Package ‘RMediation’

May 12, 2023

Type Package

Title Mediation Analysis Confidence Intervals

Version 1.2.2

Date 2023-04-28

Depends R (>= 3.5.0), base (>= 3.5.0), stats (>= 3.5.0), graphics (>= 3.5.0), methods (>= 3.5.0), lavaan (>= 0.5-20), e1071 (>= 1.6-7), OpenMx (>= 2.13), MASS (>= 7.3)

Imports modelr (>= 0.1.4), doParallel (>= 1.0.0), foreach (>= 1.5.0), iterators (>= 1.0.0), stringr (>= 1.4.0), grDevices (>= 3.5)

Suggests knitr, rmarkdown

LazyData true

Description We provide functions to compute confidence intervals for a well-defined nonlinear function of the model parameters (e.g., product of k coefficients) in single-level and multilevel structural equation models. It also computes a chi-square test statistic for a function of indirect effects.

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Davood Tofighi [aut, cre] (<https://orcid.org/0000-0001-8523-7776>)

Maintainer Davood Tofighi <dtofighi@gmail.com>

Repository CRAN

Date/Publication 2023-05-12 04:00:03 UTC
ci

CI for a nonlinear function of coefficients estimates

Description
This function returns a \((1 - \alpha)\)% confidence interval (CI) for a well-defined nonlinear function of the coefficients in single-level and multilevel structural equation models. The \texttt{ci} function uses the Monte Carlo (\texttt{type="MC"}) and the asymptotic normal theory (\texttt{type="asymp"}) with the multivariate delta standard error (Asymptotic-Delta) method (Sobel, 1982) to compute a CI. In addition, for each of the methods, when a user specifies \texttt{plot=TRUE} and \texttt{plotCI=TRUE}, a plot of the sampling distribution of the quantity of interest in the \texttt{quant} argument and an overlaid plot of the CI will be produced. When \texttt{type="all"} and \texttt{plot=TRUE}, two overlaid plots of the sampling distributions corresponding to each method will be produced; when \texttt{plotCI=TRUE}, then the overlaid plots of the CIs for both methods will be displayed as well.

Usage
\begin{verbatim}
ci(
mu,
Sigma,
quant,
alpha = 0.05,
type = "MC",
plot = FALSE,
plotCI = FALSE,
n.mc = 1e+06,
H0 = FALSE,
mu0 = NULL,
Sigma0 = NULL,
...)
\end{verbatim}
Arguments

mu (1) a vector of means (e.g., coefficient estimates) for the normal random variables. A user can assign a name to each mean value, e.g., mu=c(b1=.1,b2=3); otherwise, the coefficient names are assigned automatically as follows: b1, b2, ... Or, (2) a lavaan object.

Sigma either a covariance matrix or a vector that stacks all the columns of the lower triangle variance–covariance matrix one underneath the other.

quant quantity of interest, which is a nonlinear/linear function of the model parameters. Argument quant is a formula that must start with the symbol "tilde" (~): e.g., ~b1*b2*b3*b4. The names of coefficients must conform to the names provided in the argument mu or to the default names, i.e., b1, b2, ...

alpha significance level for the CI. The default value is .05.

type method used to compute a CI. It takes on the values "MC" (default) for Monte Carlo, "asymp" for Asymptotic–Delta, or "all" that produces CIs using both methods.

plot when TRUE, plot the approximate sampling distribution of the quantity of interest using the specified method(s) in the argument type. The default value is FALSE. When type="all", superimposed density plots generated by both methods are displayed.

plotCI when TRUE, overlays a CI plot with error bars on the density plot of the sampling distribution of quant. When type="all", the superimposed CI plots generated by both methods are added to the density plots. Note that to obtain a CI plot, one must also specify plot="TRUE". The default value is FALSE.

n.mc Monte Carlo sample size. The default sample size is 1e+6.

H0 False. If TRUE, it will estimate the sampling distribution of $H_0 : f(b) = 0$. See the arguments mu0 and Sigma0.

mu0 a vector of means (e.g., coefficient estimates) for the normal random variables that satisfy the null hypothesis $H_0 : f(b) = 0$. If it is not provided, smallest z value of mu is set to zero.

