Usage

```r
fLoadTXTIntoDataframe(FileName = FileName.s,
  Dir = if (!missing(Dir.s)) Dir.s else "",
  FileName.s, Dir.s = "")
```

Arguments

- **FileName**: File name as a character string
- **Dir**: Directory as a character string
- **FileName.s**: deprecated
- **Dir.s**: deprecated way of specifying Dir
Function `fLoadFluxNCIntoDataframe`, which loads data from NetCDF-Files, has been moved to add-on package REddyProcNCDF. In addition, `fLoadEuroFlux16` loads data from several annual files in format corresponding to Europe-fluxdata 2016.

For using only part of the records, use `fFilterAttr` to keep units attributes.

Value

Data frame with data from text file.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Examples

```r
examplePath <- getExamplePath("Example_DETha98.txt", TRUE)
EddyData.F <- fLoadTXTIntoDataframe(examplePath)

fWriteDataframeToFile EddyData.F
```

Description

Write data frame to ASCII tab-separated text file

Usage

```r
fWriteDataframeToFile(Data.F, FileName = FileName.s, 
Dir = if (!missing(Dir.s)) Dir.s else ",", 
Digits = if (!missing(Digits.n)) Digits.n else 5, 
FileName.s, Dir.s, Digits.n)
```

Arguments

- `Data.F`: Data frame
- `FileName`: File base name as a string
- `Dir`: Directory as a string
- `Digits`:
- `FileName.s`: deprecated
- `Dir.s`: deprecated
- `Digits.n`: deprecated
getAmerifluxToBGC05VariableNameMapping

Details

Missing values are flagged as -9999.0

Value

Output of data frame written to file of specified type.

Author(s)

AMM, KS Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Examples

```r
(Dir <- tempdir())  # directory where output is written to
fWriteDataFrameToFile(Example_DETha98, 'OutputTest.txt', Dir = Dir)
```

getAmerifluxToBGC05VariableNameMapping

Description

map Ameriflux variable names to REddyProc defaults to names

Usage

```r
getAmerifluxToBGC05VariableNameMapping(map = character(),
mapDefault = c(YEAR = "Year", DOY = "DoY",
NEE = "NEE", LE = "LE", H = "H",
SW_IN = "Rg", TA = "Tair", TS = "Tsoil",
RH = "rH", VPD = "VPD", USTAR = "Ustar",
NEE_PI = "NEE_orig", H_PI = "H_orig",
LE_PI = "LE_orig", NEE_F = "NEE_f",
H_F = "H_f", LE_F = "LE_f", NEE_QC = "NEE_fqc",
H_QC = "H_fqc", LE_QC = "LE_fqc")
```

Arguments

map named character vector: additional mapping, that extends or overwrites defaults in mapDefault

mapDefault named character vector: default mapping
getBGC05ToAmerifluxVariableNameMapping

Details

Get a mapping of variable names of Ameriflux (Berkley 2016 Fluxnet release) to of REddyProc defaults to names

Author(s)

TW, Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

renameVariablesInDataFrame

Description

map REddyProc names the Berkeley 2016 release of the Fluxnet data

Usage

getBGC05ToAmerifluxVariableNameMapping(map = character(), mapDefault = c(Year = "YEAR", DoY = "DOY", Rg = "SW_IN", Tair = "TA", Tsoil = "TS", rH = "RH", VPD = "VPD", Ustar = "USTAR", NEE_orig = "NEE_PI", H_orig = "H_PI", LE_orig = "LE_PI", NEE_f = "NEE_F", H_f = "H_F", LE_f = "LE_F", NEE_fqc = "NEE_QC", H_fqc = "H_QC", LE_fqc = "LE_QC"))

Arguments

map

named character vector: additional mapping, that extends or overwrites defaults in mapDefault

mapDefault

named character vector: default mapping

Details

Get a mapping of variable names of REddyProc defaults to names of the Berkeley 2016 release of the Fluxnet data
getExamplePath

Description

checks if example filename is existing and if not tries to download it.

Usage

getExamplePath(filename = "Example_DETha98.txt",
 isTryDownload = FALSE, exampleDir = getREddyProcExampleDir(),
 remoteDir = "")

Arguments

filename the name of the example file
isTryDownload scalar logical whether to try downloading the file to package or tmp directory. Because of CRAN checks, need to explicitly set to TRUE
exampleDir directory where examples are looked up and downloaded to
remoteDir the URL do download from

Details

Example input text data files are not distributed with the package, because it exceeds allowed package size. Rather, the example files will be downloaded when required from github by this function. The remoteDir (github) must be reachable, and the writing directory must be writeable.
getFilledExampleDETha98Data

Value
the full path name to the example data or if not available an zero-length character. Allows to check for if \(\text{length}(\text{getExamplePath}()) \) ...

Author(s)
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

getFilledExampleDETha98Data

Description
Get or create the gapfilled version of the Example_DETha98 example data

Usage
getFilledExampleDETha98Data(exampleDir = getREddyProcExampleDir())

Arguments
exampleDir the directory where the cached filled example data is stored

Value
example data.frame Example_DETha98 processed by gapfilling.

Author(s)
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
getREddyProcExampleDir

Description

description

Usage

generateREddyProcExampleDir(isPreferParentDir = identical(Sys.getenv("NOT_CRAN"), "true"), subDir = "REddyProcExamples")

Arguments

isPreferParentDir
logical scalar, whether to prefer temp parent directory instead of the R-session temp-Directory. See details.

subDir
the name of the subdirectory inside the tmp directory, where examples are stored

Details

If isPreferParentDir = FALSE (the default), the examples will be downloaded again for each new R-session in a session specific directory as given by tempdir. This corresponds to CRAN policy. If TRUE, the parent of tempdir will be used, so that downloads of examples are preserved across R-sessions. This is the default if environment variable "NOT_CRAN" is defined, when running from testthat::check.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

generateExamplePath
getTZone

Description

extracts the timezone attribute from POSIXct with default on missing

Usage

```r
getTZone(x, default = "GMT")
```

Arguments

- `x`: POSIXct vector
- `default`: time zone returned, if x has not timezone associated or attribute is the zero string

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Examples

```r
getTZone(as.POSIXct("2010-07-01 16:00:00", tz = "etc/GMT-1") )
getTZone(as.POSIXct("2010-07-01 16:00:00") )
```

get_timestep_hours

Get the timestep in fractional hours

Description

Get the timestep in fractional hours

Usage

```r
get_timestep_hours(x)
```

Arguments

- `x`: Vector of POSIX timestamps of at least length 2.
Value

Numeric scalar of the time difference of the first two entries in fraction hours.

Description

Dummy global variables with the same name as fields in R5 classes have been defined.

Reason: Class methods have been defined as plain functions, so that they can be better documented. However, the assignment operator <<- has no meaning in it and therefore R CMD check complains. As a workaround they have been defined as global variable. Do not use them.

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

Description

Constructs an instance of class LightResponseCurveFitter-class

Usage

LightResponseCurveFitter(...)

Arguments

...

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)
Description

Base class for fitting parameters to light response curves (LRC)
Concrete classes for the following LRC functions are available:
- common rectangular hyperbolic light-response: `RectangularLRCFitter-class`
- nonrectangular hyperbolic light-response: `NonrectangularLRCFitter-class`
- logistic sigmoid light-response: `LogisticSigmoidLRCFitter-class`

They mostly differ in their prediction of GPP by method `LightResponseCurveFitter_predictGPP`.

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

`LightResponseCurveFitter_computeLRCGradient(theta, Rg, VPD, Temp, VPD0, fixVPD, TRef)`:

`LightResponseCurveFitter_predictGPP(Rg, ...)`

`LightResponseCurveFitter_predictLRC(theta, Rg, VPD, Temp, VPD0, fixVPD, TRef)`:

`LightResponseCurveFitter_computeCost(thetaOpt, theta, iOpt, flux, sdFlux, parameterPrior, sdParameterPrior, ...)`

`LightResponseCurveFitter_optimLRC(theta, iOpt, sdParameterPrior, ..., ctrl, isUsingHessian)`:

`LightResponseCurveFitter_isParameterInBounds(theta, sdTheta, RRefNight, ctrl)`:

`LightResponseCurveFitter_optimLRCOnAdjustedPrior(theta, iOpt, dsDay, parameterPrior, ctrl, ...)`

`LightResponseCurveFitter_getOptimizedParameterPositions(isUsingFixedVPD, isUsingFixedAlpha)`:

`LightResponseCurveFitter_optimLRCBounds(theta0, parameterPrior, ..., lastGoodParameters, ctrl)`:

`LightResponseCurveFitter_getParameterInitials(thetaPrior)`:

`LightResponseCurveFitter_getPriorScale(thetaPrior, medianRelFluxUncertainty, nRec, ctrl)`:

`LightResponseCurveFitter_getPriorLocation(NEEDay, RRefNight, E0)`:

`LightResponseCurveFitter_fitLRC(dsDay, E0, sdE0, RRefNight, controlGLPart, lastGoodParameters)`:

`LightResponseCurveFitter_getParameterNames()`:
LightResponseCurveFitter_computeCost

Description

Computing residual sum of squares for predictions vs. data of NEE

Usage

LightResponseCurveFitter_computeCost(thetaOpt, theta, iOpt, flux, sdFlux, parameterPrior, sdParameterPrior, ...)

Arguments

- `thetaOpt`: parameter vector with components of theta0 that are optimized
- `theta`: parameter vector with positions as in argument of `LightResponseCurveFitter_getParameterNames`
- `iOpt`: position in theta that are optimized
- `flux`: numeric: NEP (-NEE) or GPP time series [umolCO2 / m2 / s], should not contain NA
- `sdFlux`: numeric: standard deviation of Flux [umolCO2 / m2 / s], should not contain NA
- `parameterPrior`: numeric vector along theta: prior estimate of parameter (range of values)
- `sdParameterPrior`: standard deviation of parameterPrior
- `...`: other arguments to `LightResponseCurveFitter_predictLRC`, such as VPD0, fixVPD

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <olenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Description

Gradient of LightResponseCurveFitter_predictLRC

Usage

LightResponseCurveFitter_computeLRCGradient(theta,
 Rg, VPD, Temp, VPD0 = 10, fixVPD = (k ==
 0), TRef = 15)

Arguments

Rg [ppfd] -> photosynthetic flux density [umol / m2 / s] or Global Radiation
VPD [numeric] -> Vapor Pressure Deficit [hPa]
Temp [degC] -> Temperature [degC]
VPD0 [hPa] -> Parameters VPD0 fixed to 10 hPa according to Lasslop et al 2010
fixVPD boolean scalar or vector of nrow(theta): fixVPD if TRUE the VPD effect is not
considered and VPD is not part of the computation
TRef numeric scalar of Temperature (degree Celsius) for reference respiration RRef

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-
jenag.mp.de> [cph], Thomas Wutzler <twutz@bgc-jena.mp.de> [aut, cre], Markus Reichstein
<mreichstein@bgc-jena.mp.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mp.de> [aut, trl],
Olaf Menzer <omenzer@bgc-jena.mp.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mp.de>
[aut], Kerstin Sickel <ksickel@bgc-jena.mp.de> [ctb, trl], Ladislav <U0160>igut <sigut.l@czechglobe.cz>
[ctb]
LightResponseCurveFitter_fitLRC

Description
Optimize rectangular hyperbolic light response curve in one window

Usage
LightResponseCurveFitter_fitLRC(dsDay, E0, sdE0, RRefNight, controlGLPart = partGLControl(), lastGoodParameters = rep(NA_real_, 7L))

Arguments
dsDay data.frame with columns NEE, Rg, Temp_C, VPD, and no NAs in NEE
E0 temperature sensitivity of respiration
sdE0 standard deviation of E_0.n
RRefNight basal respiration estimated from night time data
controlGLPart further default parameters (see partGLControl)
lastGoodParameters numeric vector returned by last reasonable fit

Details
Optimization is performed for three initial parameter sets that differ by beta0 (* 1.3, * 0.8). From those three, the optimization result is selected that yielded the lowest misfit. Starting values are: k = 0, beta = interpercentileRange(0.03, 0.97) of respiration, alpha = 0.1, R_ref from nightTime estimate. E0 is fixed to the night-time estimate, but varies for estimating parameter uncertainty.

If controlGLPart$nBootUncertainty == 0L then the covariance matrix of the parameters is estimated by the Hessian of the LRC curve at optimum. Then, the additional uncertainty and covariance with uncertainty E0 is neglected.

If controlGLPart.l$nBootUncertainty > 0L then the covariance matrix of the parameters is estimated by a bootstrap of the data. In each draw, E0 is drawn from N ~ (E_0, sdE_0).

If there are no estimates for more than 20% of the bootstrapped samples The an NA-result with convergence code 1001L is returned.

Value
a list, If none of the optimizations from different starting conditions converged, the parameters are NA.
thetaOpt numeric vector of optimized parameters including the fixed ones and E0
iOpt

index of parameters that have been optimized, here including E0, which has been optimized prior to this function.

thetaInitialGuess

the initial guess from data

covParms

numeric matrix of the covariance matrix of parameters, including E0

convergence

integer code specifying convergence problems: \(0: \) good convergence \(\backslash 1-1000: \) see \texttt{optim} \(\backslash 1001: \) too few bootstraps converged \(\backslash 1002: \) fitted parameters were outside reasonable bounds \(\backslash 1003: \) too few valid records in window \(\backslash 1004: \) near zero covariance in bootstrap indicating bad fit \(\backslash 1005: \) covariance from curvature of fit yielded negative variances indicating bad fit \(\backslash 1006: \) prediction of highest PAR in window was far from saturation indicating insufficient data to constrain LRC \(\backslash 1010: \) no temperature-respiration relationship found \(\backslash 1011: \) too few valid records in window (from different location: \texttt{partGLFitLRCOneWindow})

Author(s)

TW, MM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

\texttt{partGLFitLRCWindows}

\texttt{LightResponseCurveFitter_optimLRCBounds}

LightResponseCurveFitter_getOptimizedParameterPositions

\texttt{LightResponseCurveFitter_getOptimizedParameterPositions}

Description

going the positions of the parameters to optimize for given Fixed

Usage

\texttt{LightResponseCurveFitter_getOptimizedParameterPositions(isUsingFixedVPD, isUsingFixedAlpha)}

Arguments

\texttt{isUsingFixedVPD}

boolean scalar: if TRUE, VPD effect set to zero and is not optimized

\texttt{isUsingFixedAlpha}

boolean scalar: if TRUE, initial slope is fixed and is not optimized
Details

If subclasses extend the parameter vector, they need to override this method.

Value

integer vector of positions in parameter vector

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

LightResponseCurveFitter_getParameterInitials

Description

return the prior distribution of parameters

Usage

LightResponseCurveFitter_getParameterInitials(thetaPrior)

Arguments

thetaPrior numeric vector prior estimate of parameters

Value

a numeric matrix (3, nPar) of initial values for fitting parameters

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
LightResponseCurveFitter_getParameterNames

Description

return the parameter names used by this Light Response Curve Function

Usage

LightResponseCurveFitter_getParameterNames()

Value

string vector of parameter names. Positions are important.

k VPD effect
beta saturation of GPP at high radiation
alpha initial slope
RRef basal respiration (units of provided NEE, usually mumol CO2 m^-2 s^-2)
E0 temperature sensitivity estimated from night-time data (K)

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

LightResponseCurveFitter_getPriorLocation

Description

return the prior distribution of parameters

Usage

LightResponseCurveFitter_getPriorLocation(NEEDay, RRefNight, E0)
Arguments

- **NEEDay** numeric vector of daytime NEE
- **RRefNight** numeric scalar of basal respiration estimated from night-time data
- **E0** numeric scalar of night-time estimate of temperature sensitivity

Value

a numeric vector with prior estimates of the parameters

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc-jena.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

return the prior distribution of parameters

Usage

LightResponseCurveFitter_getPriorScale(thetaPrior, medianRelFluxUncertainty, nRec, ctrl)

Arguments

- **thetaPrior** numeric vector of location of priors
- **medianRelFluxUncertainty** numeric scalar: median across the relative uncertainty of the flux values, i.e. sdNEE / NEE
- **nRec** integer scalar: number of finite observations
- **ctrl** list of further controls, with entry isLasslopPriorsApplied

Details

The beta parameter is quite well defined. Hence use a prior with a standard deviation. The specific results are sometimes a bit sensitive to the uncertainty of the beta prior. This uncertainty is set corresponding to 20 times the median relative flux uncertainty. The prior is weighted n times the observations in the cost. Hence, overall it is using a weight of 1 / 20 of the weight of all observations.

