Package ‘RFPM’

November 14, 2022

Title Floating Percentile Model
Version 1.0
Date 2022-11-11
Description Floating Percentile Model with additional functions for optimizing inputs and evaluating outputs and assumptions.
Imports stats, graphics, grDevices, dplyr, reshape2, lawstat
Suggests knitr
VignetteBuilder knitr
License GPL (>= 3)
Encoding UTF-8
LazyData true
Maintainer Brian Church <brianc@windwardenv.com>
RoxygenNote 7.2.1
Depends R (>= 3.5.0)
NeedsCompilation no
Author Brian Church [aut, cre] (<https://orcid.org/0000-0003-2220-0153>), Claire Detering [aut]
Repository CRAN
Date/Publication 2022-11-14 17:30:08 UTC

R topics documented:
c.northport ... 2
chemSig ... 3
chemSigSelect ... 4
chemVI ... 5
colorGradient ... 7
cvFPM ... 8
FPM ... 10
h.northport ... 13
Description

Example dataset

Format

A data.frame with 147 rows and 15 variables:

- **Sample**: sediment sample ID
- **Al**: aluminum concentration, mg/kg dry weight
- **As**: arsenic concentration, mg/kg dry weight
- **Cu**: copper concentration, mg/kg dry weight
- **Cd**: cadmium concentration, mg/kg dry weight
- **Cr**: chromium concentration, mg/kg dry weight
- **Fe**: iron concentration, mg/kg dry weight
- **Pb**: lead concentration, mg/kg dry weight
- **Hg**: mercury concentration, mg/kg dry weight
- **Ni**: nickel concentration, mg/kg dry weight
- **Zn**: zinc concentration, mg/kg dry weight
- **Organism**: organism abbreviation, CD = *Chironomus dilutus*
- **Meas_Day**: measurement day for toxicity endpoint (post-initiation)
- **Endpoint**: toxicity endpoint
- **Hit**: logical; whether the sample was classified as toxic

Details

c.northport is a field-collected dataset containing sediment chemical concentrations for metals and toxicity classification data for the midge *Chironomus dilutus*. Data are from a freshwater site in Washington State (Dowling and Roland 2019).
chemSig

Chemical Variable Selection within the Floating Percentile Model

Description

Determine which chemicals in a dataset have significantly higher concentrations among toxic samples by comparison to non-toxic samples.

Usage

```r
chemSig(
  data,
  paramList,
  testType = NULL,
  alpha = 0.05,
  alternative = "less",
  var.alternative = "two.sided",
  var.equal = NULL,
  warn = TRUE,
  ExcelMode = NULL
)
```

Arguments

- **data**: data.frame containing, at a minimum, chemical concentrations as columns and a logical Hit column classifying toxicity.
- **paramList**: character vector of column names of chemical concentration variables in data.
- **testType**: character string; whether to run parametric or non-parametric tests (default = NULL). See Details for more information.
- **alpha**: numeric value between 0 and 1; type-I error rate for hypothesis testing (default = 0.05).
- **alternative**: alternative hypothesis type for equality of central tendency (default = "less").
- **var.alternative**: alternative hypothesis type for equal variance test (default = "two.sided").
- **var.equal**: logical; whether to assume equal variance (default = NULL).
- **warn**: logical; whether to generate a warning associated with ExcelMode (default = TRUE).
- **ExcelMode**: logical; whether to force chemSig to run like the WA Department of Ecology’s Excel-based floating percentile model calculator (default = FALSE).

References

chemSigSelect

Chemical Data Selection within the Floating Percentile Model

Details

chemSig is called within FPM via chemSigSelect, which generates a subset of chemicals to pass into the floating percentile model algorithm. chemSig only returns a logical vector describing which parameters in paramList should be selected for benchmark development based on having significantly higher concentrations when Hit == TRUE than when Hit == FALSE. The user has the ability to manipulate several of the parameters of the selection algorithm, or they can allow chemSig to test for assumptions and use appropriate hypothesis tests based on those results. By default, chemSig will use shapiro.test to confirm normality, then either var.test if the data are normal or fligner.test if the data are non-normal to confirm equal variance. Finally, the function will use t.test if the data are normal (using the Welch method if unequal variance), wilcox.test if non-normal with equal variance, or brunner.munzel.test if non-normal with unequal variance.

The testType argument can be one of p, P, param, Param, parametric, or Parametric for parametric test types or non, Non, np, NP, nonparam, Nonparam, non-param, Non-param, nonparametric, Nonparametric, non-parametric, Non-parametric, or Non-Parametric.

Only a single alpha level can be supplied; it is currently applied to all tests.

While alternative and var.alternative can be adjusted, we strongly recommend that they not be changed from the default values. For example, changing alternative from "less" (default) to "two.sided" would result in the assumption that chemical concentrations could be significantly higher (as well as lower) when there is no toxicity than when there is, which is inappropriate.

The "greater" alternative, which is never appropriate, is not an accepted input for alternative. Similarly, the assumption of equal variance relates to a "two.sided" argument, therefore changing the var.alternative to be "less" or "greater" would not be appropriate.

