Package ‘RFlocalfdr’

November 9, 2023

Title Significance Level for Random Forest Impurity Importance Scores
Version 0.8.5
Description Sets a significance level for Random Forest MDI (Mean Decrease in Impurity, Gini or sum of squares) variable importance scores, using an empirical Bayes approach.
See Dunne et al. (2022) <doi:10.1101/2022.04.06.487300>.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
LazyDataCompression xz
Imports minpack.lm, sn, fitdistrplus, grDevices, graphics, stats, ranger, randomForest, RFlocalfdr.data, vita
Depends R (>= 3.5.0)
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Robert Dunne [aut, cre] (<https://orcid.org/0000-0003-1946-7279>)
Maintainer Robert Dunne <rob.dunne@csiro.au>
Repository CRAN
Date/Publication 2023-11-09 07:40:02 UTC

R topics documented:

- count_variables .. 2
- determine.C ... 3
- determine_cutoff .. 4
- f.fit ... 6
- fit.to.data.set .. 7
- fit.to.data.set.wrapper 8
count_variables

imp20000 ... 10
local.fdr ... 12
my.dsn ... 14
my.test1fun ... 16
my_PIMP ... 17
my_ranger_PIMP ... 18
plotQ ... 20
propTrueNullByLocalFDR ... 22
run.it.importances .. 22
significant.genes ... 24

Index

count_variables count the number of times each variable is used in a ranger random forest

Description

- count the number of times each variable is used in a ranger random forest.
- help(treeInfo) warns "splitvarID – ID of the splitting variable, 0-indexed. Caution, the variable order changes if the formula interface is used" However this should be investigated

Usage

count_variables(object)

Arguments

object a ranger forest object

Value

a table (0-indexed) giving the number of times each variable was used in the random forest

Examples

library(ranger)
rf1 <- ranger(Species ~ ., data = iris, importance="impurity", seed=123)
count_variables(rf1)
rf2 <- ranger(dependent.variable.name = "Species", data = iris, seed=123)
count_variables(rf2)
rf3<- ranger(y = iris[, 5], x = iris[, -5], seed=123)
count_variables(rf3)
determine.C

Description

by assumption, there is a point \(q \) such that to the left of \(q \), \(f_B \sim f_0(z) \). That is, there is a \(q \) such that there are only null values to the left of \(q \). We determine \(q \) using a change point method related to penalized model selection. See Gauran, Iris Ivy M. and Park, Junyong and Lim, Johan and Park, DoHwan and Zylstra, John and Peterson, Thomas and Kann, Maricel and Spouge, John L. "Empirical null estimation using zero-inflated discrete mixture distributions and its application to protein domain data" Biometrics, 2018 74:2

Usage

determine.C(f_fit, df, t1, trace.plot = FALSE, start_at = 30, debug.flag = 0)

Arguments

- **f_fit**: object returned by f.fit
- **df**: data frame containing x and y
- **t1**: initial estimates of xi, omega, and lambda. Generally returned by fit.to.data.set.wrapper
- **trace.plot**: – produce a plot of each fit with a 1 second sleep. Can be watched as a movie.
- **start_at**: – x <- f_fit$midpoints is of length 119 (quite arbitrary). We use the first start_at values of x to fit the skew-normal distribution.
- **debug.flag**: – debugging level. If debug.flag >0 then some output is printed to the screen.

Value

– a vector of numbers of length equal to the rows in df (119 in this case). Say that this is qq. We determine the minimum value of qq. This is the value "C" such that – to the right of C, our data is generated from the NULL distribution – to the left of C, we have a mixture of the NULL and non-NULL distribution

Examples

data(imp20000)
imp<-log(imp20000$importances)
t2<-imp20000$counts
temp<-imp[t2 > 1] #see
temp<-temp[temp != -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fitzhdensity
x <- f_fit$midpoints
df <- data.frame(x, y)
initial.estimates <- fit.to.data.set.wrapper(df, temp, try.counter = 3, return.all=FALSE)
initial.estimates<- initial.estimates$Estimate
determine_cutoff

evaluate a measure that can be used to determining a significance level for the Mean Decrease in Impurity measure returned by a Random Forest model

Description

evaluate a measure that can be used to determining a significance level for the Mean Decrease in Impurity measure returned by a Random Forest model

Usage

determine_cutoff(
determine_cutoff

```r
imp,
t2,
cutoff = c(0, 1, 4, 10, 15, 20),
Q = 0.75,
plot = NULL,
verbose = 0,
try.counter = 3)
```

Arguments

- **imp** vector of MDI variable importances
- **t2** number of times each variable is used in the a ranger forest. Returned by `count_variables` for a ranger RF
- **cutoff** values to evaluate
- **Q** – we examine the fit up to the quartile Q
- **plot** for 4 selected values of the cutoff. The plot contains
 - The data (black) and the fitted density (red)
 - The skew-normal fit (blue)
 - The quantile Q (vertical red line)
- **verbose** verbose=0, no output to screen verbose=1, track the cutoff value being used
- **try.counter** passed to `fit.to.data.set.wrapper`