However, its not well defined if PAR does not reach saturation. Need to check before applying this prior
Value

a numeric vector with prior estimates of the parameters

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Check if estimated parameter vector is within reasonable bounds

Usage

```r
LightResponseCurveFitter_isParameterInBounds(theta, sdTheta, RRefNight, ctrl)
```

Arguments

- `theta` estimate of parameter
- `sdTheta` estimate of uncertainty of the parameter
- `RRefNight` numeric scalar: night-time based estimate of basal respiration
- `ctrl` list of further controls

Details

check the Beta bounds that depend on uncertainty: outside if (beta > 100 and sdBeta >= beta)

Value

FALSE if parameters are outside reasonable bounds, TRUE otherwise

Author(s)

TW, MM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
LightResponseCurveFitter_optimLRC

Description

call the optimization function

Usage

LightResponseCurveFitter_optimLRC(theta, iOpt, sdParameterPrior, ..., ctrl, isUsingHessian)

Arguments

- **theta** numeric vector: starting parameters
- **iOpt** integer vector: positions of parameters to optimize
- **sdParameterPrior** numeric vector: prior uncertainty
- **...** further arguments to the cost function
- **ctrl** list of further controls
- **isUsingHessian** scalar boolean: set to TRUE to compute Hessian at optimum

Value

list of result of `optim` amended with list

- **theta** numeric vector: optimized parameter vector including the fixed components
- **iOpt** integer vector: position of parameters that have been optimized

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany
<REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
LightResponseCurveFitter_optimLRCBounds

LightResponseCurveFitter_optimLRCBounds

Description

Optimize parameters with refitting with some fixed parameters if outside bounds

Usage

```r
LightResponseCurveFitter_optimLRCBounds(theta0, parameterPrior, ..., dsDay, lastGoodParameters, ctrl)
```

Arguments

- **theta0**: initial parameter estimate
- **parameterPrior**: prior estimate of model parameters
- **...**: further parameters to `optimLRC`
- **dsDay**: argument to `optimLRC`, here checked for occurrence of high VPD
- **lastGoodParameters**: parameters vector of last successful fit
- **ctrl**: list of further controls, such as `isNeglectVPDEffect = TRUE`

Details

If parameters alpha or k are outside bounds (Table A1 in Lasslop 2010), refit with some parameters fixed to values from fit of previous window.

No parameters are reported if alpha<0 or RRef < 0 or beta0 < 0 or beta0 > 250

Not parameters are reported if the data did not contain records that are near light saturation. This is checked by comparing the prediction at highest PAR with the beta parameter

Value

list result of optimization as of `LightResponseCurveFitter_optimLRCOnAdjustedPrior` with entries

- **theta**: numeric parameter vector that includes the fixed components
- **iOpt**: integer vector of indices of the vector that have been optimized
- **convergence**: scalar integer indicating bad conditions on fitting (see `LightResponseCurveFitter_fitLRC`)
LightResponseCurveFitter_optimLRCOnAdjustedPrior

Author(s)
TW, MM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph]. Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre]. Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut]. Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl]. Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb]. Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut]. Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl]. Ladislav <sigut.l@czechglobe.cz> [ctb]

See Also
LightResponseCurveFitter_fitLRC

Description
Lower bound flux uncertainty and adjust prior uncertainty before calling optimLRC

Usage
LightResponseCurveFitter_optimLRCOnAdjustedPrior(theta, iOpt, dsDay, parameterPrior, ctrl, ...)

Arguments
theta numeric vector of starting values
iOpt integer vector: positions of subset of parameters that are optimized
dsDay dataframe of NEE, sdNEE and predictors Rg, VPD and Temp
parameterPrior numeric vector of prior parameter estimates (corresponding to theta) # TODO rename to thetaPrior
ctrl list of further controls
... further arguments to LightResponseCurveFitter_optimLRC (passed to LightResponseCurveFitter_computeCost)

Details
Only those records are used for optimization where both NEE and sdNEE are finite. In larger settings, already filtered at
Optimization of LRC parameters takes into account the uncertainty of the flux values. In order to avoid very strong leverage, values with a very low uncertainty (< a lower quantile) are assigned the lower quantile is assigned. This procedure downweighs records with a high uncertainty, but does not apply a large leverage for records with a very low uncertainty. Avoid this correction by setting ctrl$isBoundLowerNEEUncertainty = FALSE
The uncertainty of the prior, that maybe derived from fluxes) is allowed to adapt to the uncertainty of the fluxes. This is done in link{LightResponseCurveFitter_getPriorScale}
Value

result of `LightResponseCurveFitter_optimLRC` with items `theta`, `iOpt` and convergence

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Light Response function for GPP

Usage

`LightResponseCurveFitter_predictGPP(Rg, ...)`

Arguments

- `Rg` ppfd [numeric] -> photosynthetic flux density [mumol / m2 / s] or Global Radiation
- `...` further parameters to the LRC

Details

This method must be be implemented by a specific subclass. Currently there are several alternatives:

- Rectangular: `RectangularLRCFitter_predictGPP`
- Nonrectangular: `NonrectangularLRCFitter_predictGPP`
- Rectangular: `LogisticSigmoidLRCFitter_predictGPP`

Value

numeric vector of length(`Rg`) of GPP
Author(s)
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also
partitionNEEGL

LightResponseCurveFitter

LightResponseCurveFitter predictLRC

Description
Light Response Function

Usage

```
LightResponseCurveFitter_predictLRC(theta, 
   Rg, VPD, Temp, VPD0 = 10, fixVPD = (k == 0), TRef = 15)
```

Arguments

- **theta**: numeric vector of parameters
- **Rg**: ppfd [numeric] -> photosynthetic flux density [umol / m2 / s] or Global Radiation
- **VPD**: VPD [numeric] -> Vapor Pressure Deficit [hPa]
- **Temp**: Temp [degC] -> Temperature [degC]
- **VPD0**: VPD0 [hPa] -> Parameters VPD0 fixed to 10 hPa according to Lasslop et al 2010
- **fixVPD**: boolean scalar or vector of nrow theta: fixVPD if TRUE the VPD effect is not considered and VPD is not part of the computation
- **TRef**: numeric scalar of Temperature (degree Celsius) for reference respiration RRef

Details
Predict ecosystem fluxes (Reco, GPP, NEP = GPP-Reco) for given parameters and environmental conditions.

The VPD effect is included according to Lasslop et al., 2010.

If theta is a matrix, a different row of parameters is used for different entries of other inputs.
Description

Constructs an instance of class `LogisticSigmoidLRCFitter-class`

Usage

`LogisticSigmoidLRCFitter(...)`

Arguments

...

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

Description

Logistic sigmoid light-response curve fitting.

Extends

Class "LightResponseCurveFitter", directly.

All reference classes extend and inherit methods from "envRefClass".
Methods

computeGPPGradient(Rg, Amax, alpha): ~-

predictGPP(Rg, Amax, alpha): ~-

The following methods are inherited (from the corresponding class): predictGPP ("LightResponseCurveFitter"), getParameterNames ("LightResponseCurveFitter"), fitLRC ("LightResponseCurveFitter"), getPriorLocation ("LightResponseCurveFitter"), getPriorScale ("LightResponseCurveFitter"), getParameterInitials ("LightResponseCurveFitter"), optimLRCBounds ("LightResponseCurveFitter"), getOptimizedParameterPositions ("LightResponseCurveFitter"), optimLRCOnAdjustedPrior ("LightResponseCurveFitter"), isParameterInBounds ("LightResponseCurveFitter"), optimLRC ("LightResponseCurveFitter"), computeCost ("LightResponseCurveFitter"), predictLRC ("LightResponseCurveFitter"), computeLRCGradient ("LightResponseCurveFitter")

Description

Logistic Sigmoid Light Response function for GPP

Usage

LogisticSigmoidLRCFitter_predictGPP(Rg, Amax, alpha)

Arguments

Rg ppfd [numeric] -> photosynthetic flux density [umol / m2 / s] or Global Radiation
Amax vector of length(Rg): saturation (beta parameter) adjusted for effect of VPD for each line of Rg
alpha numeric scalar or vector of length(Rg): alpha parameter: slope at Rg = 0

Details

GPP <- Amax * tanh(alpha * Rg / Amax)

Value

numeric vector of length(Rg) of GPP
Description

Constructs an instance of class *NonrectangularLRCFitter-class*

Usage

`NonrectangularLRCFitter(...)`

Arguments

...

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

See Also

`LightResponseCurveFitter_predictGPP`

NonrectangularLRCFitter

NonrectangularLRCFitter

Description

Nonrectangular hyperbolic light-response curve fitting.

Extends

Class "*LightResponseCurveFitter*", directly.

All reference classes extend and inherit methods from "envRefClass".
Methods

- computeGPPGradient\((R_g, A_{max}, \alpha, \text{logitconv})\): ~
- getParameterNames(): ~
- getPriorLocation\((\text{NEEday}, R_{RefNight}, E_0)\): ~
- getPriorScale\((\theta_{Prior}, \text{medianRelFluxUncertainty}, nRec, \text{ctrl})\): ~
- getOptimizedParameterPositions\((\text{isUsingFixedVPD}, \text{isUsingFixedAlpha})\): ~
- predictLRC\((\theta, R_g, VPD, \text{Temp}, VPD_0, \text{fixVPD}, T_{Ref})\): ~
- predictGPP\((R_g, A_{max}, \alpha, \text{conv})\): ~
- computeLRCGradient\((\theta, R_g, VPD, \text{Temp}, VPD_0, \text{fixVPD}, T_{Ref})\): ~

The following methods are inherited (from the corresponding class): computeLRCGradient ("LightResponseCurveFitter"), predictGPP ("LightResponseCurveFitter"), predictLRC ("LightResponseCurveFitter"), getOptimizedParameterPositions ("LightResponseCurveFitter"), getPriorScale ("LightResponseCurveFitter"), getPriorLocation ("LightResponseCurveFitter"), getParameterNames ("LightResponseCurveFitter"), fitLRC ("LightResponseCurveFitter"), getParameterInitials ("LightResponseCurveFitter"), optimLRCBounds ("LightResponseCurveFitter"), optimLRCOnAdjustedPrior ("LightResponseCurveFitter"), isParameterInBounds ("LightResponseCurveFitter"), computeCost ("LightResponseCurveFitter")

NonrectangularLRCFitter_getParameterNames

NonrectangularLRCFitter getParameterNames

Description

return the parameter names used by this Light Response Curve Function

Usage

NonrectangularLRCFitter_getParameterNames()

Value

string vector of parameter names. Positions are important. Adds sixth parameter, logitconv to the parameters of LightResponseCurveFitter_getParameterNames

logitconv

logit-transformed convexity parameter. The value at original scale is obtained by \(\text{conv} = 1 / (1 + \exp(-\text{logitconv}))\)

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
NonrectangularLRCFitter_predictGPP

Description

Nonrectangular hyperbolic Light Response function for GPP

Usage

NonrectangularLRCFitter_predictGPP(Rg, Amax, alpha, conv)

Arguments

- **Rg**: ppfd [numeric] -> photosynthetic flux density [mumol / m² / s] or Global Radiation
- **Amax**: numeric scalar or vector of length(Rg): beta parameter adjusted for VPD effect
- **alpha**: numeric scalar or vector of length(Rg): alpha parameter: initial slope
- **conv**: numeric scalar or vector of length(Rg): convexity parameter (see details)

Details

This function generalizes the RectangularLRCFitter_predictGPP by adding the convexity parameter conv. For conv -> 0 (logitconv -> -Inf): approaches the rectangular hyperbolic. For conv -> 1 (logitconv -> + Inf): approaches a step function. Expected values of conv are about 0.7-0.9 (Moffat 2012).

Value

numeric vector of length(Rg) of GPP

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

LightResponseCurveFitter_predictGPP
partGLControl

Description

Default list of parameters for Lasslop 2010 daytime flux partitioning For highest compatibility to the pvWave code of G.Lasslop (used by first BGC-online tool) see function `partGLControlLasslopCompatible`.

Usage

```r
partGLControl(LRCFitConvergenceTolerance = 0.001,
    nLRCFitConvergenceTolerance = 0.001,
    nBootUncertainty = 30L, minNRecInDayWindow = 10L,
    isAssociateParmsToMeanOfValids = TRUE,
    isLasslopPriorsApplied = TRUE, isUsingLasslopQualityConstraints = FALSE,
    isSdPredComputed = TRUE, isFilterMeteoQualityFlag = FALSE,
    isBoundLowerNEEUncertainty = TRUE, fixedTRefAtNightTime = NA,
    isExtendTRefWindow = TRUE, smoothTempSensEstimateAcrossTime = TRUE,
    isNeglectPotRadForNight = FALSE, NRHRfunction = FALSE,
    isNeglectVPDEffect = FALSE, isRefitMissingVPDWithNeglectVPDEffect = TRUE,
    fixedTempSens = data.frame(E0 = NA_real_,
        sdE0 = NA_real_, RRef = NA_real_),
    replaceMissingSdNEEParms = c(perc = 0.2,
        minSd = 0.7), neglectNEEUncertaintyOnMissing = FALSE,
    minPropSaturation = NA, useNightimeBasalRespiration = FALSE)
```

Arguments

- **LRCFitConvergenceTolerance**: convergence criterion for rectangular light response curve fit. If relative improvement of reducing residual sum of squares between predictions and observations is less than this criterion, assume convergence. Decrease to get more precise parameter estimates, Increase for speedup.
- **nLRCFitConvergenceTolerance**: convergence criterion for nonrectangular light response curve fit. Here its a factor of machine tolerance.
- **nBootUncertainty**: number of bootstrap samples for estimating uncertainty. Set to zero to derive uncertainty from curvature of a single fit
- **minNRecInDayWindow**: Minimum number of data points for regression
- **isAssociateParmsToMeanOfValids**: set to FALSE to associate parameters to the first record of the window for interpolation instead of mean across valid records inside a window
- **isLasslopPriorsApplied**: set to TRUE to apply strong fixed priors on LRC fitting. Returned parameter estimates claimed valid for some case where not enough data was available
isUsingLasslopQualityConstraints
set to TRUE to avoid quality constraints additional to Lasslop 2010

isSdPredComputed
set to FALSE to avoid computing standard errors of Reco and GPP for small performance increase

isFilterMeteoQualityFlag
set to TRUE to use only records where quality flag of meteo drivers (radiation, temperature, VPD) is zero, i.e. non-gapfilled for parameter estimation. For prediction, the gap-filled value is used always, to produce predictions also for gaps.

isBoundLowerNEEUncertainty
set to FALSE to avoid adjustment of very low uncertainties before day-Time fitting that avoids the high leverage those records with unreasonable low uncertainty.

fixedTRefAtNightTime
if a finite value (degree Centigrade) is given, it is used instead of median data temperature as reference temperature in estimation of temperature sensitivity from night data

isExtendTRefWindow
set to FALSE to avoid successively extending the night-time window in order to estimate a temperature sensitivity where previous estimates failed

smoothTempSensEstimateAcrossTime
set to FALSE to use independent estimates of temperature sensitivity on each windows instead of a vector of E0 that is smoothed over time

isNeglectPotRadForNight
set to TRUE to not use potential radiation in determining night-time data.

NRHRFunction
deprecated: Flag if TRUE use the NRHRF for partitioning; Now use lrcFitter = NonrectangularLRCFitter()

isNeglectVPDEffect
set to TRUE to avoid using VPD in the computations. This may help when VPD is rarely measured.

isRefitMissingVPDWithNeglectVPDEffect
set to FALSE to avoid repeating estimation with isNeglectVPDEffect = TRUE trying to predict when VPD is missing

fixedTempSens
data.frame of one row or nRow = nWindow corresponding to return value of partGLFitNightTimeTRespSens While column RRef is used only as a prior and initial value for the daytime-fitting and can be NA, E0 is used as given temperature sensitivity and varied according to sdE0 in the bootstrap.

replaceMissingSdNEEParms
parameters for replacing missing standard deviation of NEE. see replaceMissingSdByPercentage. Default sets missing uncertainty to 20% of NEE but at least 0.7 flux-units (usually mumol CO2 / m2 / s). Specify c(NA, NA) to avoid replacing missings in standard deviation of NEE and to omit those records from LRC fit.

neglectNEEUncertaintyOnMissing
If set to TRUE: if there are records with missing uncertainty of NEE inside one window, set all uncertainties to 1. This overrules option replaceMissingSdNEEParms.
\texttt{minPropSaturation}
quality criterion for sufficient data in window. If GPP prediction of highest PAR
of window is less than \texttt{minPropSaturation} \times (GPP at light-saturation, i.e. beta)
this indicates that PAR is not sufficiently high to constrain the shape of the LRC

\texttt{useNightimeBasalRespiration}
set to TRUE to estimate nighttime respiration based on basal respiration estimated on nighttime data instead of basal respiration estimated from daytime data. This implements the modified daytime method from Keenan 2019 (doi:10.1038/s41559-019-0809-2)

\textbf{Value}
list with entries of given arguments.