ExcelMode assumes testType = "parametric", var.equal = TRUE, alternative = "less", and alpha = 0.1. In actuality, the Excel-based tool uses a one-way ANOVA test to compare two levels of Hit, which is equivalent to a t-test so long as alpha is adjusted to 0.1. Thus, testType, alternative, var.alternative, and var.equal are overridden when ExcelMode = TRUE. This argument was included for those interested in using 'RFPM' as an alternative to the Excel-based calculator tool to obtain identical benchmark results.

Value

named logical vector

Examples

paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn")
chemSig(data = h.tristate, paramList = paramList, testType = "nonparametric")
chemSig(data = h.tristate, paramList = paramList, testType = "parametric")

Description

Generate a dataset of concentrations for chemicals with significantly higher concentrations among toxic samples by comparison to non-toxic samples.
Usage

`chemSigSelect(data, paramList, plot = FALSE, ...)`

Arguments

data
data.frame containing, at a minimum, chemical concentrations as columns and a logical Hit column classifying toxicity
paramList
character vector naming columns of data containing concentrations
plot
logical value indicating whether or not to generate figures comparing concentrations between subsets where Hit == TRUE and Hit == FALSE (default = FALSE)
...
additional arguments passed to `chemSig`

Details

`chemSigSelect` is used within FPM to quickly run `chemSig` and export concentrations from data for the significant chemicals to include in the floating percentile model algorithm. Results are exported in list with two data.frames, separated into chemicals that were significant ("sig") and non-significant ("nonsig") For information on `data` and `paramList`, see details of `?FPM`.

If `plot = TRUE`, then a series of plots will be exported comparing the Hit/No-hit data subsets for all chemicals in `paramList`. Plots with blue lines are generated from significant chemicals, and plots with green lines are generated from non-significant chemicals. The user currently has only limited control over graphical parameters of plots, and attempts to change graphical parameters are likely to cause errors.

Value

list of two data.frames ("sig" and "nonsig"), `chemSigSelect` class object

See Also

`plot.chemSigSelect`, `FPM`, `chemSig`

Examples

```r
paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn")
chemSigSelect(data = h.tristate, paramList = paramList)$sig[1:6,]
chemSigSelect(data = h.tristate, paramList = paramList, testType = "p")$sig[1:6,]
```
Usage

chemVI(data, paramList, ...)

Arguments

data: data.frame containing, at a minimum, chemical concentrations as columns and a logical Hit column classifying toxicity.
paramList: character vector naming columns of data containing concentrations.
...: additional arguments passed to chemSig, chemSigSelect, and FPM.

Details

The purpose of chemVI is to inform the user about the relative influence of each chemical over the sediment quality benchmarks generated by FPM. Three statistics are generated: chemDensity, MADP, and dOR. The chemDensity statistic (which is also generated by FPM) describes how little a particular chemical's value increased within the floating percentile model algorithm. Low chemDensity (close to 0) means that the value was able to increase substantially within the algorithm without triggering one or more of the criteria for stopping the algorithm (see ?FPM), whereas high chemDensity (close to 1) indicates the final benchmark for that chemical did not float (increase) much before being locked in. In other words, low chemDensity might be interpreted as relatively low importance. We caution against using this metric in isolation, as it is the more difficult to interpret of the three. The MADP statistic (or mean absolute difference percent) is calculated by sequentially dropping each chemical from consideration, recalculating the benchmarks for the remaining chemicals, and then determining how much each benchmark changed (as a percent of the original value). Thus, the MADP is a measure of a chemical's influence over other benchmarks. The dOR statistic is the difference between the overall reliability of benchmarks with all chemicals versus without each chemical. Therefore, larger positive values indicate a greater impact of a chemical on the overall predictive performance of floating percentile model benchmarks. Small values (close to 0) indicate low influence. Larger negative values indicate that the chemical actually adversely impacts toxicity predictions. If there are chemicals with negative values, consider reevaluating the data without the associated chemical or using optimFPM or cvFPM to optimize the overall reliability prior to running FPM and chemVI.

Value

data.frame with 2 columns

See Also

chemSig, chemSigSelect, optimFPM, cvFPM, FPM

Examples

paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn")
chemVI(data = h.tristate, paramList = paramList, testType = "nonparametric")
chemVI(data = h.tristate, paramList = paramList, testType = "parametric")
colorGradient

Color Gradient Generator

Description
Generate a gradient of hexadecimal colors from a numeric vector.