Value

res a matrix if size length(cutoff) by 3. We model the histogram of imp with a kernel density estimate, y. Let t1 be fitted values of the skew normal. Then res contains three columns

- `sum((y-t1)^2)`
- `sum(abs(y-t1))`
- `max(abs(y-t1))`, evaluated up to the quantile Q

Examples

```r
data(imp20000)
imp <- log(imp20000$importances)
t2 <- imp20000$counts
length(imp)
hist(imp,col=6,lwd=2,breaks=100,main="histogram of importances")
res.temp <- determine_cutoff(imp, t2, cutoff=c(0,1,2,3),plot=c(0,1,2,3),Q=0.75,try.counter=1)
plot(c(0,1,2,3),res.temp[,3])
# the minimum is at 1 so
imp <- imp[t2 > 1]

qq <- plotQ(imp,debug.flag = 0)
ppp <- run.it.importances(qq,imp,debug=0)
aa <- significant.genes(ppp,imp,cutoff=0.2,debug.flag=0,do.plot=2, use_95_q=TRUE)
```
```r
library(ranger)
library(RFlonfdr.data)
data(smoking)
y <- smoking$y
smoking_data <- smoking$rma
y.numeric <- ifelse(y == "never-smoked", 0, 1)
rf1 <- ranger::ranger(y = y.numeric, x = smoking_data, importance = "impurity", seed = 123, num.trees = 10000, classification = TRUE)
t2 <- count_variables(rf1)
imp <- log(rf1$variable.importance)
plot(density(imp))
# Determine a cutoff to get a unimodal density.
res.temp <- determine_cutoff(imp, t2, cutoff = c(1, 2, 3, 4), plot = c(1, 2, 3, 4), Q = 0.75)
plot(c(1, 2, 3, 4), res.temp[, 3])
```

Description

fit a spline to the histogram of `imp`

Usage

```r
f.fit(imp, df = 10, debug.flag = 0, temp.dir = NULL)
```

Arguments

- `imp`: the variable importances
- `df`: the degrees of freedom for the spline fit
- `debug.flag`: either 0 (no debugging information), 1 or 2
- `temp.dir`: if debug flag is >0 then information is written to temp.dir

Value

a list with the following components

- "x" – midpoints of the histogram
- "zh" – a histogram object as returned by "hist"
- "f.spline" – the spline fit. The fit is given by a glm mode `glm(zh$counts ~ splines::ns(x), poisson)`
- "counts" the counts from the histogram
fit.to.data.set

Examples

```r
data(imp20000)
imp <- log(imp20000$importances)
res <- f.fit(imp)
plot(res$zh, xlab="importances", main="histogram of importances")
points(res$midpoints, res$counts, col="grey90")
lines(res$zh$breaks[-1],res$f.spline,col="blue", lwd=3)
legend("topleft",c("spline fit"), col="blue", lwd=3)
```

Description

This function fit a skew normal to a set of data

Usage

```r
fit.to.data.set(
  df,
  imp,
  debug.flag = 0,
  plot.string = "",
  temp.dir = NULL,
  try.counter = 3,
  return.all = FALSE
)
```

Arguments

- `df`: contains x and y, midpoints and counts from a histogram of imp
- `imp`: importances
- `debug.flag`: debug flag
- `plot.string`: file name for a debugging plot
- `temp.dir`: directory for debugging output
- `try.counter`: try.counter=1 my.dsn xi= 1 try.counter=2 xi= mean(x) try.counter=3 start xi, omega, lambda from the parameters retuned by fitdistrplus::fitdist
- `return.all`: TRUE, return the full ouput of minpack.lm::nlsLM, FALSE, return summary of parameters

Value

If the skew-normal fitting routine is succesful, then the matrix of parameters and standard errors is returned. – otherwise a “try-error” message is returned
Examples

data(imp20000)
imp<-log(imp20000$importances)
t2<-imp20000$counts
temp<-imp[t2 > 1] # see
temp<-temp[temp != -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fitzhdensity
x <- f_fit$midpoints
df <- data.frame(x, y)
fitted_parameters <- fit.to.data.set(df, temp, try.counter = 3)
fitted_parameters

hist(temp, breaks = 200, freq = FALSE)
lines(dfx, dfy, type = "l", col = "green", lwd = 2,
xlim = c(0, max(df$x) + 0.5))
curve(sn::dsn(x, xi = fitted_parameters$Estimate[1], omega = fitted_parameters$Estimate[2],
alpha = fitted_parameters$Estimate[3]), add = TRUE,
col = "purple", lwd = 3, xlim = c(0, 16))
curve(my.dsn(x, xi = fitted_parameters$Estimate[1], omega = fitted_parameters$Estimate[2],
lambda = fitted_parameters$Estimate[3]), add = TRUE,
col = "orange", lwd = 3)