\textbf{Author(s)}
TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

\textbf{See Also}
\texttt{partitionNEEGL}

\textbf{Examples}
\begin{verbatim}
partGLControl(nBootUncertainty = 40L)
\end{verbatim}

\textbf{partGLControlLasslopCompatible}

\textit{partGLControlLasslopCompatible}

\textbf{Description}
Daytime flux partitioning parms compatible with with the pvWave

\textbf{Usage}
\begin{verbatim}
partGLControlLasslopCompatible(nBootUncertainty = 0L,
minNRecInDayWindow = 10L, isAssociateParmsToMeanOfValids = FALSE,
isLasslopPriorsApplied = TRUE, isUsingLasslopQualityConstraints = TRUE,
isBoundLowerNEEUncertainty = FALSE, fixedTRefAtNightTime = 15,
isExtendTRefWindow = FALSE, smoothTempSensEstimateAcrossTime = FALSE,
isRefitMissingVPDWithNeglectVPDEffect = FALSE,
minPropSaturation = NA, isNeglectVPDEffect = FALSE,
\end{verbatim}
replaceMissingSdNEEParms = c(NA, NA),
neglectNEEUncertaintyOnMissing = TRUE,
...)

Arguments

nBootUncertainty
 0: Derive uncertainty from curvature of a single fit, neglecting the uncertainty
 of previously estimated temperature sensitivity, E0

minNRecInDayWindow
 Minimum number of 10 valid records for regression in a single window

isAssociateParmsToMeanOfValid
 associate parameters to the first record of the window for interpolation instead
 of mean across valid records inside a window

isLasslopPriorsApplied
 Apply fixed Lasslop priors in LRC fitting.

isUsingLasslopQualityConstraints
 avoid quality constraints additional to the ones in Lasslop 2010

isBoundLowerNEEUncertainty
 FALSE: avoid adjustment of very low uncertainties before day-Time fitting that
 avoids the high leverage those records with unreasonable low uncertainty.

fixedTRefAtNightTime
 use fixed (degree Centigrade) temperature sensitivity instead of median data
 temperature as reference temperature in estimation of temperature sensitivity
 from night data

isExtendTRefWindow
 avoid successively extending the night-time window in order to estimate a tem-
 perature sensitivity where previous estimates failed

smoothTempSensEstimateAcrossTime
 FALSE: use independent estimates of temperature sensitivity on each windows
 instead of a vector of E0 that is smoothed over time

isRefitMissingVPDWithNeglectVPDEffect
 FALSE: avoid repeating estimation with isNeglectVPDEffect = TRUE

minPropSaturation
 NA: avoid quality constraint of sufficient saturation in data This option is over-
 ruled, i.e. not considered, if option isUsingLasslopQualityConstraints = TRUE.

isNeglectVPDEffect
 FALSE: do not neglect VPD effect

replaceMissingSdNEEParms
 do not replace missing NEE, but see option

neglectNEEUncertaintyOnMissing
 if there are records with missing uncertainty of NEE inside one window, set all
 sdNEE to 1. This overrules option replaceMissingSdNEEParms.

... further arguments to partGLControl
partGLExtractStandardData

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

partGLControl

Examples

partGLControlLasslopCompatible()

describe(partGLExtractStandardData)

describe(partGLExtractStandardData)

Description

Relevant columns from original input with defined names

Usage

partGLExtractStandardData(ds, NEEVar = paste0("NEE", suffixDash, ",_f"), QFNEEVar = if (!missing(QFNEEVar.s)) QFNEEVar.s else paste0("NEE", suffixDash, ",_fqc"), QFNEEValue = if (!missing(QFNEEValue.n)) QFNEEValue.n else 0, NEEsDVar = if (!missing(NEEsDVar.s)) NEEsDVar.s else paste0("NEE", suffixDash, ",_fsd"), TempVar = paste0("Tair_f"), QFTempVar = if (!missing(QFTempVar.s)) QFTempVar.s else paste0("Tair_fqc"), QFTempValue = if (!missing(QFTempValue.n)) QFTempValue.n else 0, VPDVar = if (!missing(VPDVar.s)) VPDVar.s else paste0("VPD_f"), QFVPDVar = if (!missing(QFVPDVar.s)) QFVPDVar.s else paste0("VPD_fqc"), QFVPDValue = if (!missing(QFVPDValue.n)) QFVPDValue.n else 0, RadVar = if (!missing(RadVar.s)) RadVar.s else "Rg_f", QFRadVar = if (!missing(QFRadVar.s)) QFRadVar.s else paste0("Rg_fqc"), QFRadValue = if (!missing(QFRadValue.n)) QFRadValue.n else 0, PotRadVar = if (!missing(PotRadVar.s)) PotRadVar.s else "PotRad_NEW", suffix = if (!missing(Suffix.s)) Suffix.s else "", NEEVar.s, QFNEEVar.s, QFNEEValue.n, NEEsDVar.s, TempVar.s, QFTempVar.s, QFTempValue.n, VPDVar.s, QFVPDVar.s, QFVPDValue.n, RadVar.s, QFRadVar.s, QFRadValue.n, PotRadVar.s, Suffix.s, controlGLPart = partGLControl())
Arguments

ds dataset with all the specified input columns and full days in equidistant times
NEEVar Variable of NEE
QFNEEVar Quality flag of variable
QFNEEValue Value of quality flag for _good_ (original) data
NEESdVar Variable of standard deviation of net ecosystem fluxes
TempVar Filled air or soil temperature variable (degC)
QFTempVar Quality flag of filled temperature variable
QFTempValue Value of temperature quality flag for _good_ (original) data
VPDVar Filled Vapor Pressure Deficit, VPD (hPa)
QFVPDVar Quality flag of filled VPD variable
QFVPDValue Value of VPD quality flag for _good_ (original) data
RadVar Filled radiation variable
QFRadVar Quality flag of filled radiation variable
QFRadValue Value of radiation quality flag for _good_ (original) data
PotRadVar Variable name of potential rad. (W / m2)
suffix string inserted into column names before identifier for NEE column defaults (see
 sEddyProc_sMDSGapFillAfterUstar).

NEEVar.s deprecated
QFNEEVar.s deprecated
QFNEEValue.n deprecated
NEESdVar.s deprecated
TempVar.s deprecated
QFTempVar.s deprecated
QFTempValue.n deprecated
VPDVar.s deprecated
QFVPDVar.s deprecated
QFVPDValue.n deprecated
RadVar.s deprecated
QFRadVar.s deprecated
QFRadValue.n deprecated
PotRadVar.s deprecated
Suffix.s deprecated
controlGLPart further default parameters, see partGLControl

Details

The LRC fit usually weights NEE records by its uncertainty. In order to also use records with
missing NEESdVar, uncertainty of the missing values is by default set to a conservatively high
value, parameterized by controlGLPart$replaceMissingSdNEEParms). Controlled by argument
replaceMissingSdNEEParms in partGLControl, but overruled by argument neglectNEEUncertaintyOnMissing.
Value

a data.frame with columns

- **sDateTime**: first column of ds, usually the time stamp not used, but usually first column is a DateTime is kept for aiding debug
- **NEE**: NEE filtered for quality flay
- **sdNEE**: standard deviation of NEE with missing values replaced
- **Temp**: Temperature, quality filtered if isTRUE(controlGLPart$sIsFilterMeteoQualityFlag)
- **VPD**: Water pressure deficit, quality filtered if isTRUE(controlGLPart$sIsFilterMeteoQualityFlag)
- **Rg**: Incoming radiation
- **isDay**: Flag that is true for daytime records
- **isNight**: Flag that is true for nighttime records

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav Šigut <sigut.l@czechglobe.cz> [ctb]

Description

Partition NEE fluxes into GP and Reco using the daytime method.

Usage

```r
test <- partitionNEEGL(ds, NEEVar = if (!missing(NEEVar.s)) NEEVar.s else paste0("NEE", suffixDash, ".f"), TempVar = if (!missing(TempVar.s)) TempVar.s else "Tair_f", VPDVar = if (!missing(VPDVar.s)) VPDVar.s else "VPD_f", RadVar = if (!missing(RadVar.s)) RadVar.s else "Rg_f", suffix = if (!missing(Suffix.s)) Suffix.s else ",", NEEVar.s, TempVar.s, VPDVar.s, RadVar.s, Suffix.s, ..., controlGLPart = partGLControl(), isVerbose = TRUE, nRecInDay = 48L, lrcFitter = RectangularLRCFitter())
```

Arguments

- **ds**: dataset with all the specified input columns and full days in equidistant times
- **NEEVar**: Variable of NEE
- **TempVar**: Filled air or soil temperature variable (degC)
- **VPDVar**: Filled Vapor Pressure Deficit - VPD - (hPa)
- **RadVar**: Filled radiation variable
- **suffix**: string inserted into column names before identifier for NEE column defaults (see `sEddyProc_sMDSGapFillAfterUstar`).
- **NEEVar.s**: deprecated
- **TempVar.s**: deprecated
- **VPDVar.s**: deprecated
- **RadVar.s**: deprecated
- **Suffix.s**: deprecated identifier for NEE column defaults (see `sEddyProc_sMDSGapFillAfterUstar`).
- **controlGLPart**: further default parameters, see `partGLControl`
- **isVerbose**: set to FALSE to suppress output messages
- **nRecInDay**: number of records within one day (for half-hourly data its 48)
- **lrcFitter**: R5 class instance responsible for fitting the light response curve. Current possibilities are `RectangularLRCFitter()`, `NonrectangularLRCFitter()`, and `LogisticSigmoidLRCFitter()`.

Details

Daytime-based partitioning of measured net ecosystem fluxes into gross primary production (GPP) and ecosystem respiration (Reco)

The fit to the light-response-curve is done by default using the Rectangular hyperbolic function, as in Lasslop et al. (2010) Alternative fittings can be used by providing the corresponding subclass of `LightResponseCurveFitter-class` to `lrcFitter` argument. (see `LightResponseCurveFitter_predictGPP`)

While the extrapolation uses filled data, the parameter optimization may use only measured data, i.e. with specified quality flag. Even with using filled VPD, there may be large gaps that have not been filled. With the common case where VPD is missing for fitting the LRC, by default (with `controlGLPart$isRefitMissingVPDWithNeglectVPDEffect = TRUE) is to redo the estimation of LRC parameters with neglecting the VPD-effect. Next, in the predictions (rows) with missing VPD are then replaced with predictions based on LRC-fits that neglected the VPD effect.

Value

- **Reco_DT_<suffix>**: predicted ecosystem respiration: mumol CO2/m2/s
- **GPP_DT_<suffix>**: predicted gross primary production mumol CO2/m2/s
Further light response curve (LRC) parameters and their standard deviation depend on the used LRC (e.g. for the non-rectangular LRC see NonrectangularLRCFitter_getParameterNames). They are estimated for windows and are reported with the first record of the window.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP_VARnight</td>
<td>NEE filtered for nighttime records (others NA)</td>
</tr>
<tr>
<td>FP_VARday</td>
<td>NEE filtered for daytime records (others NA)</td>
</tr>
<tr>
<td>NEW_FP_Temp</td>
<td>temperature after filtering for quality flag degree Celsius</td>
</tr>
<tr>
<td>NEW_FP_VPD</td>
<td>vapour pressure deficit after filtering for quality flag, hPa</td>
</tr>
<tr>
<td>FP_RRef_Night</td>
<td>basal respiration estimated from nighttime (W / m²)</td>
</tr>
<tr>
<td>FP_qc</td>
<td>quality flag: 0: good parameter fit, 1: some parameters out of range, required refit, 2: next parameter estimate is more than two weeks away</td>
</tr>
<tr>
<td>FP_dRecPar</td>
<td>records until or after closest record that has a parameter estimate associated</td>
</tr>
<tr>
<td>FP_errorcode</td>
<td>information why LRC-fit was not successful or was rejected, see result of LightResponseCurveFitter_fitLRC</td>
</tr>
<tr>
<td>FP_GPP2000</td>
<td>predicted GPP at VPD = 0 and PAR = 2000: a surrogate for maximum photosynthetic capacity</td>
</tr>
<tr>
<td>FP_OPT_VPD</td>
<td>list object of fitting results including iOpt and covParms</td>
</tr>
<tr>
<td>FP_OPT_NoVPD</td>
<td>same as FP_OPT_VPD holding optimization results with fit neglecting the VPD effect</td>
</tr>
</tbody>
</table>

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

References

See Also

partGLFitNightTimeTRespSens
partGLFitLRCWindows
partGLInterpolateFluxes
POSIXctToBerkeleyJulianDate

Description
convert POSIXct to JulianDate format used in Berkeley release

Usage
POSIXctToBerkeleyJulianDate(sDateTime, tz = getTZone(sDateTime))

Arguments
sDateTime POSIXct vector
tz

Details
In the Berkeley-Release of the Fluxnet data, the time is stored as an number with base10-digits
representing YYYYMMddhhmm

Author(s)
TW, Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-
jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein
<mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl],
Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de>
[aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz>
[ctb]

See Also
BerkeleyJulianDateToPOSIXct,
read_from_fluxnet15

Usage

```
read_from_ameriflux22(df)
```

Arguments

df
data.frame: with columns FC, SW_IN, RH, TA, USTAR, L and E

Value

Data.Frame with columns DateTime, NEE, Rg, Tair, rH, VPD, Ustar, LE, H

read_from_fluxnet15
extract REddyProc input columns from data.frame in Fluxnet15 format

Description

Column format as described at https://fluxnet.org/data/fluxnet2015-dataset/fullset-data-product/

Usage

```
read_from_fluxnet15(ds, colname_NEE = "NEE")
```

Arguments

ds
data.frame with columns TIMESTAMP_END (Time YYYYMMDDHHMM), NEE, LE, H, USTAR, TA, TS, VPD, SW_IN and optionally USTAR_QC
colname_NEE
name (scalar string) of column that reports NEE observations

Details

If input has numeric column USTAR_QC then USTAR of records with USTAR_QC > 2 are set to NA.

Value

data.frame with additional columns 'DateTime', 'NEE', 'Ustar' and 'Rg', 'Tair', 'Tsoil' if columns 'SW_IN', 'TA', or 'TS' are present respectively
Description

Constructs an instance of class RectangularLRCFitter-class

Usage

RectangularLRCFitter(…)

Arguments

...

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

RectangularLRCFitter-class

Class "RectangularLRCFitter"

Description

Common rectangular hyperbolic light-response curve fitting.

Extends

Class "LightResponseCurveFitter", directly.

All reference classes extend and inherit methods from "envRefClass".

Methods

computeGPPGradient(Rg, Amax, alpha): ~~
predictGPP(Rg, Amax, alpha): ~~

The following methods are inherited (from the corresponding class): predictGPP ("LightResponseCurveFitter"), getParameterNames ("LightResponseCurveFitter"), fitLRC ("LightResponseCurveFitter"), getPriorLocation ("LightResponseCurveFitter"), getPriorScale ("LightResponseCurveFitter"), getParameterInitials ("LightResponseCurveFitter"), optimLRCBounds ("LightResponseCurveFitter"), getOptimizedParameterPositions ("LightResponseCurveFitter"), optimLRCOnAdjustedPrior ("LightResponseCurveFitter"), isParameterInBounds ("LightResponseCurveFitter"), optimLRC ("LightResponseCurveFitter"), computeCost ("LightResponseCurveFitter"), predictLRC ("LightResponseCurveFitter"), computeLRCGradient ("LightResponseCurveFitter")

Author(s)

TW

__RectangularLRCFitterCVersion__

Description

Constructs an instance of class __RectangularLRCFitterCVersion-class__

Usage

RectangularLRCFitterCVersion(...)