Usage

```
colorGradient(x, colors = heat.colors(10), colsteps = 100, na.rm = TRUE, ...)```

**Arguments**

- `x`: numeric vector
- `colors`: values recognizable by R as colors - text, hexadecimal, numbers, etc. (default = `grDevices::heat.colors(10)`).
- `colsteps`: numeric value, number of unique colors to include in gradient
- `na.rm`: logical value (default = `TRUE`) indicating whether to exclude NA values in `x`
- `...`: additional arguments passed to `grDevices::colorRamp`

**Details**

colorGradient generates a color gradient based on a numeric input `x`. The original version (named 'color.gradient') was written by David Hoop in a 2016 stackoverflow response to question (online). The function was modified slightly for adaptability of inputs. Note that the full color gradient is used if possible, which can exaggerate small differences in `x`. This function is applied by optimFPM when generating color-based optimization matrix graphics (i.e., when optimizing both alpha and FN_crit).

**Value**
character vector

**See Also**

optimFPM, heat.colors, colorRamp

**Examples**

```
x <- rnorm(n = 100)
cols <- colorGradient(x = x, colors = c("red", "white", "blue"))
plot(x, col = cols)```
Cross-Validation Optimization of the Floating Percentile Model

Description

Use k-folds cross-validation method to calculate parameter inputs that optimize benchmark performance while attempting to account for out-of-sample error.

Usage

cvFPM(
 data,
 paramList,
 FN_crit = seq(0.1, 0.9, 0.05),
 k = 5,
 seed = NULL,
 plot = TRUE,
 tryStop = 10,
 simplify = TRUE,
 which = c(1, 2),
 ...
)

Arguments

data data.frame containing, at a minimum, chemical concentrations as columns and a logical Hit column classifying toxicity

paramList character vector of column names of chemical concentration variables in data

FN_crit numeric vector of values between 0 and 1 indicating false negative threshold for floating percentile model benchmark selection (default = seq(0.1, 0.9, 0.05))

k numeric value >1 indicating the number of k-folds to include in cross-validation (default = 5)

seed random seed to set for reproducible results (default = NULL, i.e., no seed)

plot whether to plot the output of cvFPM (default = TRUE)

tryStop specifies the number of times the cross-validation algorithm will try to run before ending (see Details; default = 10)

simplify logical; whether to return just the optimized FN_crit value or more detailed diagnostic information

which numeric or character indicating which type of plot to generate (see Details; default = c(1, 2))

... additional arguments passed to chemSig and FPM
Details

cvFPM allows users to "tune" FN_crit argument in FPM. This is achieved by splitting the empirical dataset into "test" and "training" subsets, calculating benchmarks for the training set, and then calculating the benchmarks' prediction errors using the test set. This process is repeated several times (the number depending on the size of k relative to the sample size), and the results are summarized statistically. Lastly, this process is repeated for each FN_crit value specified by the user, resulting in comparable statistics for each FN_crit. The output in the console indicates which FN_crit value resulted in the consistently optimal benchmarks (meaning highest overall reliability or most balanced errors). By setting plot = TRUE (the default), the outcome of cross-validation can be visualized over the range of FN_crit values considered. Visualizing the results can inform the user about variability in the cross-validation process, ranges of potentially reasonable FN_crit values, etc.

cvFPM does not currently support optimization of the alpha parameter of FPM; optimFPM allows the user to optimize alpha but only using the empirical data (not through cross-validation).

Errors may be encountered by setting the value of k too high or too low, resulting in an inability of cvFPM to generate meaningful subsets for testing and floating percentile model calculations. Groups for subsetting are roughly evenly applied within the cross-validation method, so it is reasonable to expect that ceiling(nrow(data)/k) is the number of samples in any given test subset, with nrow(data) - ceiling(nrow(data)/k) being the size of the training subset. If a large number of samples still generates an error, consider increasing the tryStop value and rerunning cvFPM. The easiest way to avoid this type of error is to keep k low relative to nrow(data) (bearing in mind that k must be >1).

The which argument can be used to specify which of the two plots should be generated when plot = TRUE. These plots include the optimization results based on the overall reliability metric or the balanced rate of false positives and false negatives. Inputs to which are, by default, c(1,2), but flexible character inputs also can be used, for example which = "OR" or which = "balanced".

Value

list with 1 or 3 objects (depending on whether or not simplify = TRUE); these include 1) optim_FN, the optimized FN_crit value; 2) CV_OR, the detailed breakdown of overall reliability values for each FN_crit value; and 3) CV_FPM, floating percentile model benchmark statistics based on all cross-validation runs for each FN_crit

See Also

chemSig, FPM, seq

Examples

paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn")
cvFPM(data = h.tristate, paramList = paramList, FN_crit = seq(0.1, 0.9, 0.1), which = "OR")
FPM

Floating Percentile Model

Description

Generate sediment quality benchmarks using the floating percentile model algorithm

Usage

FPM(
 data,
 paramList,
 paramFixed = NULL,
 paramOverride = FALSE,
 increment = 10,
 precision = 0.1,
 FN_crit = 0.2,
 seed = 1,
 lockInfo = FALSE,
 ...
)

Arguments

data data.frame containing, at a minimum, chemical concentrations as columns and a logical Hit column classifying toxicity

paramList character vector of column names of chemical concentration variables in data

paramFixed character vector of column names of chemical concentration variables to retain, bypassing testing for specific chemicals (default = NULL). See Details.

paramOverride logical; whether to retain every chemical variable in paramList (default = FALSE). See Details.

increment numeric value greater than 1; number of increments to evaluate (default = 10). See Details.

precision numeric value between 0 and 1 (default = 0.1)

FN_crit numeric vector of values between 0 and 1 indicating false negative threshold(s) for benchmark selection (default = 0.2)

seed random seed to set for reproducible results; only for handling edge cases of ranking ties (default = 1)

lockInfo logical; whether to return the reason for and order in which benchmarks were "locked" within the model algorithm (default = FALSE). See Details.