library(RFlocalfdr.data)
data(ch22)
imp<-log(ch22$imp)
t2<-ch22$C
temp<-imp[t2 > 30] #
temp<-temp[temp != -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fitzhdensity
x <- f_fit$midpoints
df <- data.frame(x, y)
mm.df3 <- fit.to.data.set(df, temp)
mm.df3
Estimate Std..Error t.value Pr...t..
xi.xi 1.102303 0.03669284 30.04136 1.485263e-56
omega.omega 1.246756 0.04716184 26.43569 6.276349e-51
lambda.alpha 1.799169 0.17343872 10.37351 3.103195e-18

fit.to.data.set.wrapper

Description

This function allows you to express your love of cats.
Usage

```
fit.to.data.set.wrapper(
  df,
  imp,
  debug.flag = 0,
  plot.string = "",
  temp.dir = temp.dir,
  return.all = TRUE,
  try.counter = 3
)
```

Arguments

- **df**: contains x and y, midpoints and counts from a histogram of imp
- **imp**: importances
- **debug.flag**: debug flag
- **plot.string**: file name for a debugging plot, passed on to `fit.to.data.set`
- **temp.dir**: directory for debugging output, passed on to `fit.to.data.set`
- **return.all**: passed to `fit.to.data.set`. If TRUE then the full output of `minpack.lm::nlsLM` is returned. Otherwise just the matrix of coefficients and t-values is returned.
- **try.counter**: passed on to `fit.to.data.set` try.counter=1 my.dsn xi= 1 try.counter=2 xi= mean(x) try.counter=3 start xi, omega, lambda from the parameters retuned by fitdistrplus::fitdist

Value

If the skew-normal fitting routine is successful, then the matrix of parameters and standard errors is returned. – otherwise a "try-error" message is returned

Examples

```
data(imp20000)
imp<-log(imp20000$importances)
t2<-imp20000$counts
temp<-imp[t2 > 1] #see
temp<-temp[temp ! = -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fit$zh$density
x <- f_fit$midpoints
df <- data.frame(x, y)
fitted_parameters <- fit.to.data.set.wrapper(df, temp, try.counter = 3, return.all=FALSE)
fitted_parameters

hist(temp, breaks = 200, freq = FALSE)
lines(df$x, df$y, type = "l", col = "green", lwd = 2,
    xlim = c(0, max(df$x) + 0.5))
curve(sn::dsn(x, xi = fitted_parameters$Estimate[1], omega = fitted_parameters$Estimate[2],
alpha = fitted_parameters$Estimate[3]), add = TRUE,
col = "purple", lwd = 3, xlim = c(0, 16))
curve(my.dsn(x, xi = fitted_parameters$Estimate[1], omega = fitted_parameters$Estimate[2],
lambda = fitted_parameters$Estimate[3]), add = TRUE,
col = "orange", lwd = 3)

library(RFlocalfdr.data)
data(ch22)
t2 <- ch22$C
imp <- log(ch22$imp)
imp <- imp[t2 > 30]
imp <- imp - min(imp) + .Machine$double.eps
f_fit <- f.fit(imp)
y <- f_fit$zh$density
x <- f_fit$midpoints
C <- quantile(imp, probs = 0.75)
df2 <- data.frame(x[x < C], y[x < C])
initial.estimates <- fit.to.data.set.wrapper(df2, imp)

# Nonlinear regression model
# model: y ~ my.dsn(x, xi = xi, omega = omega, lambda = lambda)
# data: df
# xi.xi omega.omega lambda.alpha
# 1.163 1.193 1.574
# residual sum-of-squares: 0.06269
#
# Number of iterations to convergence: 23
# Achieved convergence tolerance: 1.49e-08

---

imp20000 20000 importance values

Description
A dataset containing 20000 importance values

Usage
imp20000

Format
A vector variable importances with 20000 values

imp1 importances
Examples

```r
require(ranger)
inv.logit <-function (x) {
 plogis(x)}

make_data <- function(nVars, nSamples) {
 as.matrix(sapply(1:nVars, function(t){sample(0:2, nSamples, replace=TRUE)}))
}

make_cont_response <- function(X, w) {
 (X-1) %% w
}

make_response <- function(X, w) {
 as.factor(inv.logit((X-1) %% w * 2) > runif(nrow(X)))
}

nVars <- 20000
nSamples <- 1000
set.seed(19)
X<- make_data(nVars,nSamples)
w <- rep(0, times = nVars)
w[101] <- 1
w[102] <- 1/sqrt(2)
w[103] <- 1/sqrt(4)
w[104] <- 1/sqrt(8)
w[105] <- 1/sqrt(16)
y <- make_response(X, w)

colnames(X) <- c(make.names(1:20000))
set.seed(19)
rf1<-ranger::ranger(y=y,x=X, num.trees = 2000,importance="impurity")
table(y,predict(rf1,data=X)$predictions)
#OOB prediction error: 41.30 %
table(y,predict(rf1,data=X)$predictions)
t2 <-count_variables(rf1)
head(t2)
dim(t2)

