Package ‘RHRT’

October 12, 2022

Type Package

Title Heart Rate Turbulence Analysis

Version 1.0.1

Date 2021-06-17

BugReports https://github.com/VBlesius/RHRT/issues

Description Methods to scan RR interval data for Premature Ventricular Complexes (PVCs) and parameterise and plot the resulting Heart Rate Turbulence (HRT). The methodology of HRT analysis is based on the original publication by Schmidt et al. <doi:10.1016/S0140-6736(98)08428-1> and extended with suggestions from <doi:10.1088/1361-6579/ab98b3>.

Depends R (>= 3.5.0)

License GPL-2

LazyData TRUE

Imports methods, graphics, utils

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat, matrixStats

VignetteBuilder knitr

Collate 'HRT.R' 'avHRT.R' 'HRTList.R' 'Testdata-description.R'
 'constants.R' 'conversion_to_HRT.R' 'roll.R'

NeedsCompilation no

Author Valeria Blesius [aut, cre] (https://orcid.org/0000-0002-2391-242X)

Maintainer Valeria Blesius <valeria.blesius@mni.thm.de>

Repository CRAN

Date/Publication 2021-06-29 06:00:02 UTC

\textbf{R topics documented:}

- avHRT ... 2
- calcAvHRT ... 4
- calcHRTParams .. 5
avHRT

S4 class to represent an avHRT object

Description

This class extends the HRT class. An avHRT is the average of an HRTList and saves the way in which it was calculated.

Usage

```r
## S4 method for signature 'avHRT'
initialize(
  .Object,
  av = mean,
  orTO = "avAfter",
  orTS = "avBefore",
  pTO = NA_real_,
  pTS = NA_real_,
  pTT = NA_real_,
  pnTS = NA_real_,
  nRMSSD = NA_real_,
  couplRR = NA_real_,
  compRR = NA_real_,
  preRRs = NA_real_,
  postRRs = NA_real_
)
```
Arguments

- **.Object** The name of the class
- **av** (Function) Type of averaging, either mean or median
- **orTO** (Character) Order in which TO was calculated, either "avAfter" (assessment of parameter and averaging) or "avBefore" (averaging of the VPCSs and assessment of parameter)
- **orTS** (Character) Order in which TS was calculated, either "avAfter" (assessment of parameter and averaging) or "avBefore" (averaging of the VPCSs and assessment of parameter)
- **pTO** (Numeric) p-value of t-test checking the validity of TO
- **pTS** (Numeric) p-value of t-test checking the validity of TS
- **pTT** (Numeric) p-value of t-test checking the validity of TT
- **pnTS** (Numeric) p-value of t-test checking the validity of normalised TS
- **nRMSSD** (Numeric) RMSSD normalised to HR
- **coup1RR** (Numeric) Coupling interval
- **compRR** (Numeric) Compensatory interval
- **preRRs** (Numeric vector) Preceding intervals
- **postRRs** (Numeric vector) Following intervals

Value

-(avHRT) A new avHRT object

Slots

- **av** (Function) Type of averaging, either mean or median
- **orTO** (Character) Order in which TO was calculated, either "avAfter" (assessment of parameter and averaging) or "avBefore" (averaging of the VPCSs and assessment of parameter)
- **orTS** (Character) Order in which TS was calculated, either "avAfter" (assessment of parameter and averaging) or "avBefore" (averaging of the VPCSs and assessment of parameter)
- **pTO** (Numeric) p-value of t-test checking the validity of TO
- **pTS** (Numeric) p-value of t-test checking the validity of TS
- **pTT** (Numeric) p-value of t-test checking the validity of TT
- **pnTS** (Numeric) p-value of t-test checking the validity of normalised TS
calcAvHRT Calculate an avHRT object

Description

For each index the average of the intervals across all HRTs in the HRTList is calculated and the averaged HRT returned. The type of averaging, the order of HRT parameter assessment and interval lengths for normalising TS can be passed.