... additional argument passed to chemSigSelect and chemSig
Details

FPM is the main function provided in 'RFPM', which was developed firstly as a redevelopment of the Washington Department of Ecology's Excel-based floating percentile model tool (Avocet 2003; Ecology 2011), and secondly as a means to evaluate uncertainties and sensitivities associated with the model. _FPM_ generates sediment quality benchmarks for chemicals with significantly higher concentrations among Hit samples (meaning they were determined to be categorically toxic).

FPM is an algorithmic approach to setting sediment quality benchmarks using sediment chemistry data and toxicity test results. Toxicity is treated as a binary classification - either a Hit == TRUE or Hit == FALSE (meaning toxic or non-toxic) by some user-defined definition. The most important input to _FPM_ apart from the empirical data is `FN_crit`, which determines an upper limit for false negative errors associated with floating percentile model benchmarks. The default `FN_crit` recommended by the Department of Ecology is 0.2; though intended to be protective, the value of 0.2 is arbitrary. We recommend that the user run the optimFPM and/or cvFPM functions to find the `FN_crit` value(s) that optimize benchmark performance within an acceptable error range for the site. optimFPM can also help users optimize the `alpha` parameter (see ?chemSig), which is also somewhat arbitrarily set at a conventional default of 0.05.

There are two arguments that have defaults in _FPM_ that the user may desire to change in certain circumstances, but that we generally recommend not changing without good reason. These are `paramFixed` and `paramOverride`, which override the chemical selection process, resulting in potentially non-toxic chemicals being assigned benchmarks. The `paramFixed` argument, which only forces named chemicals into the model algorithm, is looser than `paramOverride`, which forces all chemicals in `paramList` into the model algorithm. See ?chemSig for more information regarding default parameters used within _FPM_. Even if chemical names are supplied to `paramFixed`, _FPM_ will still use hypothesis testing methods to consider all other chemicals for inclusion.

`increment` determines (inversely) how large or small values should be that are added to percentile values in the model algorithm. A larger `increment` results in smaller incremental additions and vice-versa. The WA Department of Ecology recommends a default of `increment = 10`. This is a reasonable value, and we recommend not decreasing `increment` below 10. Increasing `increment` will increase computation time, and may or may not result in more accurate benchmarks. So, we recommend not increasing `increment` much higher than 10.

`precision` determines how many iterative loops will be attempted within the model algorithm when trying to increase each benchmark. If increasing the benchmark would increase the false negative rate above `FN_crit`, the benchmark would then be decreased, the increment size is divided by `increment`, and then the smaller incremental addition is used to increase the benchmark. This process repeats for a fixed number of iterations, which is related to `precision`. If the benchmark cannot be increased after the fixed number of iterations, the benchmark is locked in place. The default value for `precision` is 0.1, but the value could be lower, if desired. Lowering the value will increase computation time and may or may not result in more accurate benchmarks. In general, we recommend reducing `precision` rather than increasing `increment` in order to potentially enhance the precision of benchmark calculations.

The `lockInfo` argument allows the user to export information about what caused the model algorithm to lock for each chemical. Output options are: "FN" for exceeding the false negative limit (i.e., `FN_crit`), "FP" if the number of false positives was reduced to zero, "Max" if the empirical maximum concentration was exceeded, or Mix if more than one of the first three options occurred.

The following classification statistics are reported alongside the generated benchmarks: TP, FN, TN, and FP - the numbers of true positive, false negative, true negative, and false positive predictions.
pFN and pFP - proportions of false predictions (false No-hit and false Hit, respectively) HR - hit rate or sensitivity; the probability of detecting a Hit NR - negative rate or specificity; the probability of detecting a No-hit PHR - positive predictive value or precision; how often were Hit predictions correct? PNR - negative predictive value; how often were No-hit predictions correct? FHR - false positive predictive value; how often were Hit predictions incorrect? FNR - false negative predictive value; how often were No-hit predictions incorrect? OR - overall reliability; the probability of making a correct prediction (Hit or No-hit)

The second output of FPM is a metric called chemDensity. This is a measure of how much the percentile "floated" in the algorithm from the starting position up to the chemical’s value at which it was locked in place. Values of chemDensity closer to 1 floated less and vice-versa. By floating less, this indicates that even small changes in the chemical concentration resulted in one of the acceptance criteria failing (as discussed above with regard to lockInfo). When comparing the chemDensity among chemicals, those with lower values might be viewed as having less of an influence on toxicity predictions and vice-versa. For those interested in understanding the relative importance of chemicals among benchmarks, we recommend using chemVI and considering the MADP and dOR outputs.