imp<-rf1$variable.importance
imp<-log(imp)
plot(density((imp)))
hist(imp,col=6,lwd=2,breaks=100,main="histogram of importances")

res.temp <- determine_cutoff(imp, t2 ,cutoff=c(0,1,2,3),plot=c(0,1,2,3),Q=0.75,try.counter=1)
plot(c(0,1,2,3),res.temp[,3])
```
imp<-imp[t2 > 1]
qq <- plotQ(imp,debug.flag = 0)
ppp<-run.it.importances(qq,imp,debug=0)
aa<-significant.genes(ppp,imp,cutoff=0.2,debug.flag=0,do.plot=2, use_95_q=TRUE)
length(aa$probabilities)
names(aa$probabilities)
# [1] "X101"  "X102"  "X103"  "X104"  "X105"  "X2994"  "X9365"  "X10718"
# [9] "X13371" "X15517"  "X16460"

counts<-t2
imp20000 <- list(imp,counts)
names(imp20000) <-c("importances","counts")

---

local.fdr

Description

calculate the local

Usage

local.fdr(
  f,
  x,
  FUN = my.dsn,
  p0 = 1,
  debug.flag = 0,
  plot.string = "",
  temp.dir = NULL,
  ...
)

Arguments

  f          object returned by call to f.fit
  x          f_fit$midpoints
  FUN        my.dsn
  p0         estimated proportion of null importances
  debug.flag either 0 (no debugging information), 1 or 2
  plot.string, file name for a debugging plot
  temp.dir,   directory for debugging output
  ...        arguments passed to FUN
**Value**

returns an estimate of the local false discovery rate.

**Examples**

data(imp20000)
imp<-log(imp20000$importances)
t2<-imp20000$counts

temp<-imp[t2 > 1]  #see
temp<-temp[temp != -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fit$zh$density
x <- f_fit$midpoints
df <- data.frame(x, y)

fitted_parameters <- fit.to.data.set(df, temp, try.counter = 3)
fitted_parameters

aa <- local.fdr(f_fit, df$x, FUN = my.dsn, xi = fitted_parameters$Estimate[1],
omega = fitted_parameters$Estimate[2], lambda = fitted_parameters$Estimate[3],
debug.flag = 0, plot.string = "initial")

plot(x,y,axes=FALSE,type=1",col="blue",main = "local fdr",
xlab="importances",ylab="")
axis(2, pretty( c(0,max(y)+0.5*max(y)),10))

oldpar <- par(new = TRUE)
plot(x, aa, type="1",col="green",main = "",xlab="",ylab="",axes=FALSE)
abline(h = 0.2)
axis(4, pretty( aa,10))

axis(1,pretty(x,10))
box()  # to make it look "as usual
legend("topright",c("density importances","local fdr"),col=c("blue","green"),lty=1)
par(oldpar)

library(RFlocalfdr.data)
data(ch22)
imp<-log(ch22$imp)
t2<-ch22$C

imp <- imp - min(imp) + .Machine$double.eps
debug.flag <- 0
f_fit <- f.fit(imp, debug.flag = debug.flag)
y <- f_fit$zh$density
x <- f_fit$midpoints
df <- data.frame(x, y)

initial.estimates <- fit.to.data.set.wrapper(df, imp, debug.flag = debug.flag,
return.all = FALSE)

aa <- local.fdr(f_fit, df$x, FUN = my.dsn, xi = initial.estimates$Estimate[1],
omega = initial.estimates$Estimate[2], lambda = initial.estimates$Estimate[3], debug.flag = 0,
plot.string = "initial")

plot(x,y,axes=FALSE,type="l",col="blue",main = "local fdr",
xlab="importances",ylab="")
axis(2, pretty( c(0,max(y)+0.5*max(y)),10))
oldpar <- par(new = TRUE)
plot(x, aa, type="l",col="green",main = ",xlab="",ylab="",axes=FALSE)
abline(h = 0.2)
axis(4, pretty( aa,10))
axis(1,pretty(x,10))
box()  #- to make it look "as usual
legend(“topright”,c(“density importances”,”local fdr”),col=c(“blue”,”green”),lty=1)
par(oldpar)

my.dsn

Description
density of skew-normal using the approximation of Ashour, Samir K. and Abdel-hameed, Mahmoud A.

Usage
my.dsn(x, xi = 0, omega = 1, lambda = 1)
dsn(x, xi = 0, omega = 1, alpha = 0, tau = 0)
psn(q, xi = -Inf, omega = 1, alpha = 0, tau = 0, ...)
qsn(p, xi = Inf, omega = 1, alpha = 0, tau = 0, ...)

Arguments
x    vector of quantiles. Missing values (`NA`'s) and `Inf`'s are allowed.
xi   vector of location parameters.
omega vector of scale parameters; must be positive
lambda param
alpha vector of slant parameter(s)
tau = 0
q     vector of quantiles
... arguments passed to sn
p     vector of probabilities. Missing values (`NA`’s) are allowed
Details


RFlocalfdr also uses wrappers around the functions `dsn`, `qsn` and `psn` from the package "sn" https://cran.r-project.org/web/packages/sn/. This is due to the fact that fitdistrplus::fitdist(imp, "sn", start = list(xi = mean(imp))... returns warnings such as The `dsn` function should return a zero-length vector when input has length zero and not raise an error The `psn` function should have its first argument named: q as in base R These wrappers ensure conformity with the expectations of fitdistrplus::fitdist

Value

fits the Density function for the skew-normal (SN) distribution.

Examples

