Package ‘RGMM’

July 13, 2022

Type Package
Title Robust Mixture Model
Version 1.1.0
Description Algorithms for estimating robustly the parameters of a Gaussian, Student, or Laplace Mixture Model.
License GPL (>= 2)
Encoding UTF-8
Imports Rcpp, foreach, doParallel, mvtnorm,mclust,parallel,LaplacesDemon, genieclust, RSpectra, ggplot2, reshape2
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.2
NeedsCompilation yes
Author Antoine Godichon-Baggioni [aut, cre, cph], Stéphane Robin [aut]
Maintainer Antoine Godichon-Baggioni <antoine.godichon_baggioni@upmc.fr>
Repository CRAN
Date/Publication 2022-07-13 06:50:13 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGMM-package</td>
<td>2</td>
</tr>
<tr>
<td>Gen_MM</td>
<td>2</td>
</tr>
<tr>
<td>RMMplot</td>
<td>4</td>
</tr>
<tr>
<td>RobMM</td>
<td>5</td>
</tr>
<tr>
<td>RobVar</td>
<td>7</td>
</tr>
</tbody>
</table>

Index 10
Description

In this package, we provide functions to provide robust clustering in the case of Gaussian, Student and Laplace Mixture Models. Function `RobVar` computes robustly the covariance of a numerical data set which are realizations of Gaussian, Student or Laplace vectors. Function `RobMM` enables to provide a clustering of a numerical data set, `RMMplot` enables to produce graph for Robust Mixture Models, while `Gen_MM` enables to generate possibly contaminated mixture of Gaussian, Student and Laplace vectors.

Author(s)

NA

Maintainer: NA

References

Usage

`Gen_MM(nk=NA, df=3, mu=NA, Sigma=FALSE, delta=0, cont="Student", model="Gaussian", dfcont=1, mucont=FALSE, Sigmacont=FALSE, minU=-20, maxU=20)`
Arguments

nk An integer vector containing the desired number of data for each class. The default is \(nk = \text{rep}(500, 3) \).

df An integer larger (or equal) than 3 specifying the degrees of freedom of the Student law, if \(\text{model} = \text{'Student'} \). Default is 3.

mu A numeric matrix whose raws correspond to the centers of the classes. By default, \(\mu \) is generated randomly.

Sigma An array containing the variance of each class. See example for more details.

delta A positive scalar between 0 and 1 giving the proportion of contaminated data. Default is 0.

cont The kind of contamination chosen. Can be equal to 'Unif' or 'Student'.

model A string character specifying the model chosen for the Mixture Model. Can be equal to 'Gaussian' (default) or 'Student'.

dfcont A positive integer specifying the degrees of freedom of the contamination laws if \(\text{cont} = \text{'Student'} \). Default is 1.

mucont A numeric matrix whose rows correspond to the centers of the contamination laws. By default, \(\mu_{cont} \) is chosen equal to \(\mu \).

Sigmacont An array containing the variance of each contamination law. By default, \(\sigma_{cont} \) is chosen equal to \(\sigma \).

minU A scalar giving the lower bound of the uniform law of the contamination if \(\text{cont} = \text{'Unif'} \).

maxU A scalar giving the upper bound of the uniform law of the contamination if \(\text{cont} = \text{'Unif'} \).

Value

A list with:

Z An integer vector specifying the true classification. If \(\delta \) is non null, the contaminated data are considered as a class.

C A 0-1 vector specifying the contaminated data.

X A numerical matrix giving the generated data.

See Also

See also \texttt{RobMM} and \texttt{RobVar}.

Examples

\begin{verbatim}
p <- 3
nk <- rep(50, p)
mu <- c()
for (i in 1:length(nk))
{
 Z <- rnorm(3)
\end{verbatim}
\begin{verbatim}
mu <- rbind(mu,length(nk)*Z/sqrt(sum(Z^2)))
}
Sigma <- array(dim=c(length(nk), p, p))
for (i in 1:length(nk))
{
 Sigma[i, ,] <- diag(p)
}
ech <- Gen_MM(nk=nk,mu=mu,Sigma=Sigma)
\end{verbatim}

\begin{verbatim}
RMMplot Rmmplot
\end{verbatim}

Description

A plot function for Robust Mixture Model

Usage

\[
\text{RMMplot}(a, \text{outliers}=\text{TRUE},
\quad \text{graph}=c('Two_Dim','Two_Dim_Uncertainty','ICL','BIC',
\quad 'Profiles','Uncertainty'), \text{bestresult}=\text{TRUE}, \text{K}=\text{FALSE})
\]