Value

list of 2 or 4 objects (depending on lockInfo):

1. Benchmarks and toxicity classification error statistics;
2. order in which benchmarks were locked in place;
3. reason for benchmarks being locked in place; and
4. chemDensity statistic

References

See Also

optimFPM, cvFPM, chemSig, chemSigSelect, chemVI

Examples

paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn")
FPM(data = h.tristate, paramList = paramList, ExcelMode = TRUE, warn = FALSE)
FPM(data = h.tristate, paramList = paramList, FN_crit = c(0.1, 0.2, 0.3))
Description

Example dataset

Format

A data frame with 147 rows and 15 variables:

- **Sample** sediment sample ID
- **Al** aluminum concentration, mg/kg dry weight
- **As** arsenic concentration, mg/kg dry weight
- **Cu** copper concentration, mg/kg dry weight
- **Cd** cadmium concentration, mg/kg dry weight
- **Cr** chromium concentration, mg/kg dry weight
- **Fe** iron concentration, mg/kg dry weight
- **Pb** lead concentration, mg/kg dry weight
- **Hg** mercury concentration, mg/kg dry weight
- **Ni** nickel concentration, mg/kg dry weight
- **Zn** zinc concentration, mg/kg dry weight
- **Organism** organism abbreviation, HA = *Hyalella azteca*
- **Meas_Day** measurement day for toxicity endpoint (post-initiation)
- **Endpoint** toxicity endpoint
- **Hit** logical; whether the sample was classified as toxic

Details

h.northport is a field-collected dataset containing sediment chemical concentrations for metals and toxicity classification data for the amphipod *Hyalella azteca*. Data are from a freshwater site in Washington State (Dowling and Roland 2019).

References

h.tristate

Description

Example dataset

Format

A data frame with 43 rows and 13 variables:

- **Sample.ID** sediment sample ID
- **Sample.type** sediment sample type
- **Organism** organism abbreviation, HA = *Hyalella azteca*
- **Day** measurement day for toxicity endpoint (post-initiation)
- **Endpoint** toxicity endpoint
- **Hit** logical; whether we classified the sample as toxic (based on effect >25%)
- **Cd** cadmium concentration, mg/kg dry weight
- **Cu** copper concentration, mg/kg dry weight
- **Fe** iron concentration, mg/kg dry weight
- **Mn** manganese concentration, mg/kg dry weight
- **Ni** nickel concentration, mg/kg dry weight
- **Pb** lead concentration, mg/kg dry weight
- **Zn** zinc concentration, mg/kg dry weight

Details

h.tristate is a field-collected dataset containing sediment chemical concentrations for metals and toxicity classification data for the amphipod *Hyalella azteca*. Data are from freshwater sites in Kansas, Missouri, and Oklahoma (Ingersoll et al 2008). The Hit variable was assigned by the authors of this package.

References

Description

Example dataset

Format

data.frame, containing 147 rows and 11 variables:

- Al aluminum concentration, mg/kg dry weight
- As arsenic concentration, mg/kg dry weight
- Cu copper concentration, mg/kg dry weight
- Cd cadmium concentration, mg/kg dry weight
- Cr chromium concentration, mg/kg dry weight
- Fe iron concentration, mg/kg dry weight
- Pb lead concentration, mg/kg dry weight
- Hg mercury concentration, mg/kg dry weight
- Ni nickel concentration, mg/kg dry weight
- Zn zinc concentration, mg/kg dry weight
- Hit logical; whether the sample was classified as toxic

Details

highNoise provides a sample of simulated data that were developed to analyze variability and sensitivity of FPM. Simulated datasets (n=1000) were originally developed for the analyses; highNoise is a single realization of the simulation. Simulations were generated using the covariance matrix of h.northport sediment chemical concentrations and the rmvnorm function from the ‘splus2R’ package (Constantine and Hesterberg 2021). Hit values were generated with toxCRM using simulated concentrations of Cr, Cu, Fe, and Zn as inputs. The inputs to toxCRM were based on empirical toxicity ranges (minimum and maximum effect levels) as well as arbitrarily based on probable effect concentration (PEC) and threshold effect concentration (TEC) values from MacDonald et al (2000). Inflection points were set equal to PECs, and steepnesses were set as the ratio of the PEC to the TEC. Fe inputs were arbitrary chosen to reflect its low toxicity relative to Cr, Cu, and Zn (e.g., high inflection point and relatively low steepness). Random normal noise was added to the highNoise datasets by inputting eSD values into toxCRM equal to 20% of the range of chemical concentrations (chemical-specific). The median toxicity output (for the 4 chemicals) was compared to a threshold of 75% with Hit == TRUE assigned to values below that level and Hit == FALSE assigned to values >=75%.
References

See Also

FPM, toxCRM, h.northport, perfect, lowNoise

| lowNoise | Simulated Floating Percentile Model Data, Low Random Noise in Toxicity Prediction |

Description

Example dataset

Format

data.frame, containing 147 rows and 11 variables:

- **Al** aluminum concentration, mg/kg dry weight
- **As** arsenic concentration, mg/kg dry weight
- **Cu** copper concentration, mg/kg dry weight
- **Cd** cadmium concentration, mg/kg dry weight
- **Cr** chromium concentration, mg/kg dry weight
- **Fe** iron concentration, mg/kg dry weight
- **Pb** lead concentration, mg/kg dry weight
- **Hg** mercury concentration, mg/kg dry weight
- **Ni** nickel concentration, mg/kg dry weight
- **Zn** zinc concentration, mg/kg dry weight
- **Hit** logical; whether the sample was classified as toxic