```r
library(sn)
curve(sn::dsn(x,xi=0, omega=1, alpha=1, tau=0),xlim=c(-10,10),col="blue")
curve(sn::dsn(x,xi=0, omega=1, alpha=0.1, tau=0),xlim=c(-10,10),col="blue",add=TRUE)
curve(sn::dsn(x,xi=1, omega=2, alpha=2, tau=0),xlim=c(-10,20),col="blue",add=TRUE)
curve(sn::dsn(x,xi=3, omega=4, alpha=4, tau=0),xlim=c(-10,20),col="blue",add=TRUE)
curve(my.dsn(x),xlim=c(-10,10),col="red",add=TRUE)
curve(my.dsn(x,lambda=0.1),xlim=c(-10,10),col="red",add=TRUE)
curve(my.dsn(x,xi=1, omega=2, lambda=2),xlim=c(-10,20),col="red",add=TRUE)
curve(my.dsn(x,xi=3, omega=4, lambda=4),xlim=c(-10,20),col="red",add=TRUE)
```

# `dsn`, `qsn` and `psn` are wrappers around the provided functions provided by sn. This is done to # overcome some checking done by fitdistrplus

```r
library(sn)
getAnywhere("dsn")
RFlocalfdr::my.test1fun("sn::dsn", list(xi = -Inf, omega =1, alpha=0), fix.arg = list(tau = 0))
RFlocalfdr::my.test1fun("sn::qsn", list(xi = -Inf, omega =1, alpha=0), fix.arg = list(tau = 0))
RFlocalfdr::my.test1fun("sn::psn", list(xi = -Inf, omega =1, alpha=0), fix.arg = list(tau = 0))
all return FALSE
```

detach("package:sn", unload=TRUE)
getAnywhere("dsn")
RFlocalfdr::my.test1fun("dsn", list(xi = -Inf, omega =1, alpha=0 ), fix.arg = list(tau = 0))#TRUE
RFlocalfdr::my.test1fun("psn", list(xi = -Inf, omega =1, alpha=0 ), fix.arg = list(tau = 0))#TRUE
RFlocalfdr::my.test1fun("qsn", list(xi = -Inf, omega =1, alpha=0 ), fix.arg = list(tau = 0))#TRUE
Description

tests the compliance of skew-normal distribution functions with the expectations of the package fitdistrplus

Usage

my.test1fun(fn, start.arg, fix.arg, dpqr)

Arguments

- `fn` • name of the function to be tested "dsn", "psn" or "qsn"
- `start.arg` • the starting arguments for fitting the density
- `fix.arg` • fixed arguments
- `dpqr` – are we testing the "d", "p" or "q" function? not needed as it can be inferred from the argument "fn"

Details

RFlocalfdr also uses wrappers around the functions dsn, qsn and psn from the package "sn" https://cran.r-project.org/web/packages/sn/. This is due to the fact that fitdistrplus::fitdist(imp, "sn", start = list(xi = mean(imp)... returns warnings such as The dsn function should return a zero-length vector when input has length zero and not raise an error The psn function should have its first argument named: q as in base R These wrappers ensure conformity with the expectations of fitdistrplus::fitdist

Value

fits the Density function for the skew-normal (SN) distribution.

Examples

```r
library(sn)
curve(sn::dsn(x,xi=0, omega=1, alpha=1, tau=0),xlim=c(-10,10),col="blue")
curve(sn::dsn(x,xi=0, omega=1, alpha=0.1, tau=0),xlim=c(-10,10),col="blue",add=TRUE)
curve(sn::dsn(x,xi=1, omega=2, alpha=2, tau=0),xlim=c(-10,20),col="blue",add=TRUE)
curve(sn::dsn(x,xi=3, omega=4, alpha=4, tau=0),xlim=c(-10,20),col="blue",add=TRUE)
curve(my.dsn(x),xlim=c(-10,10),col="red",add=TRUE)
curve(my.dsn(x,lambda=0.1),xlim=c(-10,10),col="red",add=TRUE)
curve(my.dsn(x,xi=1, omega=2, lambda=2),xlim=c(-10,20),col="red",add=TRUE)
curve(my.dsn(x,xi=3, omega=4, lambda=4),xlim=c(-10,20),col="red",add=TRUE)
```

#dsn, qsn and psn are wrappers around the provided functions provided by sn. This is done to # overcome some checking done by fitdistrplus
my_PIMP based on the PIMP function from the vita package. 'PIMP' implements the test approach of Altmann et al. (2010) for the permutation variable importance measure 'VarImp' returned by the randomForest package (Liaw and Wiener (2002)) for classification and regression.

Description

my_PIMP applies the same method as PIMP but to the MDI (mean decrease in impurity) variable importance (mean decrease in Gini index for classification and mean decrease in MSE for regression).

Usage

my_PIMP(X, y, rForest, S = 100, parallel = FALSE, ncores = 0, seed = 123, ...)

Arguments

X, data matrix of size n by p
y, class labels for classification (factor) or real values for regression. Of length n
rForest, an object of class randomForest, importance must be set to 'impurity'.
S, The number of permutations for the response vector 'y'. Default is 'S=100
parallel Should the PIMP-algorithm run parallel? Default is parallel=FALSE and the number of cores is set to one. The parallelized version of the PIMP-algorithm are based on mclapply and so is not available on Windows
ncores, The number of cores to use, i.e. at most how many child processes will be run simultaneously. Must be at least one, and parallelization requires at least two cores. If 'ncores=0', then the half of CPU cores on the current host are used.
seed a single integer value to specify seeds. The "combined multiple-recursive generator" from L’Ecuyer (1999) is set as random number generator for the parallelized version of the PIMP-algorithm. Default is ' seed = 123'.
... additional arguments passed to randomForest
my_ranger_PIMP

Value

an object of class PIMP

Examples