Arguments

...

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

__RectangularLRCFitterCVersion-class__

Class "RectangularLRCFitterCVersion"

Description

Common rectangular hyperbolic light-response curve fitting, implemented with faster C-based cost function.

Extends

Class "RectangularLRCFitter", directly. Class "LightResponseCurveFitter", by class "RectangularLRCFitter", distance 2.

All reference classes extend and inherit methods from "envRefClass".
Methods

computeCost(thetaOpt, theta, iOpt, flux, sdFlux, parameterPrior, sdParameterPrior, ..., VPD0, fixVPD):

The following methods are inherited (from the corresponding class): computeCost("LightResponseCurveFitter"), computeLRCGradient("LightResponseCurveFitter"), predictGPP("RectangularLRCFitter"), predictLRC("LightResponseCurveFitter"), optimLRC("LightResponseCurveFitter"), isParameterInBounds("LightResponseCurveFitter"), optimLRCOnAdjustedPrior("LightResponseCurveFitter"), getOptimizedParameterPositions("LightResponseCurveFitter"), optimLRCBounds("LightResponseCurveFitter"), getParameterInitials("LightResponseCurveFitter"), getPriorScale("LightResponseCurveFitter"), getPriorLocation("LightResponseCurveFitter"), fitLRC("LightResponseCurveFitter"), getParameterNames("LightResponseCurveFitter"), predictGPP("LightResponseCurveFitter"), computeGPPGradient("RectangularLRCFitter")

RectangularLRCFitter_predictGPP

RectangularLRCFitter predictGPP

Description

Rectangular hyperbolic Light Response function for GPP

Usage

RectangularLRCFitter_predictGPP(Rg, Amax, alpha)

Arguments

Rg ppfd [numeric] -> photosynthetic flux density [mumol / m2 / s] or Global Radiation
Amax vector of length(Rg): saturation (beta parameter) adjusted for effect of VPD for each line of Rg
alpha numeric scalar or vector of length(Rg): alpha parameter: slope at Rg = 0

Value

numeric vector of length(Rg) of GPP

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
renameVariablesInDataframe

Description

Rename the column names of a data.frame according to a given mapping

Usage

renameVariablesInDataframe(data.F, mapping = getBGC05ToAmerifluxVariableNameMapping())

Arguments

data.F data.frame whose columns should be renamed

mapping named character vector: specifying a renaming (name -> value) of the variables, see e.g. getAmerifluxToBGC05VariableNameMapping

See Also

LightResponseCurveFitter_predictGPP

REddyProc_defaultunits

Get the default units for given variables

Description

Get the default units for given variables

Usage

REddyProc_defaultunits(variable_names)

Arguments

variable_names string vector of variables to query units for

Value

string vector with units, NA for non-standard variables.
Description

Computing residual sum of squares for predictions vs. data of NEE implemented in C

Usage

```r
RHLightResponseCostC(theta, flux, sdFlux, parameterPrior, sdParameterPrior, Rg, VPD, Temp, VPD0, fixVPD)
```

Arguments

- `theta`
- `flux`
- `sdFlux`
- `parameterPrior`
- `sdParameterPrior`
- `Rg`
- `VPD`
- `Temp`
- `VPD0`
- `fixVPD`

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)
sEddyProc-class

sEddyProc

Description

create an instance of class **sEddyProc-class**

Usage

```r
sEddyProc(...)
```

Arguments

...

Author(s)

(Department for Biogeochemical Integration at MPI-BGC, Jena, Germany)

Description

R5 reference class for processing of site-level half-hourly eddy data

Extends

All reference classes extend and inherit methods from **envRefClass**.

Fields

private, not to be accessed directly:

- **sID**: Object of class character with Site ID
- **sDATA**: Object of class data.frame with (fixed) site data
- **sINFO**: Object of class list with site information
- **sLOCATION**: Object of class list with site location information
- **sTEMP**: Object of class data.frame of (temporary) result data
- **sUSTAR**: Object of class list with results from uStar Threshold estimation
Methods

Setup, import and export

\texttt{sEddyProc_initialize(ID.s, Data.F, ColNames.V.s, Col_POSIXTime.s, DTS.n, ColNamesNonNumeric.V.s, Lat_deg.n, Long_deg.n, TimeZone_h.n, ...)}

\texttt{sEddyProc_sSetLocationInfo(Lat_deg.n, Long_deg.n, TimeZone_h.n)}

\texttt{sEddyProc_sExportResults(isListColumnsExported)}

\texttt{sEddyProc_sExportData()}

\texttt{sEddyProc_sGetData()}

\texttt{uStar threshold estimation}

\texttt{sEddyProc_sEstUstarThresholdDistribution(ctrlUstarEst.l, ctrlUstarSub.l, UstarColName, NEEColName, TempColName, RgColName, ..., seasonFactor, seasonFactorsYear, nSample, probs, verbose.b)}

\texttt{sEddyProc_sEstUstarThold(UstarColName, NEEColName, TempColName, RgColName, ...)}

\texttt{sEddyProc_sPlotNEEVersusUStarForSeason(season.s, Format.s, Dir.s, UstarColName, NEEColName, TempColName, WInch, HInchSingle, ...)}

\texttt{Gapfilling}

\texttt{sEddyProc_sCalcPotRadiation(useSolartime.b)}

\texttt{sEddyProc_sMDSGapFill(Var.s, QFVar.s, QFValue.n, V1.s, T1.n, V2.s, T2.n, V3.s, T3.n, FillAll.b, Verbose.b)}

\texttt{sEddyProc_sMDSGapFillAfterUStarDistr(..., UstarThres.df, UstarSuffix.V.s)}

\texttt{sEddyProc_sMDSGapFillAfterUstar(FluxVar.s, UstarVar.s, UstarThres.df, UstarSuffix.s, FlagEntryAfterLowTurbulence.b, isFilterDayTime, swThr, RgColName, ...)}

\texttt{sEddyProc_sFillMDC(WinDays.i, Verbose.b)}

\texttt{sEddyProc_sFillLUT(WinDays.i, V1.s, T1.n, V2.s, T2.n, V3.s, T3.n, V4.s, T4.n, V5.s, T5.n, Verbose.b)}

\texttt{sEddyProc_sFillInit(Var.s, QFVar.s, QFValue.n, FillAll.b)}

\texttt{Flux partitioning}

\texttt{sEddyProc_sMRFluxPartition(FluxVar.s, QFFluxVar.s, QFFluxValue.n, TempVar.s, QFTempVar.s, QFTempValue.n, RadVar.s, Lat_deg.n, Long_deg.n, TimeZone_h.n, T_ref.n, Suffix.s, debug.l, parsE0Regression)}

\texttt{sEddyProc_sGLFluxPartition(..., debug.l, isWarnReplaceColumns)}

\texttt{Plotting}

\texttt{sEddyProc_sPlotDailySums(Var.s, VarUnc.s, Format.s, Dir.s, unit.s, ...)}

\texttt{sEddyProc_sPlotDailySumsY(Var.s, VarUnc.s, Year.i, timeFactor.n, massFactor.n, unit.s)}

\texttt{sEddyProc_sPlotHHFluxes(Var.s, QFVar.s, QFValue.n, Format.s, Dir.s)}

\texttt{sEddyProc_sPlotHHFluxesY(Var.s, QFVar.s, QFValue.n, Year.i)}

\texttt{sEddyProc_sPlotDiurnalCycle(Var.s, QFVar.s, QFValue.n, Format.s, Dir.s)}

\texttt{sEddyProc_sPlotFingerprint(Var.s, QFVar.s, QFValue.n, Format.s, Dir.s, ...)}

\texttt{sEddyProc_sPlotFingerprintY(Var.s, QFVar.s, QFValue.n, Year.i, Legend.b, Col.V, valueLimits)}
sEddyProc_initialize

Note
for examples see *useCase vignette*

Author(s)
AM, TW

Description

Initializing sEddyProc class during `sEddyProc$new`.

Usage

```r
sEddyProc\_initialize(ID = ID.s, Data = Data.F, 
ColNames = c("NEE", "Rg", "Tair", "VPD", 
"Ustar"), ColPOSIXTime = "DateTime", 
DTS = if (!missing(DTS.n)) DTS.n else 48, 
ColNamesNonNumeric = character(0), LatDeg = NA\_real\_, 
LongDeg = if (!missing(Long\_deg.n)) Long\_deg.n else NA\_real\_, 
TimeZoneHour = if (!missing(TimeZone\_h.n)) TimeZone\_h.n else NA\_integer\_, 
ID.s, Data.F, ColNames.V.s, ColPOSIXTime.s, 
DTS.n, ColNamesNonNumeric.V.s, Lat\_deg.n, 
Long\_deg.n, TimeZone\_h.n, ...)```

**Arguments**

- **ID** String with site ID
- **Data** Data frame with at least three month of (half-)hourly site-level eddy data
- **ColNames** Vector with selected column names, the fewer columns the faster the processing. The default specifies column names assumed in further processing.
- **ColPOSIXTime** Column name with POSIX time stamp
- **DTS** Daily time steps
- **ColNamesNonNumeric** Names of columns that should not be checked for numeric type, e.g. season column
- **LatDeg** Latitude in (decimal) degrees (-90 to +90)
- **LongDeg** Longitude in (decimal) degrees (-180 to + 180)
- **TimeZoneHour** Time zone: hours shift to UTC, e.g. 1 for Berlin
- **ID.s** deprecated
- **Data.F** deprecated
- **ColNames.V.s** deprecated
sEddyProc_initialize

ColPOSIXTime.s deprecated
DTS.n deprecated
ColNamesNonNumeric.V.s deprecated
Lat_deg.n deprecated
Long_deg.n deprecated
TimeZone_h.n deprecated
...
(’...’ required for initialization of class fields)

Details

The time stamp must be provided in POSIX format, see also fConvertTimeToPosix. For required properties of the time series, see fCheckHHTimeSeries.

Internally the half-hour time stamp is shifted to the middle of the measurement period (minus 15 minutes or 30 minutes).

All other columns may only contain numeric data. Please use NA as a gap flag for missing data or low quality data not to be used in the processing. The columns are also checked for plausibility with warnings if outside range.

There are several fields initialized within the class.

sID is a string for the site ID.

sDATA is a data frame with site data.

sTEMP is a temporary data frame with the processing results.

sINFO is a list containing the time series information:

DIMS Number of data rows
DTS Number of daily time steps (24 or 48)
Y.START Starting year
Y.END Ending year
Y.NUMS Number of years
Y.NAME Name for years

sUSTAR_SCEN a data frame with first column the season, and other columns different uStar threshold estimates, as returned by usGetAnnualSeasonUStarMap

sLOCATION is a list of information on site location and timezone (see sEddyProc_sSetLocationInfo).

sTEMP is a data frame used only temporally.

Value

Initialized fields of sEddyProc.
**Author(s)**

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

---

**Description**

apply a function with changing the suffix argument

**Usage**

```r
sEddyProc_sApplyUStarScen(FUN, ..., uStarScenKeep = character(0),
 warnOnOtherErrors = FALSE, uStarSuffixes = .self$sGetUstarSuffixes())
```

**Arguments**

- **FUN**: function to be applied
- **...**: further arguments to FUN
- **uStarScenKeep**: Scalar string specifying the scenario for which to keep parameters. If not specified defaults to the first entry in `uStarSuffixes`.
- **warnOnOtherErrors**: Set to only display a warning on errors in `uStarScenarios` other than `uStarScenKeep` instead of stopping.
- **uStarSuffixes**

**Details**

When repeating computations, some of the output variables maybe replaced. Argument `uStarKeep` allows to select the scenario which is computed last, and hence to which output columns refer to.
sEddyProc_sCalcPotRadiation

Description
compute potential radiation from position and time

Usage
sEddyProc_sCalcPotRadiation(useSolartime = TRUE, useSolartime.b)

Arguments
useSolartime
useSolartime.b by default corrects hour (given in local winter time)

Value
column PotRad_NEW in sTEMP

Author(s)
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

sEddyProc_sEstimateUstarScenarios

Description
Estimate the distribution of u* threshold by bootstrapping over data

Usage
sEddyProc_sEstimateUstarScenarios(ctrlUstarEst = usControlUstarEst(), ctrlUstarSub = usControlUstarSubsetting(), UstarColName = "Ustar", NEEColName = "NEE", TempColName = "Tair", RgColName = "Rg", ..., seasonFactor = usCreateSeasonFactorMonth(sDATA$sDateTime), nSample = 200L, probs = c(0.05, 0.5, 0.95), isVerbose = TRUE, suppressWarningsAfterFirst = TRUE)
Arguments

ctrlUstarEst  control parameters for estimating uStar on a single binned series, see usControlUstarEst
ctrlUstarSub  control parameters for subsetting time series (number of temperature and Ustar classes ...), see usControlUstarSubsetting
UstarColName  column name for UStar
NEEColName   column name for NEE
TempColName  column name for air temperature
RgColName    column name for solar radiation for omitting night time data
...          further arguments to sEddyProc_sEstUstarThreshold
seasonFactor the number of repetitions in the bootstrap
probs        the quantiles of the bootstrap sample to return. Default is the 5%, median and 95% of the bootstrap
isVerbose    set to FALSE to omit printing progress
suppressWarningsAfterFirst  set to FALSE to show also warnings for all bootstrap estimates instead of only the first bootstrap sample

Details

The choice of the criterion for sufficiently turbulent conditions (u * > chosen threshold) introduces large uncertainties in calculations based on gap-filled Eddy data. Hence, it is good practice to compare derived quantities based on gap-filled data using a range of u * threshold estimates. This method explores the probability density of the threshold by repeating its estimation on a bootstrapped sample. By default it returns the 90% confidence interval (argument probs). For larger intervals the sample number need to be increased (argument probs).

Quality Assurance If more than ctrlUstarEst$minValidBootProp (default 40%) did not report a threshold, no quantiles (i.e. NA) are reported.

Value

updated class. Request results by sEddyProc_sGetEstimatedUstarThresholdDistribution

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

sEddyProc_sEstUstarThold, sEddyProc_sGetEstimatedUstarThresholdDistribution, sEddyProc_sSetUstarScenarios, sEddyProc_sMDSGapFillUStarScens
Description

Calling `usEstUstarThreshold` for class data and storing results

Usage

```r
sEddyProc_sEstUstarThold(UstarColName = "Ustar",
NEEColName = "NEE", TempColName = "Tair",
RgColName = "Rg", ..., seasonFactor = usCreateSeasonFactorMonth(sDATA$sDateTime))
```

Arguments

- `UstarColName` column name for UStar
- `NEEColName` column name for NEE
- `TempColName` column name for air temperature
- `RgColName` column name for solar radiation for omitting night time data
- `...` further arguments to `usEstUstarThreshold`
- `seasonFactor`

Value

result component `uStarTh` of `usEstUstarThreshold`. In addition the result is stored in class variable `sUSTAR_DETAILS`.

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Description

Calling \texttt{usEstUstarThreshold} for class data and storing results

Usage

\begin{verbatim}
sEddyProc_sEstUstarThreshold(UstarColName = "Ustar",
       NEEColName = "NEE", TempColName = "Tair",
       RgColName = "Rg", ..., isWarnDeprecated = TRUE)
\end{verbatim}

Arguments

- \texttt{UstarColName} column name for UStar
- \texttt{NEEColName} column name for NEE
- \texttt{TempColName} column name for air temperature
- \texttt{RgColName} column name for solar radiation for omitting night time data
- ... further arguments to \texttt{usEstUstarThreshold}
- \texttt{isWarnDeprecated} set to FALSE to avoid deprecated warning.

Value

result of \texttt{usEstUstarThreshold}. In addition the result is stored in class variable \texttt{sUSTARDETAILS} and the bins as additional columns to \texttt{sTemp}

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Description

Estimate the distribution of $u^*$ threshold by bootstrapping over data

Usage

sEddyProc_sEstUstarThresholdDistribution(...)

Arguments

... further parameters to sEddyProc_sEstimateUstarScenarios

Details

This method returns the results directly, without modifying the class. It is there for portability reasons. Recommended is using method sEddyProc_sEstimateUstarScenarios to update the class and then getting the results from the class by sEddyProc_sGetEstimatedUstarThresholdDistribution.

Value

result of sEddyProc_sGetEstimatedUstarThresholdDistribution

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Export class internal sDATA data frame

Usage

sEddyProc_sExportData()
sEddyProc_sExportResults

Description

Export class internal sTEMP data frame with result columns.

Usage

sEddyProc_sExportResults(isListColumnsExported = FALSE)

Arguments

isListColumnsExported

if TRUE export list columns in addition to numeric columns, such as the covariance matrices of the the day-time-partitioning LRC fits.

Value

Return data frame sTEMP with results.

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
sEddyProc_sFillInit

**Description**

Initializes data frame sTEMP for newly generated gap filled data and qualifiers.

**Usage**

sEddyProc_sFillInit(Var.s, QFVar.s = "none", QFValue.n = NA_real_, FillAll.b = TRUE)

**Arguments**

- **Var.s**: Variable to be filled
- **QFVar.s**: Quality flag of variable to be filled
- **QFValue.n**: Value of quality flag for _good_ (original) data, other data is set to missing
- **FillAll.b**: Fill all values to estimate uncertainties

**Details**

Description of newly generated variables with gap filled data and qualifiers:

- **VAR_orig**: Original values used for gap filling
- **VAR_f**: Original values and gaps filled with mean of selected datapoints (condition depending on gap filling method)
- **VAR_fqc**: Quality flag assigned depending on gap filling method and window length (0 = original data, 1 = most reliable, 2 = medium, 3 = least reliable)
- **VAR_fall**: All values considered as gaps (for uncertainty estimates)
- **VAR_fall_qc**: Quality flag assigned depending on gap filling method and window length (1 = most reliable, 2 = medium, 3 = least reliable)
- **VAR_fnum**: Number of datapoints used for gap-filling
- **VAR_fsd**: Standard deviation of datapoints used for gap filling (uncertainty)
- **VAR_fmeth**: Method used for gap filling (1 = similar meteo condition (sFillLUT with Rg, VPD, Tair), 2 = similar meteo (sFillLUT with Rg only), 3 = mean diurnal course (sFillMDC))
- **VAR_fwin**: Full window length used for gap filling

Long gaps (larger than 60 days) are not filled.

**Author(s)**

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Description

Look-Up Table (LUT) algorithm of up to five conditions within prescribed window size

Usage

