Package ‘RMaCzek’

August 19, 2023

Type Package
Title Czekanowski’s Diagrams
Version 1.5.1
Date 2023-08-19
Encoding UTF-8
Maintainer Krzysztof Bartoszek <krzbar@protonmail.ch>
Depends R(>= 3.6)
Imports GA(>= 3.2), graphics, methods, seriation(>= 1.3.4), stats, e1071, ecp, RColorBrewer, utils
License GPL-3
LazyLoad yes
LazyData true
NeedsCompilation no
Author Albin Vasterlund [aut],
Krzysztof Bartoszek [cre, aut, ths],
Ying Luo [aut],
Piotr Jaskulski [ctb]
Repository CRAN
Date/Publication 2023-08-19 16:52:32 UTC

R topics documented:

cluster_dist ... 2
czek_matrix ... 3
internet_availability ... 6
cluster_dist

Calculate the distance matrix between clusters.

Description
Calculate the distance matrix for a czek_matrix with clustering result or a data set with its clustering labels.

Usage
cluster_dist(x, y, distfun = dist, dist_method = "average")

Arguments
- **x**: A data set or a matrix with class czek_matrix.
- **y**: If x is the data set, y is the cluster label.
- **distfun**: Specifies which distance function should be used.
- **dist_method**: Four linkage criteria: single, complete, average and SSD.

Value
A distance matrix.

Examples
Clustering Result on czek_matrix
x = czek_matrix(iris[, -5], cluster = TRUE, num_cluster = 3)
dist_czek = cluster_dist(x)
plot(czek_matrix(dist_czek))

Clustering Result on a Data Set with Clustering Labels
dist_data = cluster_dist(x = iris[, -5], y = iris$Species)
plot(czek_matrix(dist_data))
Description

Preprocess the data to generate a matrix of category `c泽k_matrix` for generating Czekanowski’s Diagram. This method also offers exact and fuzzy clustering algorithms for Czekanowski’s Diagram.

Usage

```r
c泽k_matrix(
  x,
  order = "OLO",
  n_classes = 5,
  interval_breaks = NULL,
  monitor = FALSE,
  distfun = dist,
  scale_data = TRUE,
  focal_obj = NULL,
  as_dist = FALSE,
  original_diagram = FALSE,
  column_order_stat_grouping = NULL,
  dist_args = list(),
  cluster = FALSE,
  cluster_type = "exact",
  num_cluster = 3,
  sig.lvl = 0.05,
  scale_bandwidth = 0.05,
  min.size = 30,
  ...
)
```

Arguments

- `x`: A numeric matrix, data frame or a ‘dist’ object.
- `order`: Specifies which seriation method should be applied. The standard setting is the seriation method OLO. If NA or NULL, then no seriation is done and the original ordering is saved. The user may provide their own ordering, through a number vector of indices. Also in this case no rearrangement will be done.
- `n_classes`: Specifies how many classes the distances should be divided into. The standard setting is 5 classes.
- `interval_breaks`: Specifies the partition boundaries for the distances. As a standard setting, each class represents an equal amount of distances. If the interval breaks are positive and sum up to 1, then it is assumed that they specify percentages of the distances in each interval. Otherwise, if provided as a numeric vector not summing up to 1, they specify the exact boundaries for the symbols representing distance groups.
monitor Specifies if the distribution of the distances should be visualized. The standard setting is that the distribution will not be visualized. TRUE and "cumulativ_plot" is available.

distfun Specifies which distance function should be used. Standard setting is the dist function which uses the Euclidean distance. The first argument of the function has to be the matrix or data frame containing the data.

scale_data Specifies if the data set should be scaled. The standard setting is that the data will be scaled.

focal_obj Numbers or names of objects (rows if x is a dataset and not 'dist' object) that are not to take part in the reordering procedure. These observations will be placed as last rows and columns of the output matrix. See Details.

as_dist If TRUE, then the distance matrix of x is returned, with object ordering, instead of the matrix with the levels assigned in place of the original distances.

original_diagram If TRUE, then the returned matrix corresponds as close as possible to the original method proposed by Czekanowski (1909). The levels are column specific and not matrix specific. See Details

column_order_stat_grouping If original_diagram is TRUE, then here one can pass the partition boundaries for the ranking in each column.

dist_args Specifies further parameters that can be passed on to the distance function.

cluster If TRUE, Czekanowski's clustering is performed.

cluster_type Specifies the cluster type and it can be 'exact' or 'fuzzy'.

num_cluster Specifies the number of clusters.

sig.lvl The threshold for testing a change point is statistically significant. This value is passed to ecp::e.divisive().

scale_bandwidth A ratio to control the width of the reaching range.

min.size Minimum number of observations between change points.