```r
library(RFlocalfdr.data)
library(ranger)
library(vita) #vita: Variable Importance Testing Approaches
data(smoking)
?smoking
y<-smoking$y
y<-factor(y)
smoking_data<-smoking$rma

cl.ranger <- ranger::ranger(y=y, x=smoking_data,mtry = 3, num.trees = 1000, importance = 'impurity')
system.time(pimp.varImp.cl<-my_ranger_PIMP(smoking_data,y,cl.ranger,S=10, parallel=TRUE, ncores=2))
#CRAN limits the number of cores available to packages to 2, for performance reasons.
pimp.t.cl <- vita::PimpTest(pimp.varImp.cl,para = FALSE)
aa <- summary(pimp.t.cl,pless = 0.05)
length(which(aa$cmat2[,"p-value"]< 0.05))
hist(aa$cmat2[,"p-value"],breaks=20)
```

Description

my_ranger_PIMP based on the PIMP function from the vita package. ‘PIMP’ implements the test approach of Altmann et al. (2010) for the permutation variable importance measure ‘VarImp’ returned by the randomForest package (Liaw and Wiener (2002)) for classification and regression.

Usage

```r
my_ranger_PIMP(
 X,
 y,
 rForest,
 S = 100,
 parallel = FALSE,
 ncores = 0,
 seed = 123,
 ...
)
```
Arguments

\(X,\) data matrix of size \(n\) by \(p\)

\(y,\) class labels for classification (factor) or real values for regression. Of length \(n\)

\(\text{rForest},\) an object of class ranger, importance must be set to "impurity".

\(S,\) The number of permutations for the response vector ‘\(y\)’. Default is ‘\(S=100\)

\(\text{parallel}\) Should the PIMP-algorithm run parallel? Default is ‘\(\text{parallel}=\text{FALSE}\)’ and the number of cores is set to one. The parallelized version of the PIMP-algorithm are based on mclapply and so is not available on Windows

\(\text{ncores,}\) The number of cores to use, i.e. at most how many child processes will be run simultaneously. Must be at least one, and parallelization requires at least two cores. If ‘\(\text{ncores}=0\)’, then the half of CPU cores on the current host are used.

\(\text{seed}\) a single integer value to specify seeds. The "combined multiple-recursive generator" from L’Ecuyer (1999) is set as random number generator for the parallelized version of the PIMP-algorithm. Default is ‘\(\text{seed}=123\)’.

\(\ldots\) additional arguments passed to ranger

Value

an object of class PIMP

Examples

\begin{verbatim}
library(RFlocalfdr.data)
library(ranger)
library(vita) #vita: Variable Importance Testing Approaches
data(smoking)
?smoking
y<-smoking$y
y<-factor(y)
smoking_data<-smoking$rma

cl.ranger <- ranger::ranger(y=y, x=smoking_data,mtry = 3,num.trees = 1000, importance = 'impurity')

system.time(pimp.varImp.cl<-my_ranger_PIMP(smoking_data,y,cl.ranger,S=10, parallel=TRUE, ncores=2))
#CRAN limits the number of cores available to packages to 2, for performance reasons.
pimp.t.cl <- vita::PimpTest(pimp.varImp.cl,para = FALSE)

aa <- summary(pimp.t.cl,pless = 0.05)

length(which(aa$cmat2[,"p-value"]< 0.05))
hist(aa$cmat2[,"p-value"],breaks=20)
\end{verbatim}
Description

produces a plot showing the q values

- q_95, the 95th quantile of the data
- q using the penalized selection method of Gauran et.al 2018

Usage

plotQ(imp, debug.flag = 0, temp.dir = NULL, try.counter = 3)

Arguments

imp "reduction in impurity" importances from a random forest model
debug.flag either 0 (no debugging information), 1 or 2
temp.dir if debug flag is >0 then information is written to temp.dir
try.counter where to explain this?

Details

We estimate a value "q" such that: to the left of "q", the density is composed solely of NULL importance values to the right of "q" we have a density that is a mixture of null and non-null importance values. The method of Gauran et.al 2018 may not work in cases where the data distribution is not well modelled by a skew-normal. The q_95 value can be used as a workaround in these cases. In many cases they will be very similar

Value

- df, contains x and y, midpoints and counts from a histogram of imp