Usage

```r
calcAvHRT("HRTListObj",
  av = mean,
  orTO = "avAfter",
  orTS = "avBefore",
  IL = HRTListObj@IL,
  normIL = c_normIL,
  normHallstrom = TRUE,
  coTO = COTO,
  coTS = COTS,
  coTT = COTT
)
```

Arguments

- `HRTListObj` HRTList object
- `av` (Function) Type of averaging the VPCSs, either mean or median
- `orTO` (Character) Order in which TO was calculated, either "avAfter" (assessment of parameter and averaging) or "avBefore" (averaging of the VPCSs and assessment of parameter)
calcHRTParams

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>orTS</td>
<td>(Character) Order in which TS was calculated, either "avAfter" (assessment of parameter and averaging) or "avBefore" (averaging of the VPCSs and assessment of parameter)</td>
</tr>
<tr>
<td>IL</td>
<td>(Numeric) The overall arithmetic mean of the interval length of the measurement to normalise TS</td>
</tr>
<tr>
<td>normIL</td>
<td>(Numeric) The interval length to which TS should be normalised</td>
</tr>
<tr>
<td>normHallstrom</td>
<td>(Boolean) Should the normalisation of Hallstrom be used?</td>
</tr>
<tr>
<td>coTO</td>
<td>(Numeric) Cut-off value for TO</td>
</tr>
<tr>
<td>coTS</td>
<td>(Numeric) Cut-off value for TS and nTS</td>
</tr>
<tr>
<td>coTT</td>
<td>(Numeric) Cut-off value for TT</td>
</tr>
</tbody>
</table>

Details

To eliminate other RR variability TS is commonly assessed after averaging the VPCSs. TO is commonly first calculated from the single VPCS and then averaged. (See 'Heart Rate Turbulence: Standards of Measurement, Physiological Interpretation, and Clinical Use, Axel Bauer et al., Journal of the American College of Cardiology, Volume 52, Issue 17, Pages 1353-1365')

Value

(avHRT) The avHRT object of the given HRTList

Examples

```r
# You need an HRTList
hrtl <- vectorToHRT(testdataLong, testdataLong_Ann)

# Recalculate the avHRT with different normalisation
calcAvHRT(hrtl, normIL = 1000, normHallstrom = FALSE)

# Recalculate the avHRT based on a different calculation order
calcAVHRT(hrtl, orTO = "avBefore", orTS = "avAfter")

# Set custom parameter cut-offs for the reliability check
## You should keep in mind to give the same cut-offs when calling getResults()
calcAvHRT(hrtl, coTO = 0.022, coTS = 1.42, coTT = 12)
```

Description

Calculates all HRT parameters needed for an HRT object and saves them in the corresponding slots.
Usage
calcHRTParams(HRTObj, IL = c_normIL, normIL = c_normIL)

S4 method for signature 'HRT'
calcHRTParams(HRTObj, IL = c_normIL, normIL = c_normIL)

Arguments

- **HRTObj**: (HRT) The HRT object of which the parameters should be calculated
- **IL**: (Numeric) The overall arithmetic mean of the interval length of the measurement to normalise TS
- **normIL**: (Numeric) The interval length to which TS should be normalised

Details

This method is a wrapper for the methods calcTO and calcTS.

Value

(HRT) An HRT object with (re)calculated HRT parameters

calcTO **Calculate TO parameters**

Description

Calculates the TO parameters and saves it in the corresponding slot

Usage
calcTO(HRTObj)

S4 method for signature 'HRT'
calcTO(HRTObj)

Arguments

- **HRTObj**: (HRT) The HRT object, for which TO should be calculated

Value

(HRT) An HRT object with (re)calculated TO
calcTS

Calculate TS parameters

Description

Calculates all TS parameters (TS itself, its index TT (turbulence timing) and the intercept for the plot) and saves them in the corresponding slots. Can also calculate normalised TS and intercept.

