package ‘RGENERATEPREC’

November 27, 2019

Maintainer Emanuele Cordano <emanuele.cordano@gmail.com>
License GPL (>= 2)
Title Tools to Generate Daily-Precipitation Time Series
Type Package
Author Emanuele Cordano
Description The method ‘generate()’ is extended for spatial multi-site stochastic generation of daily precipitation. It generates precipitation occurrence in several sites using logit regression (Generalized Linear Models) and D.S. Wilks’ approach (Journal of Hydrology, 1998).
Version 1.2.5
Repository CRAN
Date 2019-11-27
Depends R (>= 3.0), copula, RGENERATE, blockmatrix, Matrix, stringr
Imports RMAWGEN
Suggests knitr,
markdown, lubridate, leaflet, lmom, knitcitations, ggplot2, reshape2
VignetteBuilder knitr
URL https://github.com/ecor/RGENERATEPREC
RoxygenNote 6.1.1
NeedsCompilation no
Date/Publication 2019-11-27 15:40:02 UTC

R topics documented:

CCGamma .. 2
CCGammaToBlockmatrix 4
dw.spell .. 6
generate.PrecipitationOccurrenceModel 8
nwetdays .. 11
omega .. 12
This function extends \textit{continuity_ratio} and adds the corresponding gaussian correlation matrix for no-precipitation occurrence.

Description

This function extends \textit{continuity_ratio} and adds the corresponding gaussian correlation matrix for no-precipitation occurrence.

Usage

\begin{verbatim}
CCGamma(data, lag = 0, p0_v1 = NULL, p = NA, valmin = 0.5,
nearPD = (lag >= 0), interval = c(-1, 1),
tolerance = .Machine$double.eps, only.matrix = FALSE,
return.value = NULL, null.gcorrelation = 1e-05, sample = NULL,
origin = "1961-1-1", ...)
\end{verbatim}

Arguments

\begin{itemize}
\item \textbf{data} \hspace{1cm} data frame or ‘zoo’ R object containing daily precipitation time series for several gauges (one gauge time series per column). See \textit{continuity_ratio}.
\item \textbf{lag} \hspace{1cm} numeric lag (expressed as number of days) used for computation for "cross" continuity ratio and joint probability of precipitation (no)occurrence. See \textit{continuity_ratio}.
\item \textbf{p0_v1} \hspace{1cm} vector for marginal probabilities, see \textit{omega} and \textit{omega_inv}.
\item \textbf{p} \hspace{1cm} positive integer parameter. Default is NA, otherwise, lag is calculated as the vector 0:p.
\item \textbf{valmin} \hspace{1cm} threshold precipitation value [mm] for wet/dry day indicator. If precipitation is lower than valmin, day is considered dry. Default is 0.5 mm. See \textit{continuity_ratio}.
\item \textbf{nearPD} \hspace{1cm} see \textit{omega_inv}. Default is (lag==0).
\item \textbf{interval}, \textbf{tolerance} \hspace{1cm} see \textit{omega_inv}.
\item \textbf{only.matrix} \hspace{1cm} logical value. If TRUE the function returns only the gaussian correlaton matrix. Default is FALSE.
\item \textbf{return.value} \hspace{1cm} string. If it is not either NULL (Default) and NA, function returns only the argument indicated by this argument.
\end{itemize}
null.gcorrelation
numerical value nooccurrence_gcorrelation under which is considered to be 0.

sample
character string indicated if function must be calculated differently for subset of the year, e.g. monthly. Admitted values are NULL (Default), "all" or "monthly".

origin
character string (yyyy-dd-mm) indicated the date of the first row of "data". It is used if data and sample are not NULL.

Value
An object which is a list containing the following fields:
continuity_ratio: lag-day lagged continuity ratio, as returned by continuity_ratio;
ocurrence: joint probability of lag-day lagged precipitation occurrence, as returned by continuity_ratio;
nooccurrence: joint probability of lag-day lagged no precipitation occurrence, as returned by continuity_ratio;
lag: number of days lagged between the two compared events (see argument lag);
p0_v1: vector of marginal probability of no precipitation occurrence. If lag is 0, it corresponds to the diagonal of nooccurrence matrix (see argument p0_v1);
nooccurrence_gcorrelation corresponding gaussian correlation for no precipitation occurrence obtained by applying omega_inv to nooccurrence,

If the argument only.matrix is TRUE, only nooccurrence_gcorrelation is returned as a matrix.
In case the argument lag is a vector with length more than one, the function returns a list of the above-cited return object for each value of the vector lag.