Sigma0 either a covariance matrix or a vector that stacks all the columns of the lower triangle variance–covariance matrix one underneath the other. If it is not provided, then Sigma is used instead.

... additional arguments.

Value

When type is "MC" or "asymp", ci returns a list that contains:

(1 − α)% CI a vector of lower and upper confidence limits,

Estimate a point estimate of the quantity of interest,

SE standard error of the quantity of interest,

MC Error When type="MC", error of the Monte Carlo estimate.

When type="all", ci returns a list of two objects, each of which a list that contains the results produced by each method as described above.
Note
A shiny web application for Monte Carlo method of this function is available at https://amplab.shinyapps.io/MEDMC/

Author(s)
Davood Tofighi <dtofighi@gmail.com>

References

See Also
medci RMediation-package

Examples
```r
# An Example of Conservative Null Sampling Distribution
ci(c(b1=3,b2=.4,b3=3), c(.01,0,0,.01,0,.02),
  quant=-b1*b2*b3, type="mc", plot=TRUE, plotCI=TRUE, H0=TRUE, mu0=c(b1=0,b2=.4,b3=0) )
# An Example of Less Conservative Null Sampling Distribution
ci(c(b1=3,b2=.4,b3=3), c(.01,0,0,.01,0,.02),
  quant=-b1*b2*b3, type="mc", plot=TRUE, plotCI=TRUE, H0=TRUE, mu0=c(b1=0,b2=.4,b3=0.1) )
```

Description
This function computes asymptotic MBCO chi-squared test for a smooth function of model parameters including a function of indirect effects.

Usage
```r
mbco(  h0 = NULL,
        h1 = NULL,
        R = 10L,
        type = "asymp",
        alpha = 0.05,
        checkHess = "No",
        checkSE = "No",
        optim = "SLSQP",
        precision = 1e-09
    )
```
mbacko

Arguments

- **h0**: An OpenMx model estimated under a null hypothesis, which is a more constrained model.
- **h1**: An OpenMx model estimated under an alternative hypothesis, which is a less constrained model. This is usually a model hypothesized by a researcher.
- **R**: The number of bootstrap draws.
- **type**: If 'asymp' (default), the asymptotic MBCO chi-squares test comparing fit of h0 and h1. If 'parametric', the parametric bootstrap MBCO chi-squared test is computed. If 'semi', the semi-parametric MBCO chi-squared is computed.
- **alpha**: Significance level with the default value of .05.
- **checkHess**: If 'No' (default), the Hessian matrix would not be calculated.
- **checkSE**: if 'No' (default), the standard errors would not be calculated.
- **optim**: Choose optimizer available in OpenMx. The default optimizer is "SLSQP". Other optimizer choices are available. See mxOption for more details.
- **precision**: Functional precision. The default value is set to 1e-9. See mxOption for more details.

Value

A list that contains

- **chisq**: asymptotic chi-squared test statistic value
- **df**: chi-squared df
- **p**: chi-squared p-value computed based on the method specified by the argument type

Author(s)

Davood Tofighi <dtofighi@gmail.com>

References

Examples

```r
data(memory_exp)
memory_exp$x <- as.numeric(memory_exp$x)-1 # manually creating dummy codes
endVar <- c('x', 'repetition', 'imagery', 'recall')
manifests <- c('x', 'repetition', 'imagery', 'recall')
full_model <- mxModel("memory_example",
```
type = "RAM",
manifestVars = manifests,
mxPath(
 from = "x",
to = endVar,
arrows = 1,
free = TRUE,
values = .2,
labels = c("a1", "a2", "cp")
),
mxPath(
 from = 'repetition',
to = 'recall',
arrows = 1,
free = TRUE,
values = .2,
labels = 'b1'
),
mxPath(
 from = 'imagery',
to = 'recall',
arrows = 1,
free = TRUE,
values = .2,
labels = "b2"
),
mxPath(
 from = manifests,
arrows = 2,
free = TRUE,
values = .8
),
mxPath(
 from = "one",
to = endVar,
arrows = 1,
free = TRUE,
values = .1
),
mxAlgebra(a1 * b1, name = "ind1"),
mxAlgebra(a2 * b2, name = "ind2"),
mxCI("ind1", type = "both"),
mxCI("ind2", type = "both"),
mxData(\text{observed} = \text{memory_exp}, \text{type} = \text{raw})
)
Reduced Model for indirect effect: a1*b1
null_model1 <- mxModel(
 model= full_model,
 name = "Null Model 1",
 mxConstraint(ind1 == 0, name = "ind1_eq0_constr")
)
full_model <- mxTryHard(full_model, checkHess=FALSE, silent = TRUE)
null_model1 <- mxTryHard(null_model1, checkHess=FALSE, silent = TRUE)
medci