... Further parameters that can be passed on to the seriate function in the seriation package.

Value

The function returns a matrix with class czek_matrix. The returned object is expected to be passed to the plot function if as_dist is FALSE. If as_dist is passed as TRUE, then a czek_matrix object is returned that is not suitable for plotting. As an attribute of the output the optimized criterion value is returned. However, this is a guess based on seriation::seriate()’s and seriation::criterion()’s manuals. If something else was optimized, e.g. due to user’s parameters, then this will be wrong. If unable to guess, then NA saved in the attribute.

Examples

Set data
x<-mtcars
czek_matrix

Different type of input that give same result
czek_matrix(x)
czek_matrix(stats::dist(scale(x)))
Not run:
below a number of other options are shown
but they take too long to run

Change seriation method
#seriation::show_seriation_methods("dist")
czek_matrix(x,order = "GW")
czek_matrix(x,order = "ga")
czek_matrix(x,order = sample(1:nrow(x)))

Change number of classes
czek_matrix(x,n_classes = 3)

Change the partition boundaries
#10%, 40% and 50%
czek_matrix(x,interval_breaks = c(0.1,0.4,0.5))

#0 [0,1] [1,4] [4,6] [6,8.48]
czek_matrix(x,interval_breaks = c(0,1,4,6,8.48))

#0 [0,1.7] [1.7,3.39] [3.39,5.09] [5.09,8.48]
czek_matrix(x,interval_breaks = "equal_width_between_classes")

Change number of classes
czek_matrix(x,monitor = TRUE)
czek_matrix(x,monitor = "cumulativ_plot")

Change distance function
czek_matrix(x,disfun = function(x) stats::dist(x,method = "manhattan"))

Change dont scale the data
czek_matrix(x,scale_data = FALSE)
czek_matrix(stats::dist(x))

Change additional settings to the seriation method
czek_matrix(x,order="ga",control=list(popSize=200, suggestions=c("SPIN_STS","QAP_2SUM")))

Create matrix as originally described by Czekanowski (1909), with each column
assigned levels according to how the order statistics of the distances in it
are grouped. The grouping below is the one used by Czekanowski (1909).
czek_matrix(x,original_diagram=TRUE,column_order_stat_grouping=c(3,4,5,6))

Create matrix with two focal object that will not influence seriation

czek_matrix(x,focal_obj=c("Merc 280","Merc 450SL"))

Same results but with object indices

czek_res<-czek_matrix(x,focal_obj=c(10,13))

we now place the two objects in a new place
Manual Reordering

czek_res_neworder <- manual_reorder(czek_res, c(1:10, 31, 11:20, 32, 21:30), orig_data=x)

The same can be alternatively done by hand
attr(czek_res, "order") <- attr(czek_res, "order")[c(1:10, 31, 11:20, 32, 21:30)]

And then correct the values of the different criteria so that they
are consistent with the new ordering
attr(czek_res, "Path_length") <- seriation::criterion(stats::dist(scale(x)),
order=seriation::ser_permutation(attr(czek_res, "order")),
method="Path_length")

Here we need to know what criterion was used for the seriation procedure
If the seriation package was used, then see the manual for seriation::seriate()
seriation::criterion().
If the genetic algorithm shipped with RMaCzek was used, then it was the Um factor.
attr(czek_res, "criterion_value") <- seriation::criterion(stats::dist(scale(x)),
order=seriation::ser_permutation(attr(czek_res, "order")), method="Path_length")
attr(czek_res, "Um") <- RMaCzek::Um_factor(stats::dist(scale(x)),
order=attr(czek_res, "order"), inverse_um=FALSE)

Czekanowski's Clusterings

Exact Clustering

czek_exact = czek_matrix(x, order = "GW", cluster = TRUE, num_cluster = 2, min.size = 2)
plot(czek_exact)
attr(czek_exact, "cluster_type") # To get the clustering type.
attr(czek_exact, "cluster_res") # To get the clustering suggestion.
attr(czek_exact, "membership") # To get the membership matrix