Note
This function is useful to generate the serial cross-correlation matrices for no precipitation occurrence for Yule-Walker Equations. In case lag is a vector, nearPD must be a vector of the same size, default is (lag==0).
See the R code for major details

Author(s)
Emanuele Cordano

References
CCGammaToBlockmatrix

See Also
continuity_ratio, omega_inv, omega, CCGammaToBlockmatrix

Examples

data(trentino)

year_min <- 1961
year_max <- 1990
origin <- paste(year_min,1,1,sep="-")

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period,station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
}
prec_mes <- prec_mes[,accepted]

the dataset is reduced!!!
prec_mes <- prec_mes[,1:2]

CCGamma <- CCGamma(data=prec_mes,lag=0,tolerance=0.001,only.matrix=FALSE)

Not run:
Not Run in the examples, uncomment to run the following line
CCGamma <- CCGamma(data=prec_mes,lag=0:2,tolerance=0.001,only.matrix=FALSE)

Not Run in the examples, uncomment to run the following line
CCGamma_monthly <- CCGamma(data=prec_mes,lag=0,tolerance=0.001,only.matrix=FALSE,
sample="monthly",origin=origin)

End(Not run)

CCGammaToBlockmatrix

This return a blockmatrix object containing the gaussian cross-correlation matrices.

Description
This return a blockmatrix object containing the gaussian cross-correlation matrices.

Usage
CCGammaToBlockmatrix(data, lag = 0, p = 3, ...)

This return a blockmatrix object containing the gaussian cross-correlation matrices.
Arguments

- **data**: data frame or 'zoo' R object containing daily precipitation time series for several gauges (one gauge time series per column). See CCGamma.
- **lag**: numeric (expressed as number of days) used for the element [1,1] of the returned blockmatrix.
- **p**: numeric order p of the auto-regression...
- **...**: further arguments of CCGamma

Details

This a wrapper for CCGamma with the option only.matrix=TRUE and the function value is transformed into a blockmatrix object.

See Also

CCGamma, continuity_ratio, omega_inv, omega

Examples

data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period,station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
}

prec_mes <- prec_mes[,accepted]
the dataset is reduced!!!
prec_mes <- prec_mes[,1:2]

p <- 1 # try p <- 2 !!!
CCGamma <- CCGammaToBlockmatrix(data=prec_mes,lag=0,p=p,tolerance=0.001)
Not run:
Not Run in the examples, uncomment to run the following line
CCGamma_1 <- CCGammaToBlockmatrix(data=prec_mes,lag=1,p=p,tolerance=0.001)

Alternatively, recommended
Not Run in the examples, uncomment to run the following line
CCGamma <- CCGammaToBlockmatrix(data=prec_mes,lag=0,p=p+1,tolerance=0.001)
It calculates dry/wet spell duration.

Description

It calculates dry/wet spell duration.

Usage

```r
dw.spell(data, valmin = 0.5, origin = "1961-1-1", extract = NULL, month = 1:12, melting.df = FALSE, from.start = FALSE)
```

Arguments

- **data**: data frame R object containing daily precipitation time series for several gauges (one gauge time series per column).
- **valmin**: threshold precipitation value [mm] for wet/dry day indicator.
- **origin**: character string "yyyy-mm-dd" indicated the date of the first row of "data".
- **extract**: string character referred to the state to be extracted, eg. "dry" or "wet".
- **month**: integer vectors containing the considered months. Default is 1:12 (all the year).
- **melting.df**: logical value. If TRUE the output is melted into a data frame. Default is FALSE.
- **from.start**: logical value. If TRUE the spell is referenced to its first day, if it is FALSE (default) the spell is referenced to its last date.
Value

Function returns a list of data frames containing the spell length expressed in days