```
sEddyProc_sFillLUT(WinDays.i, V1.s = "none", T1.n = NA_real_, V2.s = "none", T2.n = NA_real_, V3.s = "none", T3.n = NA_real_, V4.s = "none", T4.n = NA_real_, V5.s = "none", T5.n = NA_real_, Verbose.b = TRUE)
```

Arguments

- `WinDays.i` - Window size for filling in days
- `V1.s` - Condition variable 1
- `T1.n` - Tolerance interval 1
- `V2.s` - Condition variable 2
- `T2.n` - Tolerance interval 2
- `V3.s` - Condition variable 3
- `T3.n` - Tolerance interval 3
- `V4.s` - Condition variable 4
- `T4.n` - Tolerance interval 4
- `V5.s` - Condition variable 5
- `T5.n` - Tolerance interval 5
- `Verbose.b` - Print status information to screen

Details

**Quality flags**

- 1: at least one variable and \( n\text{Day} \leq 14 \)
- 2: three variables and \( n\text{Day} \in [14,56) \) or one variable and \( n\text{Day} \in [14,28) \)
- 3: three variables and \( n\text{Day} > 56 \) or one variable and \( n\text{Day} > 28 \)

**Value**

LUT filling results in `sTEMP` data frame.
Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Mean Diurnal Course (MDC) algorithm based on average values within +/- one hour of adjacent days

Usage

sEddyProc_sFillMDC(WinDays.i, Verbose.b = TRUE)

Arguments

WinDays.i Window size for filling in days
Verbose.b Print status information to screen

Details

Quality flag

• 1: nDay <= 1
• 2: nDay [2.5)
• 3: nDay > 5

Value

MDC filling results in sTEMP data frame.

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
sEddyProc_sFillVPDFromDew

Estimate VPD from daily minimum temperature

Description

of the data in the class function using estimate_vpd_from_dew.

Usage

sEddyProc_sFillVPDFromDew(...)

Arguments

... further arguments to estimate_vpd_from_dew

Value

side effect of updated column VPDfromDew in class

sEddyProc_sGetData  sEddyProc sGetData

Description

Get class internal sDATA data frame

Usage

sEddyProc_sGetData()

Value

Return data frame sDATA.

Author(s)

AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-
help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Re-
ichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de>
[aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-
jena.mpg.de> [aut], Kerstin Sickle <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut
<sigut.l@czechglobe.cz> [ctb]
Description

return the results of \texttt{sEddyProc\_sEstimateUstarScenarios}

Usage

\texttt{sEddyProc\_sGetEstimatedUstarThresholdDistribution()}

Value

A data.frame with columns \texttt{aggregationMode}, \texttt{year}, and \texttt{UStar} estimate based on the non-resampled data. The other columns correspond to the quantiles of \texttt{Ustar} estimate for given probabilities (argument \texttt{probs}) based on the distribution of estimates using resampled the data.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany \texttt{<REddyProc-help@bgc-jena.mpg.de>} [cph], Thomas Wutzler \texttt{<twutz@bgc-jena.mpg.de>} [aut, cre], Markus Reichstein \texttt{<mreichstein@bgc-jena.mpg.de>} [aut], Antje Maria Moffat \texttt{<antje.moffat@bgc.mpg.de>} [aut, trl], Olaf Menzer \texttt{<omenzer@bgc-jena.mpg.de>} [ctb], Mirco Migliavacca \texttt{<mmiglia@bgc-jena.mpg.de>} [aut], Kerstin Sickel \texttt{<ksickel@bgc-jena.mpg.de>} [ctb, trl], Ladislav \texttt{<U+0160igut@czechglobe.cz>} [ctb]

See Also

\texttt{sEddyProc\_sSetUstarScenarios}

Description

get the current uStar processing scenarios

Usage

\texttt{sEddyProc\_sGetUstarScenarios()}

Details

the associated suffixes can be retrieved by \texttt{colnames(myClass\$sGetUstarScenarios())[-1]}
Value

a data.frame with first column listing each season and other column a scenario of uStar thresholds.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

sEddyProc_sSetUstarScenarios

---

sEddyProc_sGetUstarSuffixes

**Description**

get the current uStar suffixes

**Usage**

sEddyProc_sGetUstarSuffixes()

**Value**

a character vector of suffixes. If no uStar thresholds have been estimated, returns character(0)

**Author(s)**

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

sEddyProc_sSetUstarScenarios
**sEddyProc_sGLFluxPartition**

**Description**
Daytime-based Flux partitioning after Lasslop et al. (2010)

**Usage**
```r
sEddyProc_sGLFluxPartition(..., debug = list(useLocaltime = FALSE),
 debug.l, isWarnReplaceColumns = TRUE)
```

**Arguments**
- `...`: arguments to `partitionNEEGL` in addition to the dataset such as suffix
- `debug`: List with debugging control.
  - `useLocaltime`: if TRUE use local time zone instead of geo-solar time to compute potential radiation
- `debug.l`, `isWarnReplaceColumns`: deprecated, renamed to `debug`
  - `isWarnReplaceColumns`: set to FALSE to avoid the warning on replacing output columns

**Details**
Daytime-based partitioning of measured net ecosystem fluxes into gross primary production (GPP) and ecosystem respiration (Reco)

**Value**
Flux partitioning results are in `sTEMP` data frame of the class.

**Author(s)**
- MM, TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph],
- Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre],
- Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut],
- Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl],
- Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb],
- Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut],
- Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl],
- Ladislav <sigut.l@czechglobe.cz> [ctb]

**References**
Flux partitioning after Lasslop et al. (2010)

Usage

sEddyProc_sGLFluxPartitionUStarScens(...,
   uStarScenKeep = suffixes[1], isWarnReplaceColumns = FALSE,
   warnOnOtherErrors = FALSE, controlGLPart = partGLControl())

Arguments

... arguments to sEddyProc_sGLFluxPartition
uStarScenKeep Scalar string specifying the scenario for which to keep parameters (see sEddyProc_sApplyUStarScen).
   Defaults to the first scenario, which is usually the uStar without bootstrap: "uStar".

isWarnReplaceColumns
   overriding default to avoid the warning on replacing output columns, because
   this is intended when processing several uStar scenarios.

warnOnOtherErrors
   Set to TRUE to only display a warning on errors in uStarScenarios other than
   uStarScenKeep instead of stopping.

controlGLPart further default parameters

Details

Daytime-based partitioning of measured net ecosystem fluxes into gross primary production (GPP) and ecosystem respiration (Reco) for all u* threshold scenarios.

For the uStarScenKeep, a full set of output columns is returned. For the other scenarios, the bootstrap of GPP uncertainty is omitted and columns "FP_<x>" are overridden.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.1@czechglobe.cz> [ctb]
**Description**

MDS gap filling algorithm adapted after the PV-Wave code and paper by Markus Reichstein.

**Usage**

```r
sEddyProc_sMDGapFill(Var = Var.s, QFVar = if (!missing(QFVar.s)) QFVar.s else "none",
 QFValue = if (!missing(QFValue.n)) QFValue.n else NA_real_,
 V1 = if (!missing(V1.s)) V1.s else "Rg",
 T1 = if (!missing(T1.n)) T1.n else 50,
 V2 = if (!missing(V2.s)) V2.s else "VPD",
 T2 = if (!missing(T2.n)) T2.n else 5,
 V3 = if (!missing(V3.s)) V3.s else "Tair",
 T3 = if (!missing(T3.n)) T3.n else 2.5,
 FillAll = if (!missing(FillAll.b)) FillAll.b else TRUE,
 isVerbose = if (!missing(Verbose.b)) Verbose.b else TRUE,
 suffix = if (!missing(Suffix.s)) Suffix.s else "",
 minNWarnRunLength = if (Var == "NEE") 4 * .self$sINFO$DTS/24 else NA_integer_,
 Var.s, QFVar.s, QFValue.n, V1.s, T1.n,
 V2.s, T2.n, V3.s, T3.n, FillAll.b, Verbose.b,
 Suffix.s)
```

**Arguments**

- **Var**  
  Variable to be filled
- **QFVar**  
  QF variable
- **QFValue**  
  QF value
- **V1**  
  Condition variable 1 (default: Global radiation 'Rg' in W m-2)
- **T1**  
  Tolerance interval 1 (default: 50 W m-2)
- **V2**  
  Condition variable 2 (default: Vapour pressure deficit 'VPD' in hPa)
- **T2**  
  Tolerance interval 2 (default: 5 hPa)
- **V3**  
  Condition variable 3 (default: Air temperature 'Tair' in degC)
- **T3**  
  Tolerance interval 3 (default: 2.5 degC)
- **FillAll**  
  Fill all values to estimate uncertainties
- **isVerbose**  
  Print status information to screen
- **suffix**  
  String suffix needed for different processing setups on the same dataset (for explanations see below)
minNWarnRunLength
scalar integer: warn if number of subsequent numerically equal values exceeds
this number. Set to Inf or NA for no warnings. defaults for "NEE" to records
across 4 hours and no warning for others.

Var.s deprecated
QFVar.s deprecated
QFValue.n deprecated
V1.s deprecated
T1.n deprecated
V2.s deprecated
T2.n deprecated
V3.s deprecated
T3.n deprecated
FillAll.b deprecated
Verbose.b deprecated
Suffix.s deprecated

Details
Initialize temporal data frame sTEMP for newly generated gap filled data and qualifiers, see sEddyProc_sFillInit
for explanations on suffixes.

Runs of numerically equal numbers hint to problems of the data and cause unreasonable estimates
of uncertainty. This routine warns the user.

MDS gap filling algorithm calls the subroutines Look Up Table sEddyProc_sFillLUT and Mean
Diurnal Course sEddyProc_sFillMDC with different window sizes as described in the reference.
To run dataset only with MDC algorithm sEddyProc_sFillMDC, set condition variable V1 to 'none'.

Different processing setups on the same dataset Attention: When processing the same site data
set with different setups for the gap filling or flux partitioning (e.g. due to different ustar
filters), a string suffix is needed! This suffix is added to the result column names to distinguish
the results of the different setups.

Value
Gap filling results in sTEMP data frame (with renamed columns).

Author(s)
AMM, TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-
help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Re-
ishstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de>
[aut, trl], Olaf Menzer <omenz@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-
jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut
<sigut.l@czechglobe.cz> [ctb]
References

Description
sEddyProc_sMDSGapFillAfterUstar - MDS gap filling algorithm after u* filtering

Usage
sEddyProc_sMDSGapFillAfterUstar(fluxVar, uStarVar = "Ustar", uStarTh = .self$sGetUstarScenarios()[, c("season", uStarSuffix), drop = FALSE], uStarSuffix = "uStar", isFlagEntryAfterLowTurbulence = FALSE, isFilterDayTime = FALSE, swThr = 10, RgColName = "Rg", ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluxVar</td>
<td>Flux variable to gap fill after ustar filtering</td>
</tr>
<tr>
<td>uStarVar</td>
<td>Column name of friction velocity u* (ms-1), default ‘Ustar’</td>
</tr>
<tr>
<td>uStarTh</td>
<td>data.frame with first column, season names, and second column estimates of uStar Threshold. Alternatively, a single value to be used as threshold for all records. If only one value is given, it is used for all records.</td>
</tr>
<tr>
<td>uStarSuffix</td>
<td>Different suffixes required are for different u* scenarios</td>
</tr>
<tr>
<td>isFlagEntryAfterLowTurbulence</td>
<td>Set to TRUE for flagging the first entry after low turbulence as bad condition (by value of 2).</td>
</tr>
<tr>
<td>isFilterDayTime</td>
<td>Set to TRUE to also filter day-time values, default only filters night-time data</td>
</tr>
<tr>
<td>swThr</td>
<td>threshold of solar radiation below which data is marked as night time respiration.</td>
</tr>
<tr>
<td>RgColName</td>
<td>Column name of incoming short wave radiation</td>
</tr>
<tr>
<td>...</td>
<td>Other arguments passed to sEddyProc_sMDSGapFill</td>
</tr>
</tbody>
</table>

Details
Calling sEddyProc_sMDSGapFill after filtering for (provided) friction velocity u*
The u* threshold(s) are provided with argument uStarTh for filtering the conditions of low turbulence. After filtering, the data is gap filled using the MDS algorithm sEddyProc_sMDSGapFill.
With isFlagEntryAfterLowTurbulence set to TRUE, to be more conservative, in addition to the data acquired when uStar is below the threshold, the first half hour measured with good turbulence conditions after a period with low turbulence is also removed (Papale et al. 2006).
Value

Vector with quality flag from filtering (here 0: good data, 1: low turbulence, 2: first half hour after low turbulence, 3: no threshold available, 4: missing uStar value) Gap filling results are in sTEMP data frame (with renamed columns) that can be retrieved by `sEddyProc_sExportResults`.

Author(s)

AMM, TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

- `sEddyProc_sEstimateUstarScenarios` and link{sEddyProc_sEstUstarThold} for estimating the $u^*$ threshold from the data.
- `sEddyProc_sMDSGapFillUStarScens` for automated gapfilling for several scenarios of $u^*$ threshold estimates.

sEddyProc_sMDSGapFillAfterUStarDistr

sEddyProc sMDSGapFillAfterUStarDistr

Description

gapfilling for several filters of estimated friction velocity Ustar thresholds.

Usage