Fuzzy Clustering

czek_fuzzy = czek_matrix(x, order = "OLO", cluster = TRUE, num_cluster = 2,
cluster_type = "fuzzy", min.size = 2, scale_bandwidth = 0.2)
plot(czek_fuzzy)
attr(czek_fuzzy, "cluster_type") # To get the clustering type.
attr(czek_fuzzy, "cluster_res") # To get the clustering suggestion.
attr(czek_fuzzy, "membership") # To get the membership matrix

End(Not run)

internet_availability

Data of internet_availability

<table>
<thead>
<tr>
<th>Description</th>
<th>Data of internet_availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>internet_availability</td>
</tr>
<tr>
<td>Format</td>
<td>An object of class list of length 3.</td>
</tr>
</tbody>
</table>
Manually reorder Czekanowski’s Diagram

Description

This is a function that allows the user to manually reorder Czekanowski’s Diagram and recalculates all the factors.

Usage

manual_reorder(x, v_neworder, ...)

Arguments

x a matrix with class czek_matrix, czek_matrix_dist or data matrix/data.frame or dist object.
v_neworder a numeric vector with the new ordering.
... specifies further parameters that will be passed to the czek_matrix function.

Value

The function returns a Czekanowski’s Diagram with the new order and recalculated factors.

Examples

Set data
x<-mtcars

Calculate Czekanowski’s diagram
czkm<-czek_matrix(x)
czkm_dist<-czek_matrix(x,as_dist=TRUE)
new ordering
neworder<-attr(czkm,"order")
reorder the diagram
#if the output was Czekanowski's diagram without the distances remembered, then the original data has to be passed so that factors can be recalculated.
new_czkm<manual_reorder(czkm,v_neworder=neworder,orig_data=x)
new_czkm_dist<manual_reorder(czkm_dist,v_neworder=neworder)
#we can also pass the original data directly
new_czkm<manual_reorder(x,v_neworder=neworder)
#and this is equivalent to calling
new_czkm<czek_matrix(x,order=neworder)
#up to the value of the "criterion_value" attribute
#which in the second case can be lost, as no information is passed
#on which one was originally used, while in the first case it might be impossible to recalculate-only criteria values from seriate are supported
#if a user has a custom seriation function, then they need to recalculate this value themselves
plot.czek_matrix

Produce a Czekanowski's Diagram

Description

This is a function that can produce a Czekanowski’s Diagram and present clustering findings.

Usage

```r
## S3 method for class 'czek_matrix'
plot(
x,
values = NULL,
type = "symbols",
plot_title = "Czekanowski's diagram",
tl.cex = 1,
tl.offset = 0.4,
tl.srt = 90,
pal = brewer.pal(n = 8, name = "Dark2"),
alpha = 0.3,
ps_power = 0.6,
col_size = 1,
cex.main = 1,
...
)
```

Arguments

- `x`
a matrix with class `czek_matrix`.
- `values`
specifies the color or the size of the symbols in the graph. The standard setting is a grey scale for a color graph and a vector with the values `2,1,0.5,0.25` and `0` for a graph with symbols.
- `type`
specifies if the graph should use color or symbols. The standard setting is symbols.
- `plot_title`
specifies the main title in the graph.
- `tl.cex`
Numeric, for the size of text label.
- `tl.offset`
Numeric, for text label.
- `tl.srt`
Numeric, for text label, string rotation in degrees.
- `pal`
The colour vector representing the clusters.
- `alpha`
Factor modifying the opacity, alpha, typically in `[0,1]`.
- `ps_power`
A power value to adjust point size.
- `col_size`
When `type="col"`, the size of each point (maximum is `1`).
- `cex.main`
Specify the size of the title text.
- `...`
specifies further parameters that can be passed on to the plot function.
print.czek_matrix

print.czek_matrix

Prints information concerning Czekanowski's Diagram

Description

This is a function that prints out information on a Czekanowski’s Diagram.

Usage

```r
## S3 method for class 'czek_matrix'
print(x, print_raw = FALSE, ...)
```
Arguments

\texttt{x} \quad \text{a matrix with class \texttt{czech_matrix}.
\texttt{print_raw} \quad \text{logical, if TRUE print out raw, as if \texttt{base::print()} was called, in particular this
prints out the matrix itself, if \texttt{FALSE} (default) print out a summary. Furthermore, with \texttt{print_raw=TRUE} the attributes "levels", "partition_boundaries" and
"n_classes" defining the diagram will be printed out.

... \quad \text{specifies further parameters that can be passed on to the print function.}

Value

The function returns a Czekanowski’s Diagram.