- final.estimates_C_0.95, the output from the fitting routine nlsLM in minpack.lm, where df has been truncated at the value C_0.95 (the 0.95 quantile of the skew-Normal distribution fitted to the imp histogram
- final.estimates.cc, as for final.estimates_C_0.95 but with cc determined by the procedure of Gauran et.al 2018
- temp.dir, the directory where debugging information may be written
- C_0.95, the 0.95 quantile of the skew-Normal distribution fitted to the imp histogram
- cc, determined by the procedure of Gauran et.al 2018
- fileConn, a file connection for writing debugging information
- f_fit, a spline fit to the histogram
- ww the minimum value of the local fdr
Examples

data(imp20000)
imp <- log(imp20000$importances)
t2 <- imp20000$counts
plot(density(imp))
hist(imp, col=6, lwd=2, breaks=100, main="histogram of importances")
res.temp <- determine_cutoff(imp, t2, cutoff=c(0,1,2,3), plot=c(0,1,2,3), Q=0.75, try.counter=1)
plot(c(0,1,2,3), res.temp[,3])
imp <- imp[t2 > 1]
qq <- plotQ(imp, debug.flag = 0)
ppp <- run.it.importances(qq, imp, debug=0)
aa <- significant.genes(ppp, imp, cutoff=0.2, debug.flag=0, do.plot=2, use_95_q=TRUE)
length(aa$probabilities) #11#
names(aa$probabilities)

library(RFlocalfdr.data)
data(ch22)
?ch22
#document how the data set is created
plot(density(log(ch22$imp)))
t2 <- ch22$C
imp <- log(ch22$imp)
# Determine a cutoff to get a unimodal density.
# This was calculated previously. See determine_cutoff
imp <- imp[t2 > 30]
qq <- plotQ(imp, debug.flag = 0)
data(smoking)
?smoking
y <- smoking$y
smoking_data <- smoking$rma
y.numeric <- ifelse((y == "never-smoked"), 0, 1)
library(ranger)
rf1 <- ranger::ranger(y = y.numeric, x = smoking_data, importance="impurity", seed = 123, num.trees = 10000, classification=TRUE)
t2 <- count_variables(rf1)
imp <- log(rf1$variable.importance)
plot(density(imp), xlab="log importances", main="")
cutoffs <- c(2,3,4,5)
res.con <- determine_cutoff(imp, t2, cutoff=cutoffs, plot=c(2,3,4,5))
plot(cutoffs, res.con[,3], pch=15, col="red", cex=1.5, ylab="max(abs(y - t1))")
cutoffs[which.min(res.con[,3])]
temp <- imp[t2 > 3]
temp <- temp - min(temp) + .Machine$double.eps
qq <- plotQ(temp)
ppp <- run.it.importances(qq, temp, debug.flag = 0)
aa <- significant.genes(ppp, temp, cutoff=0.05, debug.flag=0, do.plot=TRUE, use_95_q=TRUE)
length(aa$probabilities) # 17
Description

Estimate proportion of NULL p-values. Based on .propTrueNullByLocalFDR in limma: Linear Models for Microarray Data written by Belinda Phipson and Gordon Smyth

Usage

```r
propTrueNullByLocalFDR(p)
```

Arguments

- `p`: probabilities

Value

An estimate of the proportion of null p-values by the local fdr

---

**run.it.importances**

Description

run.it.importances

Usage

```r
run.it.importances(qq, imp, debug.flag = 0, temp.dir = NULL)
```

Arguments

- `qq`: object retuned by plotQ
- `imp`: “reduction in impurity” importances from a random forest model
- `debug.flag`: either 0 (no debugging information), 1 or 2
- `temp.dir`: if debug flag is >0 then information is written to temp.dir
run.it.importances

Value

return a list containing

• "C_0.95" estimate of the cutoff "C" such that there are only null values to the left of C. Based on the 95th quantile of the density
• "cc" estimate of the cutoff "C" based on the procedure of Gauran, et al., 2018, Biometrics,
• "estimates_C_0.95" estimate of the parameters of the SN using the data up to the C estimate
• "estimates_cc" estimate of the parameters of the SN using the data up to the C estimate
• "fdr_0.95" estimate of the fdr curve using the SN from "estimates_C_0.95"
• "fdr_cc" estimate of the fdr curve using the SN from "estimates_cc"
• "x" the x values from plotQ
• "temp.dir" the temp directory for debugging
• "p0" the estimate of the proportion of null values (can be 1)

Examples