```
sEddyProc_sMDSGapFillAfterUStarDistr(...,
 uStarTh, uStarSuffixes = colnames(uStarTh)[-1])
```

Arguments

- `...` other arguments to `sEddyProc_sMDSGapFillAfterUstar` and `sEddyProc_sMDSGapFill` such as `fluxVar`
- `uStarTh` data.frame with first column, season names, and remaining columns different estimates of Ustar Threshold. If the data.frame has only one row, then each uStar threshold estimate is applied to the entire dataset. Entries in first column must match levels in argument `seasonFactor`
- `uStarSuffixes` String vector to distinguish result columns for different ustar values. Its length must correspond to column numbers in `UstarThres.m.n`
Details

This method is superseded by `sEddyProc_sMDGapFillUStarScens` and only there for backward portability.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany &lt;REdyProc-help@bgc-jena.mpg.de&gt; [cph], Thomas Wutzler &lt;twutz@bgc-jena.mpg.de&gt; [aut, cre], Markus Reichstein &lt;mreichstein@bgc-jena.mpg.de&gt; [aut], Antje Maria Moffat &lt;antje.moffat@bgc.mpg.de&gt; [aut, trl], Olaf Menzer &lt;omenzer@bgc-jena.mpg.de&gt; [ctb], Mirco Migliavacca &lt;mmiglia@bgc-jena.mpg.de&gt; [aut], Kerstin Sickel &lt;ksickel@bgc-jena.mpg.de&gt; [ctb, trl], Ladislav U+0160igut &lt;sigut.l@czechglobe.cz&gt; [ctb]

Description

gapfilling for several filters of estimated friction velocity Ustar thresholds.

Usage

`sEddyProc_sMDGapFillUStarScens(...)`

Arguments

... other arguments to `sEddyProc_sMDGapFillAfterUstar` and `sEddyProc_sMDGapFillUstarScens` such as `fluxVar`

Details

`sEddyProc$sMDGapFillUStarDistr: calling sEddyProc_sMDGapFillAfterUstar for several filters of friction velocity Ustar.

The scenarios need to be set before by `sEddyProc_sSetUstarScenarios` or accepting the defaults annual estimates of link(`sEddyProc_sEstimateUstarScenarios`).

Then the difference between output columns NEE_U05_f and NEE_U95_f corresponds to the uncertainty introduced by the uncertain estimate of the u* threshold.

Value

Matrix (columns correspond to u* Scenarios) with quality flag from filtering ustar (0 - good data, 1 - filtered data)

Gap filling results in sTEMP data frame (with renamed columns), that can be retrieved by `sEddyProc_sExportResults`. Each of the outputs is calculated for several u* r-estimates and distinguished by a suffix after the variable. E.g. with an an entry "U05" in uStarSuffixes in `sEddyProc_sSetUstarScenarios` the corresponding filled NEE can be found in output column "NEE_U05_f".
Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

useCase vignette

sEddyProc_sMRFluxPartition

Description

Nighttime-based partitioning of net ecosystem fluxes into gross fluxes GPP and REco

Usage

sEddyProc_sMRFluxPartition(FluxVar = if (missing(FluxVar.s)) "NEE_f" else FluxVar.s,
QFFluxVar = if (missing(QFFluxVar.s)) "NEE_fqc" else QFFluxVar.s,
QFFluxValue = if (missing(QFFluxValue.n)) 0L else QFFluxValue.n,
TempVar = if (missing(TempVar.s)) "Tair_f" else TempVar.s,
QFTempVar = if (missing(QFTempVar.s)) "Tair_fqc" else QFTempVar.s,
QFTempValue = if (missing(QFTempValue.n)) 0 else QFTempValue.n,
RadVar = if (missing(RadVar.s)) "Rg" else RadVar.s,
TRef = if (missing(T_ref.n)) 273.15 +
    15 else T_ref.n, suffix = if (missing(Suffix.s)) "" else Suffix.s,
FluxVar.s, QFFluxVar.s, QFFluxValue.n,
TempVar.s, QFTempVar.s, QFTempValue.n,
RadVar.s, T_ref.n, Suffix.s, debug.1,
debug = if (!missing(debug.1)) debug.1 else list(useLocaltime = FALSE),
parsE0Regression = list())

Arguments

FluxVar Variable name of column with original and filled net ecosystem fluxes (NEE)
QFFluxVar Quality flag of NEE variable
QFFluxValue Value of quality flag for _good_ (original) data
TempVar Filled air- or soil temperature variable (degC)
QFTempVar Quality flag of filled temperature variable
QFTempValue Value of temperature quality flag for _good_ (original) data
RadVar          Unfilled (original) radiation variable
TRef            Reference temperature in Kelvin (degK) used in fLloydTaylor for regressing Flux and Temperature
suffix          String suffix needed for different processing setups on the same dataset (for explanations see below)
FluxVar.s       deprecated
QFFluxVar.s     deprecated
QFFluxValue.n   deprecated
TempVar.s       deprecated
QFTempVar.s     deprecated
QFTempValue.n   deprecated
RadVar.s        deprecated
T_ref.n         deprecated
Suffix.s        deprecated
debug.l         deprecated
debug           List with debugging control (passed also to sEddyProc_sRegrE0fromShortTerm for providing fixedE0 = myE0).
useLocaltine    see details on solar vs local time
parsE0Regression list with further parameters passed down to sEddyProc_sRegrE0fromShortTerm and fRegrE0fromShortTerm, such as TempRange

Details

Description of newly generated variables with partitioning results:

- PotRad - Potential radiation
- FP_NEEnight - Good (original) NEE nighttime fluxes used for flux partitioning
- FP_Temp - Good (original) temperature measurements used for flux partitioning
- E_0 - Estimated temperature sensitivity
- R_ref - Estimated reference respiration
- Reco - Estimated ecosystem respiration
- GPP_f - Estimated gross primary production

Background This partitioning is based on the regression of nighttime respiration with temperature using the Lloyd-Taylor-Function fLloydTaylor. First the temperature sensitivity E_0 is estimated from short term data, see sEddyProc_sRegrE0fromShortTerm. Next the reference temperature R_ref is estimated for successive periods throughout the whole dataset (see
These estimates are then used to calculate the respiration during daytime and nighttime and with this GPP. Attention: Gap filling of the net ecosystem fluxes (NEE) and temperature measurements (Tair or Tsoil) is required prior to the partitioning!

**Selection of daytime data based on solar time** The respiration-temperature regression is very sensitive to the selection of night- and daytime data. Nighttime is selected by a combined threshold of current solar radiation and potential radiation. The current implementation calculates potential radiation based on exact solar time, based on latitude and longitude. (see \texttt{fCalcPotRadiation}) Therefore it might differ from implementations that use local winter clock time instead.

**Different processing setups on the same dataset** Attention: When processing the same site data set with different setups for the gap filling or flux partitioning (e.g. due to different ustar filters), a string suffix is needed! This suffix is added to the result column names to distinguish the results of the different setups. If a suffix is provided and if the defaults for FluxVar and QFFluxVar are used, the suffix will be added to their variable names (e.g. `NEE_f` will be renamed to `NEE_uStar_f` and `NEE_fqc` to `NEE_uStar_fqc` for the suffix = `uStar`). Currently, this works only with defaults of FluxVar = `NEE_f` and QFFluxVar = `NEE_fqc`.

**Value**

Flux partitioning results (see variables in details) in sTEMP data frame (with renamed columns). On success, return value is NULL. On failure an integer scalar error code is returned: -111 if regression of E_0 failed due to insufficient relationship in the data.

**Author(s)**

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [ctb], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

**References**

Usage

sEddyProc_sMRFluxPartitionUstarScens(...,
   uStarScenKeep = character(0))

Arguments

... arguments to sEddyProc_sMRFluxPartition
uStarScenKeep Scalar string specifying the scenario for which to keep parameters (see sEddyProc_sApplyUStarScen).

Details

Nighttime-based partitioning of measured net ecosystem fluxes into gross primary production (GPP) and ecosystem respiration (Reco) for all u* threshold scenarios.

Value

NULL, it adds output columns in the class

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Generates image in specified format (‘pdf’ or ‘png’) with daily sums, see also sEddyProc_sPlotDailySumsY.

Usage

sEddyProc_sPlotDailySums(Var = Var.s, VarUnc = "none",
   Format = if (!missing(Format.s)) Format.s else "pdf",
   Dir = if (!missing(Dir.s)) Dir.s else "plots",
   unit = if (!missing(unit.s)) unit.s else "gC/m2/day",
   ..., Var.s, VarUnc.s, Format.s, Dir.s,
   unit.s)
sEddyProc_sPlotDailySumsY

**sEddyProc_sPlotDailySumsY - Plot daily sum of specified year**

**Description**

The daily sums for a single year are plotted to the current device, scaled to all data. The daily sums are only calculated for days with complete data. This function first computes the average flux for each day. If the original unit is not "per day", then it need to be converted to "per day" by argument `timeFactor`. Furthermore, a change of the mass unit is provided by argument `massFactor`. The default parameters assume original units of mumol CO2 / m2 / second and convert to gC / m2 / day. The conversion factors allow plotting variables with different units.

**Usage**

```r
sEddyProc_sPlotDailySumsY(Var = Var.s, VarUnc = "none",
Year = Year.i, timeFactor = if (!missing(timeFactor.n)) timeFactor.n else 3600 *
24, massFactor = if (!missing(massFactor.n)) massFactor.n else (44.0096/1e+06) *
(12.011/44.0096), unit = if (!missing(unit.s)) unit.s else "gC/m2/day",
data = cbind(sDATA, sTEMP), dts = sINFO$DTS,
Var.s, VarUnc.s, Year.i, timeFactor.n,
massFactor.n, unit.s)
```

**Arguments**

- **Var** (Filled) variable to plot
- **VarUnc** Uncertainty estimates for variable
- **Format** Graphics file format ("pdf" or "png")
- **Dir** Directory for plotting
- **unit** unit of the daily sums
- Further arguments to `sEddyProc_sPlotDailySumsY`, such as `timeFactor` and `massFactor`.
- **Var.s** deprecated
- **VarUnc.s** deprecated
- **Format.s** deprecated
- **Dir.s** deprecated
- **unit.s** deprecated

**Author(s)**

KS, AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany < REddyProc-help@bgc-jena.mpg.de > [cph], Thomas Wutzler < twutz@bgc-jena.mpg.de > [aut, cre], Markus Reichstein < mreichstein@bgc-jena.mpg.de > [aut], Antje Maria Moffat < antje.moffat@bgc.mpg.de > [aut, trl], Olaf Menzer < omenzer@bgc-jena.mpg.de > [ctb], Mirco Migliavacca < mmiglia@bgc-jena.mpg.de > [aut], Kerstin Sickel < ksickel@bgc-jena.mpg.de > [ctb, trl], Ladislav < U+0160 igut < sigut.l@czechglobe.cz > [ctb]

---

**sEddyProc_sPlotDailySumsY**

**sEddyProc_sPlotDailySumsY - Plot daily sum of specified year**

**Description**

The daily sums for a single year are plotted to the current device, scaled to all data. The daily sums are only calculated for days with complete data. This function first computes the average flux for each day. If the original unit is not "per day", then it need to be converted to "per day" by argument `timeFactor`. Furthermore, a change of the mass unit is provided by argument `massFactor`. The default parameters assume original units of mumol CO2 / m2 / second and convert to gC / m2 / day. The conversion factors allow plotting variables with different units.

**Usage**

```r
sEddyProc_sPlotDailySumsY(Var = Var.s, VarUnc = "none",
Year = Year.i, timeFactor = if (!missing(timeFactor.n)) timeFactor.n else 3600 *
24, massFactor = if (!missing(massFactor.n)) massFactor.n else (44.0096/1e+06) *
(12.011/44.0096), unit = if (!missing(unit.s)) unit.s else "gC/m2/day",
data = cbind(sDATA, sTEMP), dts = sINFO$DTS,
Var.s, VarUnc.s, Year.i, timeFactor.n,
massFactor.n, unit.s)
```

**Arguments**

- **Var** (Filled) variable to plot
- **VarUnc** Uncertainty estimates for variable
- **Format** Graphics file format ("pdf" or "png")
- **Dir** Directory for plotting
- **unit** unit of the daily sums
- Further arguments to `sEddyProc_sPlotDailySumsY`, such as `timeFactor` and `massFactor`.
- **Var.s** deprecated
- **VarUnc.s** deprecated
- **Format.s** deprecated
- **Dir.s** deprecated
- **unit.s** deprecated

**Author(s)**

KS, AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany < REddyProc-help@bgc-jena.mpg.de > [cph], Thomas Wutzler < twutz@bgc-jena.mpg.de > [aut, cre], Markus Reichstein < mreichstein@bgc-jena.mpg.de > [aut], Antje Maria Moffat < antje.moffat@bgc.mpg.de > [aut, trl], Olaf Menzer < omenzer@bgc-jena.mpg.de > [ctb], Mirco Migliavacca < mmiglia@bgc-jena.mpg.de > [aut], Kerstin Sickel < ksickel@bgc-jena.mpg.de > [ctb, trl], Ladislav < U+0160 igut < sigut.l@czechglobe.cz > [ctb]
Arguments

Var (Filled) variable to plot
VarUnc Uncertainty estimates for variable
Year Year to plot
timeFactor time conversion factor with default per second to per day
massFactor mass conversion factor with default from mumol CO2 to g C
unit unit of the daily sums
data data.frame with variables to plot
dts numeric integer
Var.s
VarUnc.s
Year.i
timeFactor.n
massFactor.n
unit.s

Author(s)

AMM, KS Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

Generates image in specified format ('pdf' or 'png') with diurnal cycles.

Usage

```r
sEddyProc_sPlotDiurnalCycle(Var = Var.s,
QFVar = if (!missing(QFVar.s)) QFVar.s else "none",
QFValue = if (!missing(QFValue.n)) QFValue.n else NA_real_,
Format = if (!missing(Format.s)) Format.s else "pdf",
Dir = if (!missing(Dir.s)) Dir.s else "plots",
data = cbind(sDATA, sTEMP), dts = sINFO$DTS,
Var.s, QFVar.s, QFValue.n, Format.s,
Dir.s)
```
Arguments

Var          Variable to plot
QFVar        Quality flag of variable to be filled
QFValue      Value of quality flag for data to plot
Format       Graphics file format (e.g. 'pdf', 'png')
Dir          Directory for plotting
data          data.frame with variables to plot
dts           numeric integer
Var.s        deprecated
QFVar.s      deprecated
QFValue.n    deprecated
Format.s     deprecated
Dir.s        deprecated

Author(s)

KS, AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-
help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Re-
ichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mp.de>
[aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-
jen.a.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut
<sigut.l@czechglobe.cz> [ctb]

sEddyProc_sPlotFingerprint
sEddyProc_sPlotFingerprint

Description

Generates fingerprint in file

Usage

sEddyProc_sPlotFingerprint(Var = Var.s, QFVar = "none", QFValue = if (!missing(QFValue.n)) QFValue.n else NA_real_, Format = if (!missing(Format.s)) Format.s else "pdf", Dir = if (!missing(Dir.s)) Dir.s else "plots", ..., Var.s, QFVar.s = "none", QFValue.n = NA_real_, Format.s = "pdf", Dir.s = "plots")
sEddyProc_sPlotFingerprintY

Arguments

Var          Variable to plot
QFVar        Quality flag of variable to be filled
QFValue      Value of quality flag for data to plot
Dir          Directory for plotting
...          further arguments to sEddyProc_sPlotFingerprintY
Var.s        Variable to plot
QFVar.s      Quality flag of variable to be filled
QFValue.n    Value of quality flag for data to plot
Format.s     Graphics file format (e.g. ‘pdf’, ‘png’)
Dir.s        Directory for plotting

Author(s)

KS, AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-
help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Re-
ichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de>
[aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-
jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut
<sigut.l@czechglobe.cz> [ctb]

Description

Plot fingerprint for a single year scaled to all data.

Usage

sEddyProc_sPlotFingerprintY(Var = Var.s,
  QFVar = "none", QFValue = if (!missing(QFValue.n)) QFValue.n else NA_real_,
  Year = Year.i, onlyLegend = if (!missing(Legend.b)) Legend.b else F,
  colors = if (!missing(Col.V)) Col.V else colorRampPalette(c("#00007F",
    "blue", 
    
    "yellow", 
    "red", 
    
    numeric(50),
    valueLimits = range(Plot.V.n, na.rm = TRUE),
    data = cbind(sDATA, sTEMP), dts = sINFO$DTS,
  )
  )

sEddyProc_sPlotFingerprintY
sEddyProc sPlotFingerprintY
**sEddyProc_sPlotHHFluxes**

**Arguments**

- **Var**: Variable to plot
- **QFVar**: Year to plot
- **QFValue**: Year to plot
- **onlyLegend**: Plot only legend
- **colors**: Color palette for fingerprint plot (can be also defined by user), i.e. color scale argument to `image`
- **valueLimits**: values outside this range will be set to the range borders to avoid distorting colour scale e.g. `valueLimits = quantile(EddyProc.C$sDATA$NEE, prob = c(0.05, 0.95), na.rm = TRUE)`
- **data**: data.frame with variables to plot
- **dts**: numeric integer of hours in day
- **Var.s**: deprecated
- **QFVar.s**: deprecated
- **QFValue.n**: deprecated
- **Year.i**: deprecated
- **Legend.b**: deprecated
- **Col.V**: deprecated

**Author(s)**

AMM, KS, TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <reichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <sigut.L@czechglobe.cz> [ctb]

**sEddyProc_sPlotHHFluxes**

**sEddyProc sPlotHHFluxes**

**Description**

Produce image-plot with half-hourly fluxes for each year

**Usage**