Arguments

- **a**: Output from \text{RobMM}.
- **outliers**: An argument telling if there are outliers or not. In this case, Two dimensional plots and profiles plots will be done without detected outliers. Default is \text{TRUE}.
- **graph**: A string specifying the type of graph requested. Default is \text{c('Two_Dim','Two_Dim_Uncertainty','ICL','BIC',
\quad 'Profiles','Uncertainty')}.
- **bestresult**: A logical indicating if the graphs must be done for the result chosen by the selected criterion. Default is \text{TRUE}.
- **K**: A logical or positive integer giving the chosen number of clusters for each the graphs should be drawn.

See Also

See also \text{RobMM} and \text{Gen_MM}.

Examples

\[
ech <- \text{Gen_MM()}
X <- ech$X
res <- \text{RobMM}(X, nclust=3,ninit=0)
\text{RMMplot}(res, graph=c('Two_Dim'))
\]
Description

Robust Mixture Model

Usage

RobMM(X, nclust=2:5, model="Gaussian", ninit=10,
 nitermax=50, niterEM=50, niterMC=50, df=3,
 epsvp=10^(-4), mc_sample_size=1000, LogLike=-Inf,
 init='genie', epsPi=10^(-4), epsout=-20,
 alpha=0.75, c=ncol(X), w=2, epsilon=10^(-8),
 criterion='ICL', methodMC="RobbinsMC", par=TRUE,
 methodMCM="Weiszfeld")

Arguments

X
A matrix giving the data.

nclust
A vector of positive integers giving the possible number of clusters.

model
The mixture model. Can be 'Gaussian' (by default), 'Student' and 'Laplace'.

ninit
The number of random initializations. Default is 10.

nitermax
The number of iterations for the Weiszfeld algorithm if MethodMCM= 'Weiszfeld'.

niterEM
The number of iterations for the EM algorithm.

niterMC
The number of iterations for estimating robustly the variance of each class if methodMC='FixMC' or methodMC='GradMC'.

df
The degrees of freedom for the Student law if model='Student'.

epsvp
The minimum values the estimates of the eigenvalues of the Median Covariation Matrix can take. Default is 10^(-4).

mc_sample_size
The number of data generated for the Monte-Carlo method for estimating robustly the variance.

LogLike
The initial loglikelihood to 'beat'. Default is -Inf.

init
Can be F if no non random initialization of the algorithm is done, 'genie' if the algorithm is initialized with the help of the function 'genie' of the package genieclust or 'Mclust' if the initialization is done with the function hclass of the package Mclust.

epsPi
A scalar to ensure the estimates of the probabilities of belonging to a class or uniformly lower bounded by a positive constant.

epsout
If the probability of belonging of a data to a class is smaller than exp(epsout), this probability is replaced by exp(epsout) for calculating the logLikelihood. If the probability is too weak for each class, the data is considered as an outlier. Default is -20.
alpha: A scalar between 1/2 and 1 used in the stepsequence for the Robbins-Monro method if methodMC='RobbinsMC'.
c: The constant in the stepsequence if methodMC='RobbinsMC' or methodMC='GradMC'.
w: The power for the weighted averaged Robbins-Monro algorithm if methodMC='RobbinsMC'.
epsilon: Stopping condition for the Weiszfeld algorithm.
criterion: The criterion for selecting the number of clusters. Can be 'ICL' (default) or 'BIC'.
methodMC: The method chosen to estimate robustly the variance. Can be 'RobbinsMC', 'GradMC' or 'FixMC'.
par: Is equal to T if the parallelization of the algorithm is allowed.
methodMCM: The method chosen for estimating the Median Covariation Matrix. Can be 'Gmedian' or 'Weiszfeld'.

Value

A list with:
bestresult: A list giving all the results for the best clustering (chosen with respect to the selected criterion).
allresults: A list containing all the results.
ICL: The ICL criterion for all the number of classes selected.
BIC: The BIC criterion for all the number of classes selected.
data: The initial data.
nclust: A vector of positive integers giving the possible number of clusters.
Kopt: The number of clusters chosen by the selected criterion.