Details

lowNoise provides a sample of simulated data that were developed to analyze variability and sensitivity of FPM. Simulated datasets (n=1000) were originally developed for the analyses; lowNoise is a single realization of the simulation. Simulations were generated using the covariance matrix of h.northport sediment chemical concentrations and the rmvnorm function from the 'splus2R' package (Constantine and Hesterberg 2021). The Hit values were generated with toxCRM using simulated concentrations of Cr, Cu, Fe, and Zn as inputs. The inputs to toxCRM were based on empirical toxicity ranges (minimum and maximum effect levels) as well as arbitrarily based on
probable effect concentration (PEC) and threshold effect concentration (TEC) values from Mac-
Donald et al (2000). Inflection points were set equal to PECs, and steepnesses were set as the ratio
of the PEC to the TEC. Fe inputs were arbitrary chosen to reflect its low toxicity relative to Cr,
Cu, and Zn (e.g., high inflection point and relatively low steepness). Random normal noise was
added to the lowNoise datasets by inputting eSD values into toxCRM equal to 10% of the range of
chemical concentrations (chemical-specific). The median toxicity output (for the 4 chemicals) was
compared to a threshold of 75% with Hit == TRUE assigned to values below that level and Hit ==
FALSE assigned to values >=75%.

References

1.3-3 (online). Updated January 30. Available from: https://cran.r-project.org/web/packages/splus2R/index.html
MacDonald DD, Ingersoll CG, Berger TA. 2000. Development and evaluation of consensus-based

See Also

FPM, toxCRM, h.northport, perfect, highNoise

optimFPM

Optimization of Floating Percentile Model Parameters

Description

Calculate parameter inputs that optimize benchmark performance

Usage

optimFPM(
 data,
 paramList,
 plot = TRUE,
 FN_crit = seq(0.1, 0.9, by = 0.05),
 alpha = seq(0.05, 0.5, by = 0.05),
 simplify = TRUE,
 which = c(1, 2),
 colors = heat.colors(10),
 colsteps = 100,
 ...
)

Arguments

data frame containing, at a minimum, chemical concentrations as columns and
a logical Hit column classifying toxicity

paramList character vector of column names of chemical concentration variables in data
plot logical; whether to generate a plot to visualize the optimization results
FN_crit numeric vector over which to optimize false negative thresholds (default = seq(0.1, 0.9, by = 0.05))
alpha numeric vector of type-I error rate values over which to optimize (default = seq(0.05, 0.5, by = 0.05))
simplify logical; whether to export only optimized values or the full results of optimization
which numeric or character indicating which type of plot to generate (see Details; default = c(1, 2))
colors values recognizable as colors - text, hexadecimal, numbers, etc. (default = heat.colors(10)).
colsteps numeric value, number of unique colors to include in gradient (default = 100)
... additional argument passed to FPM, chemSig, and chemSigSelect

Details

optimFPM was designed to help optimize the predictive capacity of the benchmarks generated by FPM. The default input parameters to FPM (i.e., FN_crit = 0.2 and alpha = 0.05) are arbitrary, and optimization can help to objectively establish more accurate benchmarks. Graphical output from optimFPM can also help users to understand the relationship(s) between benchmark accuracy/error, FN_crit, and alpha. We also recommend that users apply cvFPM to their data to further inform the selection of FPM input values.

Default inputs for FN_crit and alpha were selected to represent a reasonable range of values to test. Testing over both ranges will result in a two-way optimization, which can be computationally intensive. Alternatively, optimFPM can be run for one parameter at a time by specifying a single value for FN_crit or alpha. Note that inputting single values for both FN_crit and alpha will generate unhelpful results.

Two metrics are used for optimization, one based on the maximum overall reliability (i.e., highest probability of correctly predicting Hit values) and one based on minimizing the difference between the false negative and false positive rates, which represents a trade-off between under- and overconservatism.

Graphical output will differ depending on whether or not a single value is input for FN_crit or alpha. Providing a single value for one of the two arguments will generate a line graph, whereas providing longer vectors (i.e., length > 1) of inputs for both arguments will generate dot matrix plots using colors to generate a color palette and colsteps to define the granularity of the color gradient with the palette. The order of colors will be plotted from more optimal to less optimal; for example, the default of heat.colors(10) will show optimal colors as red and less optimal colors as yellower. By default, two plots will be generated, however the which argument can control whether to include either or both plots. Inputs to which are, by default, c(1, 2), but flexible character inputs also can be used, for example which = "OR" or which = "balanced". Black and gray squares indicate the optimal argument values (black for the indicated optimization metric and gray for the other metric).