Examples

data(trentino)
year_min <- 1961
year_max <- 1990
period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period,station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
}
prec_mes <- prec_mes[,accepted]
the dataset is reduced!!!
prec_mes <- prec_mes[,1:3]

origin <- paste(year_min,1,1,sep="-")
dw_spell <- dw.spell(prec_mes,origin=origin)
dw_spell_dry <- dw.spell(prec_mes,origin=origin,extract="dry")

hist(dw_spell_dry$T0001$spell_length)

Single Gauging Station

prec_mes <- prec_mes[,1]

origin <- paste(year_min,1,1,sep="-")
dw_spell <- dw.spell(prec_mes,origin=origin)
dw_spell_dry <- dw.spell(prec_mes,origin=origin,extract="dry")
dw_spell_dry_start <- dw.spell(prec_mes,origin=origin,extract="dry",from.start=TRUE) ## dry spell
is referenced to the first day instead of the latest one as default.

hist(dw_spell_dry[[1]]$spell_length)
generate.PrecipitationOccurrenceModel

Stochastic Generation of a PrecipitationOccurrenceModel or PrecipitationOccurrenceMultiSiteModel model object

Description

It is an implementation of `generate` method.

Usage

```r
## S3 method for class 'PrecipitationOccurrenceModel'
generate(x, newdata = NULL,
  previous = NULL, n = 30, random = runif(n, min = 0, max = 1),
  exogen = NULL, monthly.factor = NULL, ...)
```

```r
## S3 method for class 'CCGammaObjectListPerEachMonth'
generate(x, ...)
```

```r
## S3 method for class 'PrecipitationOccurrenceMultiSiteModel'
generate(x, exogen,
  n = 10, origin = "1961-1-1", end = "1990-1-1", previous = NULL,
  monthly.factor = NULL, ...)
```

```r
## S3 method for class 'PrecipitationAmountModel'
generate(x, ...)
```

Arguments

- **x**: model returned by `PrecipitationOccurrenceModel` or `PrecipitationOccurrenceMultiSiteModel`
- **newdata**: predictor or exogenous variables. See `predict.PrecipitationOccurrenceModel`
- **previous**: logical vector containing previously occurred states
- **n**: number of generations. See `generate`. Here it is ignored and the number of generations is given by `origin`, `end` or `monthly.factor`.
- **random**: vector of random or calculated numbers ranging between 0 and 1
- **exogen**: predictor or exogenous variables
- **monthly.factor**: vector of factors indicating the month of the days
- **...**: further arguments
- **origin, end**: character strings (yyyy-dd-mm) indicating the start and/or end date of the daily weather generation.
References

See Also

generate.predict.glm, PrecipitationOccurrenceModel, PrecipitationOccurrenceMultiSiteModel

Examples

library(RGENERATEPREC)

A function example can be found in the following script file:
scriptfile <- system.file("example.generate.R",package="RGENERATEPREC")
The correct file path is given by 'scriptfile' variable:
print(scriptfile)
To run the example file, launch the file with 'source' command (uncomment the following line)
#source(scriptfile)
ALTERNATIVELY you can run the following lines:

data(trentino)
year_min <- 1961
year_max <- 1990
origin <- paste(year_min,1,1,sep="-")
end <- paste(year_max,12,31,sep="-")
period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max
prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 acc <- TRUE
 acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it])) & acc
 accepted[it] <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes>=valmin

station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
vec <- Tx_mes[,it]-Tn_mes[,it]
months <- factor(prec_mes$month)

Not run:
model <-
PrecipitationOccurrenceModel(x=prec_mes[,it],exogen=vec,
monthly.factor=months,valmin=valmin)
obs <- prec_mes[,it]>=valmin
gen <- generate(model,exogen=vec,monthly.factor=months,n=length(months))

Not run:
MultiSite Generation

station <- station[1:2]
exogen <- Tx_mes[,station]-Tn_mes[,station]

Not run:
model_multisite <-
PrecipitationOccurrenceMultiSiteModel(x=prec_mes[,station],
exogen=exogen,origin=origin,multisite_type="wilks")