```r
sEddyProc_sPlotHHFluxes(Var = Var.s, QFVar = if (!missing(QFVar.s)) QFVar.s else "none", QFValue = if (!missing(QFValue.n)) QFValue.n else NA_real_, Format = if (!missing(Format.s)) Format.s else "pdf", Dir = if (!missing(Dir.s)) Dir.s else "plots", Var.s, QFVar.s, QFValue.n, Format.s, Dir.s)
```
**Arguments**

- **Var**: Variable to plot
- **QFVar**: Quality flag of variable to be filled
- **QFValue**: Value of quality flag for data to plot
- **Format**: Graphics file format (e.g. ‘pdf’, ‘png’)
- **Dir**: Directory for plotting

**Details**

Generates image in specified format (‘pdf’ or ‘png’) with half-hourly fluxes and their daily means, see also `sEddyProc_sPlotHHFluxesY`.

**Author(s)**

KS, AMM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

---

**Description**

Plot half-hourly fluxes for a single year scaled to all data.

**Usage**

```r
sEddyProc_sPlotHHFluxesY(Var = Var.s, QFVar = if (!missing(QFVar.s)) QFVar.s else "none", QFValue = if (!missing(QFValue.n)) QFValue.n else NA_real_, Year = Year.i, data = cbind(sDATA, sTEMP), dts = sINFO$DTS, Var.s, QFVar.s, QFValue.n, Year.i)
```
sEddyProc_sPlotNEEVersusUStarForSeason

Description

Generates image in specified format (`'pdf'` or `'png'`)

Usage

```r
sEddyProc_sPlotNEEVersusUStarForSeason(
 season = levels(data$season)[1],
 format = "pdf", dir = "plots", UstarColName = "Ustar",
 NEEColName = "NEE", TempColName = "Tair",
 WINch = 16 * 0.394, HITinchSingle = 6 * 0.394, ..., data = cbind(sDATA, sTEMP,
 sUSTAR_DETAILS$bins[, c("uStarBin", "tempBin")])
)```
Arguments

- **season**: string of season, i.e. time period to plot
- **format**: string of Graphics file format (‘pdf’ or ‘png’)
- **dir**: string of Directory for plotting
- **UstarColName**: column name for UStar
- **NEEColName**: column name for NEE
- **TempColName**: column name for air temperature
- **WInch**: width of the plot in inches, defaults to 16cm
- **HInchSingle**: height of a subplot in inches, defaults to 6cm
- **...**: other arguments to .plotNEEVersusUStarTempClass, such as xlab and ylab axis label strings

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

Description

set Location and time Zone information to sLOCATION

Usage

```r
sEddyProc_sSetLocationInfo(LatDeg = if (!missing(Lat_deg.n)) Lat_deg.n else NA_real_,
LongDeg = if (!missing(Long_deg.n)) Long_deg.n else NA_real_,
TimeZoneHour = if (!missing(TimeZone_h.n)) TimeZone_h.n else NA_integer_,
Lat_deg.n, Long_deg.n, TimeZone_h.n)
```

Arguments

- **LatDeg**: Latitude in (decimal) degrees (-90 to + 90)
- **LongDeg**: Longitude in (decimal) degrees (-180 to + 180)
- **TimeZoneHour**: Time zone: hours shift to UTC, e.g. 1 for Berlin
- **Lat_deg.n**, **Long_deg.n**, **TimeZone_h.n**: deprecated
sEddyProc_sSetUstarScenarios

Description

set uStar processing scenarios

Usage

sEddyProc_sSetUstarScenarios(uStarTh, uStarSuffixes = colnames(uStarTh)[-1])

Arguments

uStarTh data.frame as returned by usGetAnnualSeasonUStarMap or usGetSeasonalSeasonUStarMap: First column, season names, and remaining columns different estimates of uStar Threshold. If uStarTh has only one row, then each uStar threshold estimate is applied to the entire dataset. Entries in first column must match levels in argument seasonFactor of sEddyProc_sEstUstarThresholdDistribution

uStarSuffixes the suffixes appended to result column names by default the column names of uStarTh unless its first season column

See Also

sEddyProc_sGetUstarScenarios
sEddyProc_sSetUStarSeasons

Description

Defining seasons for the uStar threshold estimation

Usage

```r
sEddyProc_sSetUStarSeasons(seasonFactor = usCreateSeasonFactorMonth(sDATA$sDateTime))
```

Arguments

- `seasonFactor`: factor for subsetting times with different uStar threshold (see details)

Value

class with updated `seasonFactor`

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <igut@czechglobe.cz> [ctb]

sEddyProc_sTKFluxPartition

Description

Modified daytime-based Flux partitioning after Keenan et al. (2019)

Usage

```r
sEddyProc_sTKFluxPartition(..., controlGLPart = partGLControl())
```

Arguments

- `...`: arguments to `sEddyProc_sGLFluxPartition` in addition to the dataset
- `controlGLPart`: further default parameters, such as `suffix`
Value

Flux partitioning results are in sTEMP data frame of the class.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.1@czechglobe.cz> [ctb]

\texttt{sEddyProc_sTKFluxPartitionUStarScens}

\texttt{sEddyProc sTKFluxPartitionUStarScens}

Description

Flux partitioning after Keenan et al., 2019

Usage

\texttt{sEddyProc_sTKFluxPartitionUStarScens(..., uStarScenKeep = character(0))}

Arguments

... arguments to \texttt{sEddyProc_sTKFluxPartition}

\texttt{uStarScenKeep} Scalar string specifying the scenario for which to keep parameters (see \texttt{sEddyProc_sApplyUStarScen}. Defaults to the first scenario.

Details

Daytime-based partitioning of measured net ecosystem fluxes into gross primary production (GPP) and ecosystem respiration (Reco) for all u* threshold scenarios.

Note

Currently only experimental.

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.1@czechglobe.cz> [ctb]
sEddyProc_update_ustarthreshold_columns

Add columns reporting the uStar threshold for each scenario to sDATA

Description
Add columns reporting the uStar threshold for each scenario to sDATA

Usage
sEddyProc_update_ustarthreshold_columns()

Value
side effect in .self$sDATA new columns Ustar_Thresh_<ustarsuffix>

See Also
sEddyProc_sGetUstarScenarios

sEddyProc_useAnnualUStarThresholds

sEddyProc useAnnualUStarThresholds

Description
use seasonal estimates of uStar thresholds

Usage
sEddyProc_useAnnualUStarThresholds()

Author(s)
Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also
sEddyProc_sSetUstarScenarios, sEddyProc_useSeasonalUStarThresholds
sEddyProc_useSeasonalUStarThresholds

Description

use seasonal estimates of uStar thresholds

Usage

sEddyProc_useSeasonalUStarThresholds()

Author(s)

Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

sEddyProc_sSetUstarScenarios, sEddyProc_useAnnualUStarThresholds

usControlUstarEst

Description

Default list of parameters for determining UStar of a single binned series

Usage

usControlUstarEst(ustPlateauFwd = 10, ustPlateauBack = 6, plateauCrit = 0.95, corrCheck = 0.5, firstUStarMeanCheck = 0.2, isOmitNoThresholdBins = TRUE, isUsingCPTSeveralT = FALSE, isUsingCPT = FALSE, minValidUStarTempClassesProp = 0.2, minValidBootProp = 0.4, minNuStarPlateau = 3L)
Arguments

- `ustPlateauFwd`: number of subsequent uStar bin values to compare to in fwd mode
- `ustPlateauBack`: number of subsequent uStar bin values to compare to in back mode
- `plateauCrit`: significant differences between a uStar value and the mean of a "plateau"
- `corrCheck`: threshold value for correlation between Tair and u * data
- `firstUStarMeanCheck`: if first uStar bin average of a class is already larger than this value, the temperature class is skipped.
- `isOmitNoThresholdBins`: if TRUE, bins where no threshold was found are ignored. Set to FALSE to report highest uStar bin for these cases
- `isUsingCPTSeveralT`: set to TRUE to use change point detection without binning uStar but with additionally changed aggregation scheme for several temperature classifications
- `isUsingCPT`: set to TRUE to use change point detection without binning uStar before in usual aggregation method (good for comparing methods, but not recommended, overruled by `isUsingCPTSeveralT = TRUE`)
- `minValidUStarTempClassesProp`: seasons, in which only less than this proportion of temperature classes a threshold was detected, are excluded from aggregation
- `minValidBootProp`: minimum proportion of bootstrap samples for which a threshold was detected. Below this proportion NA quantiles are reported.
- `minNuStarPlateau`: minimum number of records in plateau, threshold must be larger than mean of this many bins

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

- `usEstUstarThresholdSingleFw2Binned`, `usControlUstarSubsetting`

Examples

- `usControlUstarEst()`
usControlUstarSubsetting

Description
Default list of parameters for subsetting the data for uStarThreshold estimation

Usage
usControlUstarSubsetting(taClasses = 7, UstarClasses = 20,
 swThr = 10, minRecordsWithinTemp = 100,
 minRecordsWithinSeason = 160, minRecordsWithinYear = 3000,
 isUsingOneBigSeasonOnFewRecords = TRUE)

Arguments
- taClasses: set number of air temperature classes
- UstarClasses: set number of Ustar classes
- swThr: nighttime data threshold for solar radiation [Wm-2]
- minRecordsWithinTemp: integer scalar: the minimum number of Records within one Temperature-class
- minRecordsWithinSeason: integer scalar: the minimum number of Records within one season
- minRecordsWithinYear: integer scalar: the minimum number of Records within one year
- isUsingOneBigSeasonOnFewRecords: boolean scalar: set to FALSE to avoid aggregating all seasons on too few records

Author(s)
TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also
usEstUstarThresholdSingleFw2Binned, usControlUstarSubsetting

Examples
usControlUstarSubsetting()
Description

Compute year-spanning Seasonfactor by starting month

Usage

```r
usCreateSeasonFactorMonth(dates, month = as.POSIXlt(dates)$mon + 
1L, year = as.POSIXlt(dates)$year + 1900L, 
startMonth = c(3, 6, 9, 12))
```

Arguments

- `dates`: POSIXct vector of length of the data set to be filled, specifying the center-time of each record
- `month`: integer (1-12) vector of length of the data set to be filled, specifying the month for each record
- `year`: integer vector of length of the data set to be filled, specifying the year
- `startMonth`: integer vector specifying the starting month for each season, counting from one. Default is (Dec, Jan, Feb)(Mar, April, May)(June, July, August), (Sept, Oct, Nov)

Details

Compute factors to denote the season for uStar-Filtering by specifying starting months, with continuous seasons spanning year boundaries. If Jan is not a starting month, then the first months of each year will be part of the last period in the year. E.g. with the default the fourth period of the first year consists of Jan, Feb, Dec.

REddyProc internally works with a timestamp 15 minutes after the start of each half hour. When providing the `dates` argument, user may shift the start time by `dates = myDataset$DateTime + 15 * 60`

Value

Integer vector length(dates), with each unique value representing one season

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]
Description

Compute year-bounded Seasonfactor by starting month

Usage

```r
usCreateSeasonFactorMonthWithinYear(dates, month = as.POSIXlt(dates)$mon + 1, year = as.POSIXlt(dates)$year + 1900, startMonth = c(3, 6, 9, 12))
```

Arguments

- **dates**: POSIXct vector of length of the data set to be filled, specifying the center-time of each record
- **month**: integer (1-12) vector of length of the data set to be filled, specifying the month for each record
- **year**: integer vector of length of the data set to be filled, specifying the year
- **startMonth**: integer vector specifying the starting month for each season, counting from one. Default is (Dez, Jan, Feb)(Mar, April, May)(June, July, August), (Sept, Oct, Nov)

Details

Calculate factors to denote the season for uStar-Filtering by specifying starting months, with seasons not spanning year boundaries. If Jan is not a starting month, then the first months of each year will be part of the last period in the year. E.g. with the default the fourth period of the first year consists of Jan, Feb, Dec.

Value

Integer vector length(dates), with each unique value representing one season

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.1@czechglobe.cz> [ctb]
Description

Compute year-spanning Seasonfactor by starting year-day

Usage

usCreateSeasonFactorYday(dates, yday = as.POSIXlt(dates)$yday + 1L, year = as.POSIXlt(dates)$year + 1900L, startYday = c(335, 60, 152, 244))

Arguments

dates POSIXct vector of length of the data set to be filled, specifying the center-time of each record

yday integer (1-366) vector of length of the data set to be filled, specifying the day of the year (1..366) for each record

year integer vector of length of the data set to be filled, specifying the year

startYday integer vector (1-366) specifying the starting yearDay for each season in increasing order

Details

With default parameterization, dates are assumed to denote begin or center of the eddy time period. If working with dates that denote the end of the period, use yday = as.POSIXlt(fGetBeginOfEddyPeriod(dates))$yday

Value

Integer vector of length nrow(ds), each unique class representing one season

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <U+0160>igut <sigut.l@czechglobe.cz> [ctb]

See Also

usCreateSeasonFactorMonth
Description

Compute year-spanning Seasonfactor by starting year and yearday

Usage

usCreateSeasonFactorYdayYear(dates, yday = as.POSIXlt(dates)$yday + 1L, year = as.POSIXlt(dates)$year + 1900L, starts)

Arguments

- **dates**: POSIXct vector of length of the data set to be filled, specifying the center-time of each record
- **yday**: integer (1-366) vector of length of the data set to be filled, specifying the day of the year (1..366) for each record
- **year**: integer vector of length of the data set to be filled, specifying the year
- **starts**: data.frame with first column specifying the starting yday (integer 1-366) and second column the year (integer e.g. 1998) for each season in increasing order

Details

With default parameterization, dates are assumed to denote begin or center of the eddy time period. If working with dates that denote the end of the period, use yday = as.POSIXlt(fGetBeginOfEddyPeriod(dates))$yday

Value

Integer vector of length nrow(ds), each unique class representing one season

Author(s)

TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav U+0160igut <sigut.l@czechglobe.cz> [ctb]

See Also

- usCreateSeasonFactorMonth
usEstUstarThreshold

| usEstUstarThreshold | usEstUstarThreshold - Estimating ustar threshold |

Description

Estimate the Ustar threshold by aggregating the estimates for seasonal and temperature subsets.

Usage

```r
usEstUstarThreshold(ds, seasonFactor = usCreateSeasonFactorMonth(ds$sDateTime),
                   yearOfSeasonFactor = usGetYearOfSeasonFactor(seasonFactor, ds$sDateTime),
                   ctrlUstarEst = usControlUstarEst(),
                   ctrlUstarSub = usControlUstarSubsetting(),
                   fEstimateUStarBinned = usEstUstarThresholdSingleFw2Binned,
                   isCleaned = FALSE, isInBootstrap = FALSE)
```

Arguments

- **ds**
 data.frame with columns "sDateTime", "Ustar", "NEE", "Tair", and "Rg"
- **seasonFactor**
 factor for subsetting times (see details)
- **yearOfSeasonFactor**
 named integer vector: for each seasonFactor level, get the year (aggregation period) that this season belongs to
- **ctrlUstarEst**
 control parameters for estimating uStar on a single binned series, see `usControlUstarEst`
- **ctrlUstarSub**
 control parameters for subsetting time series (number of temperature and Ustar classes ...), see `usControlUstarSubsetting`
- **fEstimateUStarBinned**
 function to estimate UStar on a single binned series, see `usEstUstarThresholdSingleFw2Binned`
- **isCleaned**
 set to TRUE, if the data was cleaned already, to avoid expensive call to `usGetValidUstarIndices`
- **isInBootstrap**
 set to TRUE if this is called from `sEddyProc_sEstimateUstarScenarios` to avoid further bootstraps in change-point detection

Details

The threshold for sufficiently turbulent conditions \(u^* \) (Ustar) is estimated for different subsets of the time series. From the estimates for each season (each value in seasonFactor) the maximum of all seasons of one year is reported as estimate for this year. Within each season the time series is split by temperature classes. Among these Ustar estimates, the median is reported as season value.