Examples

Set data
x<-czech_matrix(mtcars)

Standard print
print(x)
print.czech_matrix(x)

Print out the raw object
print(x,print_raw=TRUE)
print.czech_matrix(x,print_raw=TRUE)

\textit{print.czech_matrix_dist}

Prints information concerning Czekanowski’s Diagram

Description

This is a function that prints out information on a Czekanowski’s Diagram, but when the actual
distances were saved.

Usage

S3 method for class 'czech_matrix_dist'
print(x, print_raw = FALSE, ...)

Arguments

\texttt{x} \quad \text{a matrix with class \texttt{czech_matrix_dist}.
\texttt{print_raw} \quad \text{logical, if TRUE print out raw, as if \texttt{base::print()} was called, in particular this
prints out the matrix itself, if \texttt{FALSE} (default) print out a summary. Furthermore, with \texttt{print_raw=TRUE} the attributes "levels", "partition_boundaries" and
"n_classes" defining the diagram will be printed out.

... \quad \text{specifies further parameters that can be passed on to the print function.}
Value
The function returns a Czekanowski’s Diagram.

Examples

```r
# Set data ####
x<-czech_matrix(mtcars,as_dist=TRUE)

# Standard print ############
print(x)
print.czech_matrix(x)
# Print out the raw object ############
print(x,print_raw=TRUE)
print.czech_matrix(x,print_raw=TRUE)
```

Description
This software comes AS IS in the hope that it will be useful WITHOUT ANY WARRANTY, NOT even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Please understand that there may still be bugs and errors. Use it at your own risk. We take no responsibility for any errors or omissions in this package or for any misfortune that may befall you or others as a result of its use. Please send comments and report bugs to Krzysztof Bartoszek at krzbar@protonmail.ch.

Usage

```r
read_maczek_file(filepath)
```

Arguments

- `filepath` path to file *.mdt.

Value
data.frame.

Author(s)
Piotr Jaskulski
RMaCzek: A package that can produce Czekanowski’s diagram

Description
This package produces Czekanowski’s diagram

The packages functions

czek_matrix A function that returns a distance matrix where the distances are divided into classes. It also offers exact and fuzzy Czekanowski’s clustering algorithm. The return from the function is expected to be passed into the plot function.

plot.czek_matrix A function that returns Czekanowski’s Diagram.

Author(s)
Albin Vasterlund, Krzysztof Bartoszek, Ying Luo

seals_similarities Data of seals_similarities

Description
Data of seals_similarities

Usage
seals_similarities

Format
An object of class matrix (inherits from array) with 37 rows and 37 columns.

skulls_distances Data of skulls_distances

Description
Data of skulls_distances

Usage
skulls_distances

Format
An object of class matrix (inherits from array) with 13 rows and 13 columns.
Um_factor

Calculate the Um factor

Description

The function calculates the Um factor associated with an ordering of the rows and columns of a distance matrix. Lower values indicate a better grouping of similar objects. This was the original objective function proposed in the MaCzek program for producing Czekanowski’s Diagram.

Usage

```r
Um_factor(
  distMatrix,
  order = NULL,
  matrix_conversion_coefficient = 1,
  inverse_um = TRUE
)
```

Arguments

- `distMatrix`:
 - a 'dist' object, matrix of distances between observations.
- `order`:
 - a vector, if NULL, then the value of the factor is calculate for the distance matrix as is, otherwise the rows and columns are reordered according to the vector order.
- `matrix_conversion_coefficient`:
 - numeric, value to be added to the distances, so that a division by 0 error is not thrown.
- `inverse_um`:
 - logical, if TRUE, then the negative is returned. Default TRUE as the function is called in the genetic algorithm maximization procedures.

Value

The function returns a numeric value equalling the Um_factor.

Examples

```r
# Set data ####
x<-mtcars

mD<-.stats::dist(scale(x))
mCz<-czek_matrix(x)
Um_factor(mD)
Um_factor(mD,order=attr(mCz,"order"))
```
Description
Data of urns

Usage
urns

Format
An object of class matrix (inherits from array) with 15 rows and 9 columns.
Index

* datasets
 internet_availability, 6
 seals_similarities, 12
 skulls_distances, 12
 urns, 14

cluster_dist, 2
cek_matrix, 3

internet_availability, 6

manual_reorder, 7

plot.cek_matrix, 8
print.cek_matrix, 9
print.cek_matrix_dist, 10

read_maczek_file, 11
RMaCzek, 12
RMaCzek-package (RMaCzek), 12

seals_similarities, 12
skulls_distances, 12

Um_factor, 13
urns, 14