Usage

```r
calcTS(HRTObj, normalising = FALSE, IL = c_normIL, normIL = c_normIL)
```

```
## S4 method for signature 'HRT'
calcTS(HRTObj, normalising = FALSE, IL = c_normIL, normIL = c_normIL)
```

Arguments

- **HRTObj** (HRT) The HRT object, for which TS should be calculated
- **normalising** (Boolean) Should the normalised TS be calculated?
- **IL** (Numeric) The overall arithmetic mean of the interval length of the measurement to normalise TS
- **normIL** (Numeric) The interval length to which TS should be normalised

Value

(HRT) An HRT object with (re)calculated TS+intercept or nTS+nintercept

checkAnnotations

Checks annotations for compatibility

Description

Checks annotations for compatibility

Usage

```r
checkAnnotations(annotations, input, PVCAnn, label)
```

Arguments

- **annotations** (Character vector) Annotations matching input
- **input** (Numeric vector) RR intervals in ms
- **PVCAnn** (Character) Character that marks a VPC in the annotations
- **label** (Character) Name of the data given and formatted for output
checkInput

Value

No return value, possibly throws errors/warnings

checkForHRT

Checks RR-intervals for HRT criteria and returns an HRT object

Description

Checks RR-intervals for HRT criteria and returns an HRT object

Usage

checkForHRT(intervals, numPreRRs = c_numPreRRs, numPostRRs = c_numPostRRs)

Arguments

- intervals (Numeric vector) RR intervals in ms
- numPreRRs (Numeric) Number of RRs before the coupling interval that are used for filtering
- numPostRRs (Numeric) Number of RRs after the compensatory interval that are used for filtering

Value

(HRT) A single HRT object

checkInput

Checks data input for compatibility

Description

Checks data input for compatibility

Usage

checkInput(input, numSnippet, label)

Arguments

- input (Numeric vector) RR intervals in ms
- numSnippet (Numeric) number of RRs in the the HRT snippet
- label (Character) Name of the data given and formatted for output

Value

No return value, possibly throws errors/warnings
checkValidity

Description
Checks whether slots are set
Check for HRTList class

Usage
checkValidity(x, ...)

S4 method for signature 'HRT'
checkValidity(x)

S4 method for signature 'HRTList'
checkValidity(x, av = FALSE, pos = FALSE)

Arguments
x HRTList
... Other parameters
av (Boolean) Should avHRT be checked?
pos (Boolean) Should pos be checked?

Value
No return value, possibly throws errors/warnings
No return value, possibly throws errors

cleanInput

Description
Cleans data input for further checks or calculation

Usage
cleanInput(input)

Arguments
input (Numeric vector) RR intervals in ms
getHRTParams

Extracts all values of a special slot out of a HRTList

Description

Extracts all values of the given slot in each HRT of the HRTList and returns them in a list

Usage

getHRTParams(HRTListObj, sl)

S4 method for signature 'HRTList'
getHRTParams(HRTListObj, sl)

Arguments

HRTListObj HRTList object
sl (Character) Value of a slot saved by an HRT object

Value

(numeric vector or list) Vector or list of the numerics stored in the given slot

Examples

You need an HRTList
hrtl <- vectorToHRT(testdataLong, testdataLong_Ann)

Get all TOs of the HRTs in your HRTList
getHRTParams(hrtl, "TO")

You can access all slots in the HRTs
getHRTParams(hrtl, "intercept")

If you access slots that include more than one numeric, the function returns a list
getHRTParams(hrtl, "preRRs")
getHRTs

Finds HRTs

Description

Scans for HRTs in the given vector and returns an HRTList object.

Usage

getHRTs(
 intervals,
 annotations = NULL,
 PVCAnn = "V",
 numPreRRs = c_numPreRRs,
 numPostRRs = c_numPostRRs,
 numSnippet
)

Arguments

 intervals (Numeric vector) RR intervals in ms
 annotations (Character vector) Annotations matching input
 PVCAnn (Character) Character that marks a VPC in the annotations
 numPreRRs (Numeric) Number of RRs before the coupling interval that are used for filtering
 numPostRRs (Numeric) Number of RRs after the compensatory interval that are used for filtering
 numSnippet (Numeric) Number of RRs in the HRT snippet

Value

 (HRTList) HRTList with only pos and HRTs set

getPositions

Get positions of PVCs

Description

Returns the positions of all ventricular premature complexes (VPCs) and accordingly the coupling intervals that were found in the given vector when the HRTList was created.