LOGIT-type Model
model_multisite_logit <-
PrecipitationOccurrenceMultiSiteModel(x=prec_mes,exogen=exogen,
origin=origin,multisite_type="logit",station=station)

obs_multisite <- prec_mes[,station]>=valmin
gen_multisite <- generate(model_multisite,exogen=exogen,origin=origin,end=end)
nwetdays

It calculates the number of wet days for each month and each year

Usage

nwetdays(data, valmin = 0.5, origin = "1961-1-1", station = names(data))

Arguments

data data frame R object containing daily precipitation time series for several gauges (one gauge time series per column).
valmin threshold precipitation value [mm] for wet/dry day indicator.
origin character string "yyyy-mm-dd" indicated the date of the first row of "data".
station character string indicating the stations. Default is names(data)

Value

Function returns a list of data frames containing the spell length expressed in days

Examples

data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period,station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
omega <- omega(x = 0.5, p0_v1 = 0.5, p0_v2 = NA, correlation = FALSE)

Description

This function finds the bivariate joint probability or the binary correlation from the corresponding Gaussian correlation \(x \).

Usage

omega(x = 0.5, p0_v1 = 0.5, p0_v2 = NA, correlation = FALSE)

Arguments

- **x**: value of expected correlation between the corresponding Gaussian-distributed variables.
- **p0_v1, p0_v2**: probability of no precipitation occurrences for the v1 and v2 time series respectively. See Notes.
- **correlation**: logical numeric value. Default is FALSE. If TRUE the function returns the binary correlation like eq. 6 of Mhanna, et al., 2011.

Value

probability of no precipitation occurrence in both v1 and v2 simultaneously. It is a matrix if \(x \) is a matrix.

Note

This function makes use of normal copula. A graphical introduction to this function (with its inverse) makes is present in the following URL references: http://onlinelibrary.wiley.com/doi/10.1002/joc.2305/abstract and http://www.sciencedirect.com/science/article/pii/S0022169498001863 (See fig. 1 and par. 3.2) If the argument \(p0_v2 \), the two marginal probability values must be given as a vector through the argument \(p0_v1 \): \(p0_v1 = c(p0_v1, p0_v2) \). In case \(x \) is a correlation/covariance matrix the marginal probabilities are given as a vector through the argument \(p0_v1 \).
omega_inv

Author(s)
Emanuele Cordano

References

See Also
normalCopula, pcopula

Examples
rho <- 0.4
p00 <- omega(x=rho,p0_v1=0.5,p0_v2=0.5)
cor00 <- omega(x=rho,p0_v1=0.5,p0_v2=0.5,correlation=TRUE)

omega_inv(p0 = NULL, p0_v1 = 0.5, p0_v2 = p0_v1, p00 = p0_v1 * p0_v2, correlation = NA, only.value = TRUE, interval = c(-1, 1), tolerance = 0.001, nearPD = TRUE, force.independence = TRUE, ...)

omega_inv
This function is the inverse of omega function

Description
This function is the inverse of omega function

Usage
omega_inv(p0 = NULL, p0_v1 = 0.5, p0_v2 = p0_v1, p00 = p0_v1 * p0_v2, correlation = NA, only.value = TRUE, interval = c(-1, 1), tolerance = 0.001, nearPD = TRUE, force.independence = TRUE, ...)

Arguments
p0
matrix of joint probabilities. Default is NULL, otherwise functions returns a matrix with values
p0_v1, p0_v2
probability of no precipitatin occurrences for the v1 and v2 time series respectively.
p00
probability of no precipitation occurrence in both v1 and v2 simultaneously returned by omega
correlation
numerical value. Default is NA. Binary correlation retured by omega when the argument correlation=TRUE (see omega_root)
only.value logical. If TRUE (Default) the only Gaussian correlation (x input variable of omega) is returned, otherwise the complete output of unirroot is returned.

interval see interval option of unirroot. Default is c(-1,1).

tolerance tolerance (numeric) parameter used for comparisons with the extreme value of marginal probabilities. Default is 0.001.

nearPD logical. If TRUE (Default) a positive-definite correlation matrix is returned by applying nearPD in case p0 is a matrix and not NULL.

force.independence logical value. Default is TRUE. If it is TRUE, no negative corelation is considered and negative values of correletion are forced to be 0 (independence).