In order to split the seasons, the uses must provide a vector with argument `seasonFactor`. All positions with the same factor, belong to the same season. It is conveniently generated by one of the following functions:

- **usCreateSeasonFactorMonth** (default DJF-MAM-JJA-SON with December from previous to January of the year)
• `usCreateSeasonFactorMonthWithinYear` (default DJF-MAM-JJA-SON with December from the same year)
• `usCreateSeasonFactorYday` for a refined specification of season starts.
• `usCreateSeasonFactorYdayYear` for specifying different seasons season between years.

The estimation of Ustar on a single binned series can be selected argument `fEstimateUStarBinned`.

• `usEstUstarThresholdSingleFw1Binned`
• `usEstUstarThresholdSingleFw2Binned` (default)

This function is called by

• `sEddyProc_sEstUstarThold` which stores the result in the class variables (sUSTAR and sDATA).
• `sEddyProc_sEstUstarThresholdDistribution` which additionally estimates median and confidence intervals for each year by bootstrapping the original data within seasons.

For inspecting the NEE–uStar relationship plotting is provided by `sEddyProc_sPlotNEEVersusUStarForSeason` change point detection (CPT) method With specifying `ctrlUstarEst = usControlUstarEst(isUsingCPTSeveralT = TRUE)` change point detection is applied instead of the moving point test (e.g. with Fw2Binned). The sometimes sensitive binning of uStar values within a temperature class is avoided. Further, possible spurious thresholds are avoid by testing that the model with a threshold fits the data better than a model without a threshold using a likelihood ratio test. In addition, with CPT seasons are excluded where a threshold was detected in only less than `ctrlUstarEst$mminValidUStarTempClassesProp` (default 20%) of the temperature classes.

Note, that this method often gives higher estimates of the \(u^* \) threshold.

One-big-season fallback If there are too few records within one year, or when no season yielded a finite \(u^* \) Threshold estimate, then the yearly \(u^* \) Th is estimated by pooling the data from seasons within one seasonYear. The user can suppress using pooled data on few records by providing option `ctrlUstarSub$isUsingOneBigSeasonOnFewRecords = FALSE` (see `usControlUstarSubsetting`)

Value

A list with entries data.frame with columns "aggregationMode", "seasonYear", "season", "uStar" with rows for "single": the entire aggregate (median across years), "seasonYear": each year (maximum across seasons or estimate on pooled data), "season": each season (median across temperature classes)

seasonYear data.frame listing results for year with columns "seasonYear", "uStarMaxSeason" the maximum across seasonal estimates within the year, "uStarPooled" the estimate based on data pooled across the year (only calculated on few valid records or on uStarMaxSeason was nonfinite), "nRec" number of valid records (only if the pooled estimate was calculated), "uStarAggr" chosen estimate, corresponding to uStarPooled if this was calculated, or uStarMaxSeason or uStarTh across years if the former was non-finite

season data.frame listing results for each season, "nRec" the number of valid records, "uStarSeasonEst" the estimate for based on data within the season (median across temperature classes), "uStarAggr" chose estimate, corresponding to uStarSeasonEst, or the yearly seasonYear$uStarAggr, if the former was non-finite
usEstUstarThresholdSingleFw1Binned

Description

estimate the Ustar threshold for single subset, using FW1 algorithm

Usage

```
usEstUstarThresholdSingleFw1Binned(Ust_bins.f,
  ctrlUstarEst = usControlUstarEst())
```

Arguments

- `Ust_bins.f`: data.frame with columns NEE_avg and Ust_avg, of Ustar bins
- `ctrlUstarEst`: parameter list, see `usControlUstarEst` for defaults and description

Details

Relying on binned NEE and Ustar
Author(s)

TW, OM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <sigut1@czechglobe.cz> [ctb]

References

inspired by Papale 2006

Description

estimate the Ustar threshold for single subset, using FW2 algorithm

Usage

usEstUstarThresholdSingleFw2Binned(Ust_bins.f, ctrlUstarEst = usControlUstarEst())

Arguments

Ust_bins.f data.frame with column s NEE_avg and Ust_avg, of Ustar bins
ctrlUstarEst parameter list, see usControlUstarEst for defaults and description

Details

Demand that threshold is higher than ctrlUstarEst$minNuStarPlateau records. If fewer records

Author(s)

TW, OM Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav <sigut1@czechglobe.cz> [ctb]
usGetAnnualSeasonUStarMap

Description
extract mapping season -> uStar columns from Distribution result

Usage
usGetAnnualSeasonUStarMap(uStarTh)

Arguments
uStarTh result of \texttt{sEddyProc_sEstUstarThresholdDistribution} or \texttt{sEddyProc_sEstUstarThresholdSuStarThreshold}

Value
a data frame with first column the season, and other columns different uStar threshold estimates

Author(s)
TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav Šigut <sigut.1@czechglobe.cz> [ctb]

usGetSeasonalSeasonUStarMap

Description
extract mapping season -> uStar columns from Distribution result

Usage
usGetSeasonalSeasonUStarMap(uStarTh)

Arguments
uStarTh result of \texttt{sEddyProc_sEstUstarThresholdDistribution} or \texttt{sEddyProc_sEstUstarThresholdSuStarThreshold}

Value
a data frame with first column the season, and other columns different uStar threshold estimates

Author(s)
TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany <REddyProc-help@bgc-jena.mpg.de> [cph], Thomas Wutzler <twutz@bgc-jena.mpg.de> [aut, cre], Markus Reichstein <mreichstein@bgc-jena.mpg.de> [aut], Antje Maria Moffat <antje.moffat@bgc.mpg.de> [aut, trl], Olaf Menzer <omenzer@bgc-jena.mpg.de> [ctb], Mirco Migliavacca <mmiglia@bgc-jena.mpg.de> [aut], Kerstin Sickel <ksickel@bgc-jena.mpg.de> [ctb, trl], Ladislav Šigut <sigut.1@czechglobe.cz> [ctb]
Details
from result of \texttt{sEddyProc_sEstUstarThresholdDistribution}

Value
a data frame with first column the season, and other columns different uStar threshold estimates

Author(s)
TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany \texttt{<REddyProc-help@bgc-jena.mp}} \texttt{g.de>} [cph], Thomas Wutzler \texttt{<twutz@bgc-jena.mp}} \texttt{g.de>} [aut, cre], Markus Reichstein \texttt{<mreichstein@bgc-jena.mp}} \texttt{g.de>} [aut], Antje Maria Moffat \texttt{<antje.moffat@bgc.mp}} \texttt{g.de>} [aut, trl], Olaf Menzer \texttt{<omenzer@bgc-jena.mp}} \texttt{g.de>} [ctb], Mirco Migliavacca \texttt{<mmiglia@bgc-jena.mp}} \texttt{g.de>} [aut], Kerstin Sickel \texttt{<ksickel@bgc-jena.mp}} \texttt{g.de>} [ctb, trl], Ladislav \texttt{<U+0160igut@czechglobe.cz>}} [ctb]

\begin{verbatim}
usGetYearOfSeason usGetYearOfSeason
\end{verbatim}

Description
determine the year of the record of middle of seasons

Usage
\texttt{usGetYearOfSeason(seasonFactor, sDateTime.v)}

Arguments
\begin{itemize}
\item \texttt{seasonFactor} \quad factor vector of length data: for each record which season it belongs to
\item \texttt{sDateTime.v} \quad POSIX.t vector of length data: for each record: center of half-hour period (corresponding to \texttt{sDATA$sDateTime})
\end{itemize}

Value
named integer vector, with names corresponding to seasons

Author(s)
TW Department for Biogeochemical Integration at MPI-BGC, Jena, Germany \texttt{<REddyProc-help@bgc-jena.mp}} \texttt{g.de>} [cph], Thomas Wutzler \texttt{<twutz@bgc-jena.mp}} \texttt{g.de>} [aut, cre], Markus Reichstein \texttt{<mreichstein@bgc-jena.mp}} \texttt{g.de>} [aut], Antje Maria Moffat \texttt{<antje.moffat@bgc.mp}} \texttt{g.de>} [aut, trl], Olaf Menzer \texttt{<omenzer@bgc-jena.mp}} \texttt{g.de>} [ctb], Mirco Migliavacca \texttt{<mmiglia@bgc-jena.mp}} \texttt{g.de>} [aut], Kerstin Sickel \texttt{<ksickel@bgc-jena.mp}} \texttt{g.de>} [ctb, trl], Ladislav \texttt{<U+0160igut@czechglobe.cz>}} [ctb]
Index

* classes
 LightResponseCurveFitter-class, 35
 LogisticSigmoidLRCFitter-class, 49
 NonrectangularLRCFitter-class, 51
 RectangularLRCFitter-class, 65
 RectangularLRCFitterCVersion-class, 66
 sEddyProc-class, 70

* dataset
 DEGebExample, 8
 Example_DETha98, 9

* package
 _REddyProc_RHLightResponseCostC (RHLightResponseCostC), 69
 BerkeleyJulianDateToPOSIXct, 7, 20, 63
 check, 32
 cols, 25
 DEGebExample, 8
 envRefClass, 35, 49, 51, 65, 66, 70
 estimate_vpd_from_dew, 8, 84
 Example_DETha98, 9
 extract_FN15, 10
 fCalcAVPfromVMFandPress, 10
 fCalcETfromLE, 11
 fCalcExtRadiation, 12
 fCalcPotRadiation, 13, 96
 fCalcRHfromAVPandTair, 14
 fCalcSVPfromTair, 15
 fCalcVPDfromRHandTair, 6, 15
 fCheckHHTimeSeries, 16, 73
 fConvertCtoK, 17
 fConvertGlobalToVisible, 18
 fConvertKtoC, 18
 fConvertTimeToPosix, 6, 7, 19, 73
 fConvertVisibleWm2toPhotons, 21
 filterLongRuns, 21
 filterLongRunsInVector, 21, 22
 fLloydTaylor, 23, 95
 fLoadAmeriflux22, 24
 fLoadEuroFlux16, 24, 27
 fLoadFluxnet15, 25
 fLoadTXTIntoDataframe, 6, 26
 fWriteDataframeToFile, 27
 get_timestep_hours, 33
 getAmerifluxToBGCO5VariableNameMapping, 28, 68
 getBGCO5ToAmerifluxVariableNameMapping, 29
 getExamplePath, 30, 32
 getFilledExampleDETha98Data, 31
 getREddyProcExampleDir, 32
 getTZone, 33
 globalDummyVars, 34
 image, 102
 LightResponseCurveFitter, 34, 49, 51, 65, 66
 LightResponseCurveFitter-class, 35
 LightResponseCurveFitter_computeCost, 35, 36, 46
 LightResponseCurveFitter_computeLRCGradient, 35, 37
 LightResponseCurveFitter_fitLRC, 35, 38, 43, 46, 62
 LightResponseCurveFitter_getOptimizedParameterPositions, 35, 39
 LightResponseCurveFitter_getParameterInitials, 35, 40
 LightResponseCurveFitter_getParameterNames, 35, 36, 41, 52
 LightResponseCurveFitter_getPriorLocation, 35, 41
LightResponseCurveFitter_getPriorScale, 35, 42
LightResponseCurveFitter_isParameterInBounds, 35, 43
LightResponseCurveFitter_optimLRC, 35, 44, 46, 47
LightResponseCurveFitter_optimLRCBounds, 35, 39, 45
LightResponseCurveFitter_optimLRConAdjustedPrior, 35, 45, 46
LightResponseCurveFitter_predictGPP, 35, 47, 51, 53, 61, 68
LightResponseCurveFitter_predictLRC, 35–37, 48
LogisticSigmoidLRCFitter, 49
LogisticSigmoidLRCFitter-class, 49
LogisticSigmoidLRCFitter_predictGPP, 47, 50
NonrectangularLRCFitter, 51
NonrectangularLRCFitter-class, 51
NonrectangularLRCFitter_getParameterNames, 52, 62
NonrectangularLRCFitter_predictGPP, 47, 53, 53
optim, 39, 44
partGLControl, 38, 54, 57–59, 61
partGLControlLassloDeterministic, 54, 56
partGLExtractStandardData, 58, 61
partitionNEEGL, 48, 56, 60, 87
POSIXctToBerkeleyJulianDate, 7, 10, 63
read_csv, 24, 25
read_from_ameriflux22, 24, 63
read_from_fluxnet15, 25, 64
RectangularLRCFitter, 65, 66
RectangularLRCFitter-class, 65
RectangularLRCFitter_predictGPP, 47, 53, 67
RectangularLRCFitterVersion, 66
RectangularLRCFitterVersion-class, 66
REddyProc (REddyProc-package), 5
REddyProc-package, 5
REddyProc_defaultunits, 68
renameVariablesInDataFrame, 29, 30, 68
RHLightResponseCostC, 69
sDATA (globalDummyVars), 34
sEddyProc, 70
sEddyProc-class, 70
sEddyProc_initialize, 6, 71, 72
sEddyProc_sApplyUstarScen, 74, 88, 97, 108
sEddyProc_sCalcPotRadiation, 71, 75
sEddyProc_sEstEstUstartScenarios, 6, 75, 79, 85, 92, 117
sEddyProc_sEstUstarThold, 71, 76, 77, 118
sEddyProc_sEstUstarThreshold, 6, 76, 78, 121
sEddyProc_sEstUstarThresholdDistribution, 6, 71, 79, 106, 118, 121, 122
sEddyProc_sExportData, 71, 79
sEddyProc_sExportResults, 71, 80, 92, 93
sEddyProc_sFillInit, 71, 81, 90
sEddyProc_sFillLUT, 71, 82, 90
sEddyProc_sFillMDC, 71, 83, 90
sEddyProc_sFillVPDFFromDew, 84
sEddyProc_sGetData, 71, 84
sEddyProc_sGetEstimatedUstarThresholdDistribution, 6, 76, 79, 85
sEddyProc_sGetUstarScenarios, 6, 85, 86, 106, 109
sEddyProc_sGetUstarSuffixes, 86
sEddyProc_sGLFluxPartition, 6, 71, 87, 88, 107
sEddyProc_sGLFluxPartitionUstarScen, 6, 88
sEddyProc_sMDGapFill, 6, 71, 89, 91–93
sEddyProc_sMDGapFillAfterUstar, 6, 59, 61, 71, 91, 92, 93
sEddyProc_sMDGapFillAfterUstarDistr, 71, 92
sEddyProc_sMDGapFillUstarScen, 6, 76, 92, 93, 93
sEddyProc_sMRFluxPartition, 6, 71, 94, 97
sEddyProc_sMRFluxPartitionUstarScen, 6, 96
sEddyProc_sPlotDailySums, 6, 71, 97
sEddyProc_sPlotDiurnalCycle, 6, 71, 98, 98
sEddyProc_sPlotFingerprint, 6, 71, 100
sEddyProc_sPlotFingerprintY, 71, 101, 101
sEddyProc_sPlotHHFluxes, 6, 71, 102
sEddyProc_sPlotHHFluxesY, 71, 103, 103
sEddyProc_sPlotNEEVersusUstarForSeason,
INDEX

71, 104, 118
sEddyProc_sSetLocationInfo, 71, 73, 105
sEddyProc_sSetUstarScenarios, 6, 76, 85, 86, 93, 106, 109, 110
sEddyProc_sSetUstarSeasons, 107
sEddyProc_sTKFluxPartition, 107, 108
sEddyProc_sTKFluxPartitionUStarScens, 6, 108
sEddyProc_update_ustarthreshold_columns, 109
sEddyProc_useAnnualUStarThresholds, 109, 110
sEddyProc_useSeaonsalUStarThresholds, 109, 110
sID (globalDummyVars), 34
sINFO (globalDummyVars), 34
sLOCATION (globalDummyVars), 34
sPlotFingerprint
 (sEddyProc_sPlotFingerprint), 100
sTEMP (globalDummyVars), 34
strptime, 7
sUSTAR (globalDummyVars), 34
tempdir, 32
usControlUstarEst, 76, 110, 117, 119, 120
usControlUstarSubsetting, 76, 111, 112, 112, 117, 118
usCreateSeasonFactorMonth, 113, 115–117
usCreateSeasonFactorMonthWithinYear, 114, 114, 118
usCreateSeasonFactorYday, 114, 115, 118
usCreateSeasonFactorYdayYear, 114, 116, 118
usEstUstarThreshold, 77, 78, 117
usEstUstarThresholdSingleFw1Binned, 118, 119
usEstUstarThresholdSingleFw2Binned, 111, 112, 117, 118, 120
usGetAnnualSeasonUStarMap, 73, 106, 121
usGetSeasonalSeasonUStarMap, 106, 121
usGetYearOfSeason, 122