Usage

getPositions(HRTListObj)

S4 method for signature 'HRTList'
getPositions(HRTListObj)
getResults

Arguments

HRTListObj (HRTList object)

Value

No return value, possibly throws errors/warnings

Description

Returns the HRT parameters of the HRTList. Turbulence onset is calculated for each HRT object and then averaged, turbulence slope is calculated via averaging the intervals of all HRT objects to one HRT object and then estimating the maximal slope.

Usage

getResults(
 HRTListObj,
 type = "class",
 TT = FALSE,
 nTS = FALSE,
 safe = TRUE,
 pmax = 0.05,
 num = FALSE,
 coTO = COTO,
 coTS = COTS,
 coTT = COTT
)

S4 method for signature 'HRTList'
getResults(
 HRTListObj,
 type = "class",
 TT = FALSE,
 nTS = FALSE,
 safe = TRUE,
 pmax = 0.05,
 num = FALSE,
 coTO = COTO,
 coTS = COTS,
 coTT = COTT
)
getRRs

Returns the VPCS intervals in right order

Description

Returns the VPCS intervals in right order
Usage

getRRs(HRTObj)

S4 method for signature 'HRT'
getRRs(HRTObj)

Arguments

HRTObj HRT

Value

(numeric vector) All VPCS intervals

HRT

S4 class to represent an HRT object

Description

This class specifies an object to save the lengths of intervals surrounding a premature ventricular beat. It saves the HRT parameters turbulence onset (TO), slope (TS) and timing (TT) after calculation as well as the coefficients of an ab-line used for the plot. TS is saved after common calculation and after normalising.

Usage

S4 method for signature 'HRT'
initialize(
 .Object,
 couplRR = NA_real_,
 compRR = NA_real_,
 preRRs = NA_real_,
 postRRs = NA_real_
)

Arguments

/Object (Character) The name of the class
couplRR (Numeric) Coupling interval
compRR (Numeric) Compensatory interval
preRRs (Numeric vector) Preceding intervals
postRRs (Numeric vector) Following intervals

Value

(HRT) A new HRT object
HRTList

Slots

coupRR (Numeric) Coupling interval
compRR (Numeric) Compensatory interval
preRRs (Numeric vector) Preceding intervals
postRRs (Numeric vector) Following intervals
T0 (Numeric) Turbulence onset
TS (Numeric) Turbulence slope
TT (Numeric) Turbulence timing
intercept (Numeric) Intercept of regression line of TS
nTS (Numeric) Normalised Turbulence slope
nintercept (Numeric) Intercept of regression line of nTS

HRTList S4 class to represent a list of HRT objects

Description

This class specifies an object to save all HRT objects of a given vector. It also saves an averaged HRT for calculation of the averaged HRT parameters and plotting of all HRTs in a single plot.

Usage

S4 method for signature 'HRTList'
initialize(
 .Object,
 name = NA_character_,
 IL = NA_real_,
 pos = NA_real_,
 HRTs = list(),
 avHRT = new("avHRT"),
 RMSSD = NA_real_
)

Arguments

/Object (Character) The name of the class
name (Character) Name of the vector if given
IL (Numeric) Arithmetic mean of the overall interval length of the vector
pos (Numeric vector) Positions of premature ventricular complexes in given input
HRTs (List) All HRT objects
avHRT (avHRT object) The average of all HRTs
RMSSD (Numeric) Square root of the mean of the squared successive differences between adjacent intervals of the whole measurement
Value

(HRTList) A new HRTList object

Slots

name (Character) Name of the vector if given

IL (Numeric) Arithmetic mean of the overall interval length of the vector

pos (Numeric vector) Positions of premature ventricular complexes in given input

HRTs (List) All HRT objects

avHRT (avHRT object) The average of all HRTs

RMSSD (Numeric) Square root of the mean of the squared successive differences between adjacent intervals of the whole measurement

Note

After using vectorToHRT all slots in the resulting HRTList object are set. Please do not set them manually since many functions of the HRTList class rely on valid values assigned to the needed slots.

plot.HRT-method
Plot an HRT object

Description

Plots RR-intervals saved in the HRT object and marks turbulence onset and turbulence slope.