Confidence Interval for the Mediated Effect

Description

Produces confidence intervals for the mediated effect and the product of two normal random variables.

Usage

medci(
 mu.x,
 mu.y,
 se.x,
 se.y,
 rho = 0,
 alpha = 0.05,
 type = "dop",
 plot = FALSE,
 plotCI = FALSE,
 n.mc = 1e+05,
 ...
)

Arguments

mu.x mean of x
mu.y mean of y
se.x standard error (deviation) of x
se.y standard error (deviation) of y
rho correlation between x and y, where -1 < \rho < 1. The default value is 0.
alpha significance level for the confidence interval. The default value is .05.
type method used to compute confidence interval. It takes on the values "dop" (default), "MC", "asymp" or "all"
plot when TRUE, plots the distribution of n.mc data points from the distribution of product of two normal random variables using the density estimates provided by the function density. The default value is FALSE.
plotCI when TRUE, overlays a confidence interval with error bars on the plot for the mediated effect. Note that to obtain the CI plot, one must also specify plot="TRUE". The default value is FALSE.
n.mc when type="MC", n.mc determines the sample size for the Monte Carlo method. The default sample size is 1E5.
... additional arguments to be passed on to the function.
Details

This function returns a \((1 - \alpha)\%\) confidence interval for the mediated effect (product of two normal random variables). To obtain a confidence interval using a specific method, the argument \textit{type} should be specified. The default is \textit{type}="dop", which uses the code we wrote in R to implement the distribution of product of the coefficients method described by Meeker and Escobar (1994) to evaluate the CDF of the distribution of product. \textit{type}="MC" uses the Monte Carlo approach to compute the confidence interval (Tofighi & MacKinnon, 2011). \textit{type}="asymp" produces the asymptotic normal confidence interval. Note that except for the Monte Carlo method, the standard error for the indirect effect is based on the analytical results by Craig (1936):

\[
\sqrt{(se.y^2 \mu.x^2 + se.x^2 \mu.y^2 + 2 \mu.x \mu.y \rho se.x se.y + se.x^2 se.y^2 + se.x^2 se.y^2 \rho^2)}
\]

In addition, the estimate of indirect effect is \(\mu.x \mu.y + \sigma.xy\); \textit{type}="all" prints confidence intervals using all four options.

Value

A vector of lower confidence limit and upper confidence limit. When \textit{type} is "prodclin" (default), "DOP", "MC" or "asymp", \textit{medci} returns a list that contains:

- \((1 - \alpha)\%\) CI a vector of lower and upper confidence limits,
- Estimate a point estimate of the quantity of interest,
- SE standard error of the quantity of interest,
- MC Error When \textit{type}="MC", error of the Monte Carlo estimate.

Note that when \textit{type}="all", \textit{medci} returns a list of \textit{four} objects, each of which a list that contains the results produced by each method as described above.