... further arguments for unirroot

Value

value of expected correlation between the corresponding Gaussian-distributed variables (see x input argument of omega).

Note

This function finds the zero of the omega_root function by calling unirroot. If the argument p0 is not NULL and is a matrix of joint probabilities, the function returns a correlation matrix by using the elements of p0 ass joint probabilities for each couple and p0_v1 as a vector of marginal probability of each occurrence/no-occurrence (In this case if the length of p0_v1 does not correspond to the number of columns of p0, the marginal probabilities are taken from the diagonal of p0). See the R code for major details.

Author(s)

Emanuele Cordano

See Also

normalCopula,pcopula,omega(and reference URLs therein)

Examples

x <- omega_inv(p0_v1=0.5,p0_v2=0.5,p00=1.1*0.5*0.5)
omega(x,p0_v1=0.5,p0_v2=0.5)
omega_root

Description
This is the target function whose zero is searched to create the inverse function of omega.

Usage
omega_root(x = 0.5, p0_v1 = 0.5, p0_v2 = 0.5, p00 = p0_v1 * p0_v2, correlation = NA)

Arguments
- x: value of expected correlation between the corresponding Gaussian-distributed variables
- p0_v1, p0_v2: probability of no precipitation occurrences for the v1 and v2 time series respectively.
- p00: probability of no precipitation occurrence in both v1 and v2 simultaneously returned by omega
- correlation: numerical value. Default is NA. Binary correlation returned by omega when the argument correlation=TRUE

Value
the value p00 - omega(x=x,p0_v1=p0_v1,p0_v2=p0_v2) or correlation - omega(x=x,p0_v1=p0_v1,p0_v2=p0_v2) (if correlation is not NA)

Note
This function makes use of normal copula

Author(s)
Emanuele Cordano

See Also
normalCopula, pcopula, omega, omega_inv

Examples
rho <- 0.4
p00 <- omega(x=rho,p0_v1=0.5,p0_v2=0.5)
omega_root(x=rho,p0_v1=0.5,p0_v2=0.5,p00=p00)
PrecipitationAmountModel

Creates a Precipitation Amount Model

Description

Creates a Precipitation Amount Model

Usage

`PrecipitationAmountModel(x, valmin = 1, station = names(x),
 sample = "monthly", origin = "1961-1-1", ...)`

Arguments

- **x**
 observed precipitation amount time series (data frame)
- **valmin**
 maximum admitted value of precipitation depth
- **station**
 string vector containing station identification codes
- **sample**
 character string. If it is "monthly" (Default), the correlation matrix is calculated per each month.
- **origin**
 date of the day referred by he first row of x.
- **...**
 further arguments for `normalizeGaussian_severalstations`

Value

The function returns an S3 object containing the correlation matrix of precipitation amount values (excluding the zeros). In case `sample=="monthly"` the function returns a `MonthlyList` S3 object.

See Also

`predict.PrecipitationAmountModel`, `normalizeGaussian_severalstations`, `generate`

Examples

```r
## Not run:
set.seed(1245)
data(trentino)
year_min <- 1961
year_max <- 1990

origin <- paste(year_min,1,1,sep="-")
end <- paste(year_max,12,31,sep="-")

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
```
prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 acc <- TRUE
 acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
 acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}
valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes>=valmin
station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
precamount <- PrecipitationAmountModel(prec_mes,station=station,origin=origin)
val <- predict(precamount)
prec_gen <- generate(precamount)

month <- adddate(as.data.frame(residuals(precamount$T0090)),origin=origin)$month
plot(factor(month),residuals(precamount$T0090))
qqplot(prec_mes$T0083,prec_gen$T0083)
abline(0,1)

SINGLE STATION
station <- "T0083"
precamount_single <- PrecipitationAmountModel(prec_mes,station=station,origin=origin)
val_single <- predict(precamount_single)
prec_gen_single <- generate(precamount_single)
month <- adddate(as.data.frame(residuals(precamount_single[[station[1]]])),origin=origin)$month
plot(factor(month),residuals(precamount_single[[station[1]]]))