Usage

```r
# S4 method for signature 'HRT'
plot(
x, 
cropped = TRUE,
TT = FALSE,
pch = 20,
xlab = "# of RR interval",
ylab = "length of RR interval (ms)",
paramsLegend = TRUE,
colTO = "#ec2023",
colTS = "#006AFF",
colTT = "#6800DE",
add = FALSE,
...
)
```

Arguments

x (HRT) A HRT object

cropped (Boolean) Should the plot be cut to focus on the HRT parameters? To show all points use FALSE.

TT (Boolean) Should Turbulence timing be marked?

pch (Numeric) Plotting character, for other options see graphics::var

xlab (Character) Label for the x axis

ylab (Character) Label for the y axis

paramsLegend (Boolean) Should the parameter values of the HRT be plotted?

colTO (Character) Colour used to highlight TO

colTS (Character) Colour used to highlight TS

colTT (Character) Colour used to highlight TT

add (Boolean) Should the given HRT be added to a plot?

... Other arguments in tag = value form. See graphics::par for more information.

Value

No return value

Note

Please note that some graphics parameters (par) cannot be modified, since they are needed to be set inside the function.

Examples

You need an HRT object
hrt <- vectorToHRT(testdataLong, testdataLong_Ann)@HRTs[[1]]

Plot your HRT and zoom out
plot(hrt, cropped = FALSE)

Include TT and customise it
plot(hrt, TT = TRUE, colTT = "green", pch = 7)

Use standard graphics parameters
Note: Some parameters are used inside the function and cannot be set
plot(hrt, TT = TRUE, main = "Example plot", bty = "n", cex.lab = 1.2)
plot,HRTList-method

Plot an HRTList object

Description

Plots RR-intervals saved in the HRT objects, especially the avHRT object, and marks the HRT parameters.

Usage

```r
## S4 method for signature 'HRTList'
plot(
  x,
  cropped = TRUE,
  TT = FALSE,
  pch = 20,
  xlab = "# of RR interval",
  ylab = "length of RR interval (ms)",
  paramsLegend = TRUE,
  colTO = "#ec2023",
  colTS = "#006AFF",
  colTT = "#6800DE",
  ...
)
```

Arguments

- `x` (HRTList)
- `cropped` (Boolean) Should the plot be cut to focus on the HRT parameters? To show all points use FALSE.
- `TT` (Boolean) Should Turbulence timing be marked?
- `pch` (Numeric) Plotting character, for other options see graphics::var
- `xlab` (Character) Label for the x axis
- `ylab` (Character) Label for the y axis
- `paramsLegend` (Boolean) Should the parameter values of the HRT be plotted?
- `colTO` (Character) Colour used to highlight TO
- `colTS` (Character) Colour used to highlight TS
- `colTT` (Character) Colour used to highlight TT
- `...` Other arguments in tag = value form

Value

No return value
Note

Please note that some graphics parameters (par) cannot be modified, since they are needed to be set inside the function.

Examples

You need an HRTList
hrtl <- vectorToHRT(testdataLong, testdataLong_Ann)

Plot your HRTlist and zoom out
plot(h rtl, cropped = FALSE)

Include TT and customise it
plot(h rtl, TT = TRUE, colTT = "green", pch = 7)

Use standard graphics parameters
Note: Some parameters are used inside the function and cannot be set
plot(h rtl, TT = TRUE, main = "Example plot", bty = "n", cex.lab = 1.2)

roll

Apply method on sliding window

Description

Applies a given function on a vector by rolling over it with a sliding window mechanism.