Value
data.frame of optimized FN_crit and/or alpha values
perfect Simulated Data for Floating Percentile Model, Perfect Toxi-
city Prediction

Description

Example dataset

Format

data.frame containing 147 rows and 11 variables:

Al aluminum concentration, mg/kg dry weight
As arsenic concentration, mg/kg dry weight
Cu copper concentration, mg/kg dry weight
Cd cadmium concentration, mg/kg dry weight
Cr chromium concentration, mg/kg dry weight
Fe iron concentration, mg/kg dry weight
Pb lead concentration, mg/kg dry weight
Hg mercury concentration, mg/kg dry weight
Ni nickel concentration, mg/kg dry weight
Zn zinc concentration, mg/kg dry weight
Hit logical; whether the sample was classified as toxic

Details

perfect provides a sample of simulated data that were developed to analyze variability and sen-
sitivity of FPM. Simulated datasets (n=1000) were originally developed for the analyses; perfect
is a single example realization of the simulation. Simulations were generated using the covari-
ance matrix of h.northport sediment chemical concentrations and the rmvnorm function from the
splus2R package (Constantine and Hesterberg 2021). The Hit values were generated with toxCRM
using simulated concentrations of Cr, Cu, Fe, and Zn as inputs. The inputs to toxCRM were based
on empirical toxicity ranges (minimum and maximum effect levels) as well as arbitrarily based on

See Also

FPM, cvFPM

Examples

paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn")
FN_seq <- seq(0.1, 0.3, 0.05)
alpha_seq <- seq(0.05, 0.2, 0.05)
optimFPM(data = h.tristate, paramList = paramList, alpha = 0.05, FN_crit = FN_seq)
optimFPM(data = h.tristate, paramList = paramList, FN_crit = 0.2, alpha = alpha_seq)
optimFPM(data = h.tristate, paramList = paramList, alpha = alpha_seq, FN_crit = FN_seq, which = 2)
probable effect concentration (PEC) and threshold effect concentration (TEC) values from MacDonald et al (2000). Inflection points were set equal to PECs, and steepnesses were set as the ratio of the PEC to the TEC. Fe inputs were arbitrary chosen to reflect its low toxicity relative to Cr, Cu, and Zn (e.g., high inflection point and relatively low steepness). The median toxicity output (for the 4 chemicals) was compared to a threshold of 75% with \(\text{Hit} == \text{TRUE} \) assigned to values below that level and \(\text{Hit} == \text{FALSE} \) assigned to values \(\geq 75\% \).

References

See Also

FPM, toxCRM, h.northport, lowNoise, highNoise

plot.chemSigSelect

Plot method for 'chemSigSelect'

Description

The plot method for 'chemSigSelect' objects

Usage

```r
## S3 method for class 'chemSigSelect'
plot(
    x,
    paramList = NULL,
    type = c("boxplot", "ecdf", "density"),
    logAxes = TRUE,
    ...
)
```

Arguments

- **x**: `chemSigSelect` class object
- **paramList**: character vector of column names of chemical concentration variables in data; values will be inherited from `x` if not specified
- **type**: character vector indicating the type of plot to generate (see Details; default = `c("boxplot", "ecdf", "density")`)
- **logAxes**: logical value; whether axes should be projected in log-space (default = `TRUE`)
- **...**: additional arguments passed to `plot`. The user currently has limited capacity to change graphical parameters.
Details

plot.chemSigSelect is a class-specific plotting function that generates boxplots, empirical cumulative density functions, or kernel density plots comparing the Hit == TRUE and Hit == FALSE subsets for all chemicals in paramList. By default, all plot types are generated, but type can be changed to generate specific plot types. The available types are specified by "type = boxplot", "type = ecdf", and "type = density", though character inputs are flexible; for example, other reasonable versions of these types include "Boxplot" and "ECDF". Note that because boxplot, plot.ecdf, and plot.density functions use plotting arguments in different ways, supplying user-defined plotting arguments may cause unintended changes (or possibly errors or warnings) when plotting multiple types. For that reason, we recommend that the user select a specific plot type (using the type argument) before adjusting plot arguments (via ...) that apply to that type. Moreover, many of the plotting arguments are specified by plot.chemSigSelect and, therefore, cannot be adjusted by the user. These include but are not limited to parameters like col and lwd.

Value

base graphics

See Also

chemSigSelect, boxplot, plot.ecdf, plot.density

Examples

x <- chemSigSelect(data = h.tristate, paramList = c("Cd", "Cu", "Fe", "Mn", "Ni", "Pb", "Zn"))
plot(x, type = "boxplot")

RFPM

Floating Percentile Model

Description

Floating Percentile Model and supporting functions to inform and improve sediment benchmark development

Usage

RFPM()

Details

'RFPM' is an open-source implementation of the floating percentile model (FPM), which was originally developed by Avocet (2003) using Visual Basic for Applications and distributed to US Pacific Northwest regulatory agencies as a Microsoft Excel-based tool. 'RFPM' was developed independently by Claire Detering and Brian Church with support from John Toll and others at Windward Environmental LLC.
The purpose of the FPM is to generate aquatic toxicity-based sediment quality benchmarks for management of contaminated freshwater sediment sites. These benchmarks are intended to act as classification thresholds, meaning that an exceedance of benchmarks would imply that toxicity (as categorically defined) is likely in the sediment sample. The FPM has been used at sites in the US Pacific Northwest for many years, particularly after being published by the Washington State Department of Ecology in 2011.