Comparison (Q-Q plot) between multi and single sites.
qqplot(prec_mes$T0083,prec_gen$T0083,col=1)
abline(0,1)
points(sort(prec_mes$T0083),sort(prec_gen_single$T0083),pch=2,col=2)
legend("bottomright",pch=c(1,2),col=c(1,2),legend=c("Multi Sites","Single Site"))

abline(0,1)

End(Not run)

PrecipitationOccurrenceModel

Precipitation Occurrence Model

Description

This function creates a stochastic Occurrence Model for the variable \(x\) (PrecipitationOccurrenceModel S3 object) through a calibration from observed data.

Usage

PrecipitationOccurrenceModel(x, exogen = NULL, p = 1,
monthly.factor = NULL, valmin = 0.5, id.name = NULL, ...)

Arguments

- **x**: variable utilized for the auto-regression of its occurrence, e.g. daily precipitation
- **exogen**: exogenous predictors
- **p**: auto-regression order
- **monthly.factor**: vector of factors indicating the month of the days
- **valmin**: minimum admitted value for daily precipitation amount
- **id.name**: identification name of the station
- **...**: further arguments
PrecipitationOccurrenceModel

Value
The function returns a PrecipitationOccurrenceModel-class S3 object containing the following elements:

- predictor data frame containing the endogenous and exogenous predictors of the logistic regression model;
- glm the generalized liner model using for the logistic regression;
- p auto-regression order
- valmin minimum admitted value for daily precipitation amount

See Also
- glm

Examples

```r
library(RGENERATEPREC)
data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
  acc <- TRUE
  acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
  acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
  accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))) & acc
}

valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes>=valmin

station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
```
vect <- Tx_mes[,it]-Tn_mes[,it]
months <- factor(prec_mes$month)
model <- PrecipitationOccurrenceModel(x=prec_mes[,it],exogen=vect,monthly.factor=months)
probs <- predict(model$glm,type="response")

plot(months[-1],probs)
newdata <- model$predictor[2000:2007,]
probs0 <- predict(model,newdata=newdata)

PrecipitationOccurrenceMultiSiteModel

Precipitation Occurrence Multi-Site Model

Description

This function creates a stochastic Occurrence Multi-Site Model for the variable x (PrecipitationOccurrenceMultiSiteModel S3 object) through a calibration from observed data.

Usage

```r
PrecipitationOccurrenceMultiSiteModel(x, exogen = NULL, station = names(x), origin = origin, valmin = 0.5, multisite_type = "wilks", tolerance_wilks = 0.001, p = 2, ...)
```

Arguments

- `x`: data frame (each column is a site) of variable utilized for the auto-regression of its occurrence, e.g. daily precipitation
- `exogen`: exogenous predictors
- `station`: character string vectors containing the codes of the station used for model calibration
- `origin`: character string (yyyy-dd-mm) indicating the date of the first row of "x".
- `valmin`: minimum admitted value for daily precipitation amount
- `multisite_type`: string indicating the utilized approach for spatial multi-site dependence description. Default is "wilks".
- `tolerance_wilks`: see tolerance used by `omega_inv` through `CCGamma`
- `p`: auto-regression order
- `...`: further arguments
Value

The function returns a \texttt{PrecipitationOccurrenceModel-class} S3 object containing the following elements:

- \texttt{PrecipitationOccurrenceModel} S3 class objects for each analyzed site. The name is the site (or station) code
- \texttt{ccgama CCGammaObjectListPerEachMonth} object, i.e. matrices of Gaussian Inter-Site Correlation returned by \texttt{CCGamma};
- \texttt{type} string indicating the utilized approach for spatial multi-site dependence description, only "wilks" type is implemented;
- \texttt{station} character string vectors containing the codes of the station used in \texttt{PrecipitationMultiSiteOccurrenceModel}.

See Also

\texttt{PrecipitationOccurrenceModel,CCGamma}

Examples

```r
library(RGENERATEPREC)

data(trentino)

year_min <- 1961
year_max <- 1990
origin <- paste(year_min,1,1,sep="-")

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
  acc <- TRUE
  acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it])) & acc
  accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc & acc
}

valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes>=valmin
```
predict.PrecipitationOccurrenceModel

Prediction of a PrecipitationOccurrenceModel model object

Description

It is a wrapper of predict.glm method for the a PrecipitationOccurrenceModel model object S3 class.