For the lists bestresult and allresults[[k]]:
centers: A matrix whose rows are the centers of the classes.
Sigma: A matrix containing all the variance of the classes.
LogLike: The final LogLikelihood.
Pi: A matrix giving the probabilities of each data to belong to each class.
niter: The number of iterations of the EM algorithm.
initEM: A vector giving the initialized clustering if init='Mclust' or init='genie'.
prop: A vector giving the proportions of each class.
outliers: A vector giving the detected outliers.

References

See Also

See also Gen_MM, RMMplot and RobVar.

Examples

```r
ech <- Gen_MM()
X <- ech$X
res <- RobMM(X, nclust=3, ninit=0)
RMMplot(res, graph=c('Two Dim'))
```

Description

Robust estimate of the variance

Usage

```r
RobVar(X, c=2, alpha=0.75, model='Gaussian', methodMCM='Weiszfeld',
       methodMC='Robbins', mc_sample_size=1000, init=rep(0, ncol(X)),
       init_cov=diag(ncol(X)),
       epsilon=10^(-8), w=2, initvp=rep(0, length(vp)), df=3, niterMC=50,
       cgrad=2, niterWeisz=50, epsWeisz=10^(-8), alphaMedian=0.75, cmedian=2)
```

Arguments

- **X**: A numeric matrix of whose rows correspond to observations.
- **c**: A positive scalar giving the constant in the stepsequence of the Robbins-Monro or Gradient method if methodMC='RobbinsMC' or methodMC='GradMC'. Default is 2.
- **alpha**: A scalar between 1/2 and 1 giving the power in the stepsequence for the Robbins-Monro algorithm if methodMC='RobbinsMC'. Default is 0.75.
- **model**: A string character specifying the model: can be 'Gaussian' (default), 'Student' or 'Laplace'.
- **methodMCM**: A string character specifying the method to estimate the Median Covariation Matrix. Can be 'Gmedian' or 'Weiszfeld' (default).
- **methodMC**: A string character specifying the method to estimate robustly the variance. Can be 'Robbins' (default), 'Fix' or 'Grad'.
- **mc_sample_size**: A positive integer giving the number of data simulated for the Monte-Carlo method. Default is 1000.
- **init**: A numeric vector giving the initialization for estimating the median.
- **init_cov**: A numeric matrix giving an initialization for estimating the Median Covariation Matrix.
- **epsilon**: A positive scalar giving a stoping condition for algorithm.
A positive integer specifying the power for the weighted averaged Robbins-Monro algorithm if `methodMC='RobbinsMC'`.

- **initvp**: A numeric vector for initializing the estimates of the eigenvalues of the covariance.

- **df**: An integer larger (or equal) than 3 specifying the degrees of freedom for the Student law if `model='Student'`. See also `Gen_MM`. Default is 3.

- **niterMC**: An integer giving the number of iterations for iterative algorithms if the selected method is 'Grad' or 'Fix'. Default is 50.

- **cgrad**: A numeric vector with positive values giving the stepsequence of the gradient algorithm for estimating the variance if `methodMC='Grad'`. Its length has to be equal to `niter`.

- **niterWeisz**: A positive integer giving the maximum number of iterations for the Weiszfeld algorithms if `methodMCM='Weiszfeld'`. Default is 50.

- **epsWeisz**: A stopping factor for the Weiszfeld algorithm.

- **alphaMedian**: A scalar between 1/2 and 1 giving the power of the stepsequence of the gradient algorithm for estimating the Median Covariation Matrix if `methodMCM='Gmedian'`. Default is 0.75.

- **cmedian**: A positive scalar giving the constant in the stepsequence of the gradient algorithm for estimating the Median Covariation Matrix if `methodMCM='Gmedian'`. Default is 2.

Value

An object of class `list` with the following outputs:

- **median**: The median of `X`.

- **variance**: The robust variance of `X`.

- **median**: The Median Covariation Matrix of `X`.

References

See Also

See also `RobMM` and `Gen_MM`.
Examples

```r
n <- 2000
d <- 5
Sigma <-diag(1:d)
mean <- rep(0,d)
X <- mvtnorm::rmvnorm(n,mean,Sigma)
RVaR=RobVar(X)
```
Index

* Mixture Model
 Gen_MM, 2
 RMMplot, 4
 RobVar, 7

* Robust Mixture Model
 RGMM-package, 2
 RobMM, 5

Gen_MM, 2, 2, 4, 7, 8
RGMM-package, 2
RMMplot, 2, 4, 7
RobMM, 2–4, 5, 8
RobVar, 2, 3, 7, 7