Author(s)

Davood Tofighi <dtofighi@gmail.com>

References

See Also

\texttt{qprodnormal} \texttt{pprodnormal} \texttt{ci} \texttt{RMediation-package}
Examples

```r
## Example 1
res <- medci(mu.x=.2, mu.y=.4, se.x=1, se.y=1, rho=0, alpha=.05,
             type="dop", plot=TRUE, plotCI=TRUE)
```

```r
## Example 2
res <- medci(mu.x=.2, mu.y=.4, se.x=1, se.y=1, rho=0, alpha=.05, type="all", plot=TRUE, plotCI=TRUE)
```

memory_exp

Memory Experiment Data Description from MacKinnon et al., 2018

Description

Data were obtained from eight replicated experiments. The data were collected on the first day of class as part of the first Dr. MacKinnon’s (2018) classroom teaching. The pedagogical value of the experiment was that students would have first-hand knowledge of the experiment thereby increasing their understanding of course concepts. Permission to use the data was obtained from the university Institutional Review Board.

Usage

```r
data(memory_exp)
```

Format

A data frame with 369 rows and 5 variables:

- **study**: Replication ID, ranges from 1 to 8
- **repetition**: Use of repetition rehearsal technique on a 1 to 9 scale
- **recall**: Total words recalled out of 20 words
- **imagery**: Use of imagery rehearsal technique on a 1 to 9 scale
- **x**: A factor with two levels: repetition or primary rehearsal = 0, imagery or secondary rehearsal = 1

Note

If you use the data set, please cite the original article by MacKinnon et al. (2018) cited below.

Source

doi:10.1037/met0000174.supp

References

pMC
Probability (percentile) for the Monte Carlo Sampling Distribution of a nonlinear function of coefficients estimates

Description

This function returns a probability corresponding to the quantile \(q \).

Usage

\[
pMC(q, \mu, \Sigma, \text{quant}, \text{lower.tail} = \text{TRUE}, n.mc = 1e+06, ...)\]

Arguments

- **q**: quantile
- **mu**: a vector of means (e.g., coefficient estimates) for the normal random variables. A user can assign a name to each mean value, e.g., `\mu = c(b1 = .1, b2 = 3)`; otherwise, the coefficient names are assigned automatically as follows: `b1, b2,`
- **Sigma**: either a covariance matrix or a vector that stacks all the columns of the lower triangle variance–covariance matrix one underneath the other.
- **quant**: quantity of interest, which is a nonlinear/linear function of the model parameters. Argument `quant` is a formula that must start with the symbol "tilde" (`~`): e.g., `~b1*b2*b3*b4`. The names of coefficients must conform to the names provided in the argument `mu` or to the default names, i.e., `b1, b2,`
- **lower.tail**: logical; if `TRUE` (default), the probability is \(P[\text{quant} < q] \); otherwise, \(P[\text{quant} > q] \)
- **n.mc**: Monte Carlo sample size. The default sample size is `1e+6`.
- **...**: additional arguments.

Value

scalar probability value.

Author(s)

Davood Tofighi <dtofighi@gmail.com>

References

See Also

`medci` `RMediation-package`
Examples

pMC(.2, mu=c(b1=1, b2=.7, b3=.6, b4 = .45), Sigma=c(.05,0,0,.05,0,0,.03,0,.03),
quant=-b1*b2+b3*b4)

pprodnormal Percentile for the Distribution of Product of Two Normal Variables

Description

Generates percentiles (100 based quantiles) for the distribution of product of two normal random variables and the mediated effect

Usage

pprodnormal(
 q,
 mu.x,
 mu.y,
 se.x = 1,
 se.y = 1,
 rho = 0,
 lower.tail = TRUE,
 type = "dop",
 n.mc = 1e+05
)

Arguments

q quantile or value of the product
mu.x mean of x
mu.y mean of y
se.x standard error (deviation) of x
se.y standard error (deviation) of y
rho correlation between x and y, where -1 < rho < 1. The default value is 0.
lower.tail logical; if TRUE (default), the probability is P[X * Y < q]; otherwise, P[X * Y > q]
type method used to compute confidence interval. It takes on the values "dop" (default), "MC", "asymp" or "all"
n.mc when type="MC", n.mc determines the sample size for the Monte Carlo method. The default sample size is 1E5.
Details

This function returns the percentile (probability) and the associated error for the distribution of product of mediated effect (two normal random variables). To obtain a percentile using a specific method, the argument type should be specified. The default method is type="dop", which is based on the method described by Meeker and Escobar (1994) to evaluate the CDF of the distribution of product of two normal random variables. type="MC" uses the Monte Carlo approach (Tofighi & MacKinnon, 2011). type="all" prints percentiles using all three options. For the method type="dop", the error is the modulus of absolute error for the numerical integration (for more information see Meeker and Escobar, 1994). For type="MC", the error refers to the Monte Carlo error.