```r
data(imp20000)
imp <- log(imp20000$importances)
t2 <- imp20000$counts
plot(density(imp))
hist(imp, col=6, lwd=2, breaks=100, main="histogram of importances")
res.temp <- determine_cutoff(imp, t2, cutoff=c(0,1,2,3), plot=c(0,1,2,3), Q=0.75, try.counter=1)
plot(c(0,1,2,3), res.temp[,3])
imp[imp[t2 > 1]
qq <- plotQ(imp, debug.flag = 0)
ppp <- run.it.importances(qq, imp, debug=0)
aa <- significant.genes(ppp, imp, cutoff=0.2, debug.flag=0, do.plot=2, use_95_q=TRUE)
length(aa$probabilities) #11#
names(aa$probabilities)
```

```r
library(RFlocalfdr.data)
data(ch22)
? ch22
document how the data set is created
plot(density(log(ch22$imp)))
t2 <- ch22$C
imp <- log(ch22$imp)
Determin a cutoff to get a unimodal density.
res.temp <- determine_cutoff(imp, t2, cutoff=c(1,10,20,30), plot=c(1,10,20,30), Q=0.75)
plot(c(1,2,3,4), res.temp[,3])

res.temp <- determine_cutoff(imp, t2, cutoff=c(25,30,35,40), plot=c(25,30,35,40), Q=0.75)
plot(c(25,30,35,40), res.temp[,3])
imp[imp[t2 > 30]
qq <- plotQ(imp, debug.flag = 0)
ppp <- run.it.importances(qq, imp, debug=0)
aa <- significant.genes(ppp, imp, cutoff=0.2, debug.flag=0, do.plot=2)
length(aa$probabilities) # 6650
```
significant.genes

\[ \text{aa<-significant.genes(ppp,imp,cutoff=0.05,debug.flag=0,do.plot=2)} \]
\[ \text{length(aa$probabilities) # 3653} \]

---

**Description**

This function expects the significant "genes" and makes some plots.

**Usage**

```r
significant.genes(
 object,
 imp,
 cutoff = 0.2,
 use_95_q = TRUE,
 do.plot = TRUE,
 debug.flag = 0
)
```

**Arguments**

- `object`: object returned by `run.it.importance`
- `imp`: importances
- `cutoff`: cutoff
- `use_95_q`: use the 0.95 q value
- `do.plot`: do.plot either TRUE or FALSE (no plot)
- `debug.flag`: debug.flag either 0 (no debugging information), 1 or 2

**Value**

A list containing

- probabilities (from the fitted SN distribution) and names of the significant variables
- the estimated FDR

**Examples**

```r
data(imp20000)
imp <- log(imp20000$importances)
t2 <- imp20000$counts
plot(density(imp))
hist(imp,col=6,lwd=2,breaks=100,main="histogram of importances")
res.temp <- determine_cutoff(imp, t2 ,cutoff=c(0,1,2,3),plot=c(0,1,2,3),Q=0.75,try.counter=1)
plot(c(0,1,2,3),res.temp[,3])
```
imp <- imp[t2 > 1]
qq <- plotQ(imp, debug.flag = 0)
ppp <- run.it.importances(qq, imp, debug=0)
aa <- significant.genes(ppp, imp, cutoff=0.2, debug.flag=0, do.plot=2, use_95_q=TRUE)
length(aa$probabilities) # 11#
names(aa$probabilities)

library(RFlocalfdr.data)
data(ch22)
? ch22
plot(density(log(ch22$imp)))
t2 <- ch22$C
imp <- log(ch22$imp)
# Determine a cutoff to get a unimodal density.
# This may take several attempts. The default values of cutoff=c(0,1,4,10,15,20) will not find
# the minimum here.
#which occurs at 30
plot(c(25,30,35,40), res.temp[,3])
imp <- imp[t2 > 30]
qq <- plotQ(imp, debug.flag = 0)
ppp <- run.it.importances(qq, imp, debug=0)
aa <- significant.genes(ppp, imp, cutoff=0.2, debug.flag=0, do.plot=2)
length(aa$probabilities) # 6650
aa <- significant.genes(ppp, imp, cutoff=0.05, debug.flag=0, do.plot=2)
length(aa$probabilities) # 3653
Index

* cats
  propTrueNullByLocalFDR, 22
* counts
  count_variables, 2
* datasets
  imp20000, 10
* genes
  significant.genes, 24
* importance
  plotQ, 20
  run.it.importances, 22
* normal
  my.dsn, 14
  my.test1fun, 16
* significant
  significant.genes, 24
* skew
  my.dsn, 14
  my.test1fun, 16
* spline
  f.fit, 6
* variable
  plotQ, 20
  run.it.importances, 22

count_variables, 2

determine.C, 3
determine_cutoff, 4
dsn (my.dsn), 14

f.fit, 6
fit.to.data.set, 7
fit.to.data.set.wrapper, 8

imp20000, 10
local.fdr, 12
my.dsn, 14
my.test1fun, 16