The primary function in 'RFPM' is \texttt{FPM}, which runs the FPM algorithm on a data.frame object that includes concentrations of chemicals in sediment as well as a logical toxicity classification column called "Hit". Example datasets are provided. The output of \texttt{FPM} includes a set of sediment quality benchmarks for chemicals with significantly higher concentrations when \texttt{Hit} == TRUE than when \texttt{Hit} == FALSE. Plots comparing the \texttt{Hit} == TRUE and \texttt{Hit} == FALSE data can also be generated as a diagnostic tool. Supplemental functions (e.g., \texttt{optimFPM}) can help to optimize \texttt{FPM} inputs (resulting in more accurate benchmarks) or evaluate the relative importance of each chemical among the FPM benchmarks (i.e., \texttt{chemVI}).

For 'RFPM', the \texttt{FPM} algorithm has been changed from the original Avocet (2003) model. Key changes are as follows:

1. A decision tree is implemented to select statistically appropriate hypothesis tests for chemical selection. This can be overridden if the original Excel-based tool method is desired; see \texttt{?chemSig} for details. The chemical selection and FPM algorithm have been integrated into \texttt{FPM}, though chemical selection can still be run separately, if desired.

2. The iterative looping of the FPM algorithm over multiple false negative limits was not included in \texttt{FPM}. We find this functionality of the Excel-based tool to be confusing and unnecessary. Instead, we believe the results generated for different false negative limits should be independently generated rather than dependent on prior model runs. Thus, \texttt{FPM} allows for multiple false negative limits to be input in a sequential but independent manner, resulting in a data.frame of benchmarks with one row per false negative limit. In R terminology, \texttt{FPM} has been vectorized.

3. Functions were developed to optimize the overall reliability of FPM sediment quality benchmarks. Optimization can either maximize the overall reliability of the benchmarks, or it can reduce the difference between false positive and false negative predictions of toxicity. The latter might be useful as a compromise between over- and under-conservatism of benchmarks. The functions are \texttt{optimFPM} and \texttt{cvFPM}. Both functions can be used to optimize the false negative limit, and \texttt{optimFPM} can also be used to optimize the type-I error rate (alpha), which drives the chemical selection aspect of \texttt{FPM}. \texttt{optimFPM} and \texttt{cvFPM} also provide graphical representations of the optimization process, which helps to provide context for false negative limit and alpha selections.

4. New functions are also available to quickly calculate chemical "variable importance" statistics using \texttt{chemVI}. These statistics can inform the user about the influence of specific chemicals over the set of FPM benchmarks and, for example, whether certain benchmarks can be ignored without a significant loss of predictive ability.

\textbf{Value}

\texttt{bibentry}
References

toxCRM

Concentration-Response Model. 4-parameter log-logistic curve

Description

Generate dummy toxicity data with strong concentration-response

Usage

toxCRM(x, max = 1, min = 0, steep, mid, eMean = 0, eSD = 0, seed = NULL)

Arguments

x
numeric vector of chemical concentrations (univariate)

max
numeric value, asymptotic maximum of model (default = 1)

min
numeric value, asymptotic minimum of model (default = 0)

steep
numeric value, steepness factor for model slope

mid
numeric value, inflection point concentration for CRM slope

eMean
numeric value, mean of random-normal error to add to dummy toxicity data (default = 0)

eSD
numeric value, standard deviation of random-normal error to add to dummy toxicity data (default = 0)

seed
numeric value, random seed to set for repeatable random error generating (default = NULL, i.e., no seed)

Details

toxCRM generates dummy toxicity data representing an idealized condition. This approach was used by the authors to simulate data and test FPM sensitivity and baseline variability. The user must specify all coefficients of the model (though default min/max values are provided) and may add some amount of random error, if desired. Random error adds noise to the dummy toxicity data, increasing the uncertainty of toxicity predictions using floating percentile model benchmarks. The perfect, lowNoise, and highNoise datasets included in RFPM were all generated using toxCRM with increasing levels of eSD.

Value

numeric vector
See Also

perfect, lowNoise, highNoise

Examples

```r
concentration = h.northport$Cu
toxVals <- toxCRM(x = concentration,
                   max = 1, min = 0, steep = 0.5, mid = median(concentration), eMean = 0, eSD = 0)
plot(x = concentration, y = toxVals, log = "x", main = "Perfect estimate")

toxVals_withNoise <- toxCRM(x = concentration,
                           max = 1, min = 0, steep = 0.5, mid = median(concentration), eMean = 0, eSD = 0.1, seed = 1)
plot(x = concentration, y = toxVals_withNoise, log = "x", main = "Noisy estimate")
```
Index

c.northport, 2
chemSig, 3
chemSigSelect, 4
chemVI, 5
colorGradient, 7
cvFPM, 8

FPM, 10

h.northport, 13
h.tristate, 14
highNoise, 15

lowNoise, 16

optimFPM, 17

perfect, 19
plot.chemSigSelect, 20

RFPM, 21

toxCRM, 23