Usage

roll(intervals, width, fun, ...)

Arguments

intervals vector
width window size
fun function to be applied
... additional arguments for FUN

Details

This method was inspired by the function "wapply" by A. N. Spiess, University Hospital Hamburg-Eppendorf (https://rmazing.wordpress.com/2013/04/23/wapply-a-faster-but-less-functional-rollapply-for-vector-setups/), but adjusted for this package to speed it up.

Value

(list) List with return values of fun for each window
Description

Artificial dummy interval data: This dataset represents a long-term measurement and includes 15 VPCSs that fit the HRT filter rules.

Usage

testdataLong

Format

A numeric vector.

Description

Artificial dummy interval data: This dataset contains the annotations matching testdataLong.

Usage

testdataLong_Ann

Format

A vector of characters.

vectorToHRT

Convert a vector to HRTList

Description

Scans for heart rate turbulence in a vector of RR-intervals and returns an HRTList object including all found HRT objects. The HRT criteria used were published by Schmidt et al. (more information can be found in the vignette.)
vectorToHRT

Usage

vectorToHRT(
 input,
 annotations = NULL,
 PVCAnn = "V",
 normIL = c_normIL,
 normHallstrom = TRUE,
 numPreRRs = c_numPreRRs,
 numPostRRs = c_numPostRRs,
 inputName = as.character(NA),
 minHRT = 5,
 cleaning = TRUE
)

Arguments

input (Numeric vector) RR intervals in ms
annotations (Character vector) Annotations matching input
PVCAnn (Character) Character that marks a VPC in the annotations
normIL (Numeric) The interval length to which TS should be normalised
normHallstrom (Boolean) Should the normalisation of Hallstrom be used?
numPreRRs (Numeric) Number of RRs before the coupling interval that are used for filtering
numPostRRs (Numeric) Number of RRs after the compensatory interval that are used for filtering
inputName (String) Name of the data
minHRT (Numeric) Minimal number of HRTs that are needed to create an HRTList object
cleaning (Boolean) Should the input be roughly cleaned from artefacts before calculating IL and RMSSD?

Value

(HRTList) An HRTList object

Examples

You can use annotations to give the VPC indices
Without annotation data RHRT will find VPCs based on common filtering criteria
vectorToHRT(testdataLong, annotations = testDataLong_Ann, PVCAnn = "V")

Find HRTs with a broader range of sinus beats before and after the VPCs
vectorToHRT(testdataLong, inputName = "Dummy Measurement", numPreRRs = 10, numPostRRs = 20)

Adjust the normalisation parameters
vectorToHRT(testdataLong, testDataLong_Ann, normHallstrom = FALSE, normIL = 900)
Index

* **datasets**
 - testdataLong, 20
 - testdataLong_Ann, 20

avHRT, 2

calcAvHRT, 4
calcaHRT, HRTList-method (calcAvHRT), 4
calcHRT Params, 5
calcHRT Params, HRT-method (calcHRT Params), 5
calcTO, 6
calcTO, HRT-method (calcTO), 6
calcTS, 7
calcTS, HRT-method (calcTS), 7
checkAnnotations, 7
checkForHRT, 8
checkInput, 8
checkValidity, 9
checkValidity, HRT-method (checkValidity), 9
checkValidity, HRTList-method (checkValidity), 9
cleanInput, 9

getHRT Params, 10
getHRT Params, HRTList-method (getHRT Params), 10
getHRTs, 11
getPositions, 11
getPositions, HRTList-method (getPositions), 11
getResults, 12
getResults, HRTList-method (getResults), 12
getRRs, 13
getRRs, HRT-method (getRRs), 13

HRT, 14
HRTList, 15
initialize, avHRT-method (avHRT), 2
initialize, HRT-method (HRT), 14
initialize, HRTList-method (HRTList), 15
plot, HRT-method, 16
plot, HRTList-method, 18
roll, 19

testdataLong, 20
testdataLong_Ann, 20

vectorToHRT, 20