Usage

S3 method for class 'PrecipitationOccurrenceModel'
predict(object, newdata = NULL,
 type = "response", previous = NULL, endogenous = NULL, ...)

S3 method for class 'PrecipitationOccurrenceMultiSiteModel'
predict(object, ...)

S3 method for class 'PrecipitationAmountModel'
predict(object, newdata = NULL,
 origin_newdata = NA, precipitation.value.random.generation = FALSE,
 ...)

Arguments

object model returned by PrecipitationOccurrenceModel
newdata predictor or exogenous variables
type see predict.glm. Default is "response". See predict.glm.
previous logical vector containing previously occurred states.
endogenous String vector containing the name of the endogenous variables. It is used if the endogenous variables are more than one, otherwise is set NULL (Default).

... further arguments

origin_newdata character string containing the date corresponding the first row of newdata

precipitation.value.random.generation logical value. If it is FALSE (Default) the method predict.PrecipitationAmountModel returns conditioned random values, otherwise these values are converted to precipitation values through their observed non-parametric distributions.

See Also

predict.glm,PrecipitationOccurrenceModel
predict.glm,predict.glm,PrecipitationOccurrenceModel,PrecipitationAmountModel

Examples

library(RGENERATEPREC)
data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 acc <- TRUE
 acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
 acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}

valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
origin <- paste(year_min,1,1,sep="-")

prec_occurrence_mes <- prec_mes>valmin
predict.PrecipitationOccurrenceModel

```r
station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
vect <- Tx_mes[,it]-Tn_mes[,it]
months <- factor(prec_mes$month)
model <- PrecipitationOccurrenceModel(x=prec_mes[,it],exogen=vect,monthly.factor=months)
probs <- predict(model)

nday <- 3.0
vect_new <- array(1.0,nday)
months_new <- array(1,nday)
row_test <- 2000:2007
newdata <- model$predictor[row_test,]
probs2 <- predict(model,newdata=newdata)
probs[row_test]==probs2
###

prec_occurrence_mes <- prec_mes>=valmin
station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
station <- station[1:4] ## reduced the dataset!!!
Tx_mes <- Tx_mes[,station]
Tn_mes <- Tn_mes[,station]
prec_mes <- prec_mes[,station]
exogen <- Tx_mes-Tn_mes
months <- factor(prec_mes$month)

## Not run:
### Not Run
### Please uncomment the following lines to run them

model_multisite <- PrecipitationOccurrenceMultiSiteModel(x=prec_mes,
exogen=exogen,origin=origin,multisite_type="wilks")

model_multisite_logit <- PrecipitationOccurrenceMultiSiteModel(x=prec_mes,
exogen=exogen,origin=origin,multisite_type="logit")

probs_multimodel <- predict(model_multisite_logit)

## End(Not run)
```
predict.PrecipitationOccurrenceModel
Index

blockmatrix, 4, 5

CCGamma, 2, 3, 5, 20, 21
CCGammaToBlockmatrix, 4, 4
continuity_ratio, 2–5
dw.spell, 6

generate, 8, 9, 16
generate
 (generate.PrecipitationOccurrenceModel), 8
generate.PrecipitationOccurrenceModel, 8
glm, 19

nearPD, 14
normalCopula, 13–15
normalizeGaussian_severalstations, 16
nwetdays, 11

omega, 2, 4, 5, 12, 13–15
omega_inv, 2–5, 13, 15, 20
omega_root, 13, 14, 15

pcopula, 13–15
PrecipitationAmountModel, 16, 23
PrecipitationOccurrenceModel, 8, 9, 18, 21–23
PrecipitationOccurrenceMultiSiteModel,
 8, 9, 20
predict
 (predict.PrecipitationOccurrenceModel), 22
predict.glm, 9, 22, 23
predict.PrecipitationAmountModel, 16
predict.PrecipitationOccurrenceModel,
 8, 22

uniroot, 14