Value

An object of the type list that contains the following values:

- p probability (percentile) corresponding to quantile q
- error estimate of the absolute error

Author(s)

Davood Tofighi <dtofighi@gmail.com>

References

See Also

medci RMediation-package

Examples

pprodnormal(q=0, mu.x=.5, mu.y=.3, se.x=1, se.y=1, rho= 0, type="all")

qMC

Quantile for the Monte Carlo Sampling Distribution of a nonlinear function of coefficients estimates

Description

This function returns a quantile corresponding to the probability p.

Usage

qMC(p, mu, Sigma, quant, n.mc = 1e+06, ...)

qprodnormal

Arguments

- **p**: probability.
- **mu**: a vector of means (e.g., coefficient estimates) for the normal random variables. A user can assign a name to each mean value, e.g., `mu=c(b1=.1, b2=3)`; otherwise, the coefficient names are assigned automatically as follows: `b1, b2, ...`
- **Sigma**: either a covariance matrix or a vector that stacks all the columns of the lower triangle variance–covariance matrix one underneath the other.
- **quant**: quantity of interest, which is a nonlinear/linear function of the model parameters. Argument `quant` is a formula that must start with the symbol "tilde" (~): e.g., `~b1*b2*b3*b4`. The names of coefficients must conform to the names provided in the argument `mu` or to the default names, i.e., `b1, b2, ...`
- **n.mc**: Monte Carlo sample size. The default sample size is 1e+6.
- ...: additional arguments.

Value

scalar quantile value.

Author(s)

Davood Tofighi <dtofighi@gmail.com>

References

See Also

`medci RMediation-package`

Examples

```r
qMC(.05, mu=c(b1=1,b2=.7,b3=.6, b4= .45), Sigma=c(.05,0,0,.05,0,0,.03,0,.03), quant=~b1*b2*b3*b4)
```

qprodnormal Quantile for the Distribution of Product of Two Normal Variables

Description

Generates quantiles for the distribution of product of two normal random variables.
Usage

qprodnormal(
 p,
 mu.x,
 mu.y,
 se.x,
 se.y,
 rho = 0,
 lower.tail = TRUE,
 type = "dop",
 n.mc = 1e+05
)

Arguments

p probability
mu.x mean of x
mu.y mean of y
se.x standard error (deviation) of x
se.y standard error (deviation) of y
rho correlation between x and y, where -1 < rho < 1. The default value is 0.
lower.tail logical; if TRUE (default), the probability is \(P[X \times Y < q] \); otherwise, \(P[X \times Y > q] \)
type method used to compute confidence interval. It takes on the values "dop" (default), "MC", "asymp" or "all"
n.mc when type="MC", n.mc determines the sample size for the Monte Carlo method. The default sample size is 1E5.

Details

This function returns a quantile and the associated error (accuracy) corresponding the requested percentile (probability) \(p \) of the distribution of product of mediated effect (product of two normal random variables). To obtain a quantile using a specific method, the argument type should be specified. The default method is type="dop", which uses the method described by Meeker and Escobar (1994) to evaluate the CDF of the distribution of product of two normal variables. type="MC" uses the Monte Carlo approach (Tofghi & MacKinnon, 2011). type="all" prints quantiles using all three options. For the method type="dop", the error is the modulus of absolute error for the numerical integration (for more information see Meeker and Escobar, 1994). For type="MC", the error refers to the Monte Carlo error.

Value

An object of the type list that contains the following values:

q quantile corresponding to probability \(p \)
error estimate of the absolute error
Author(s)

Davood Tofighi <dtofighi@gmail.com>

References

See Also

`medci` RMediation-package

Examples

```r
##lower tail
qprodnormal(p=.1, mu.x=.5, mu.y=.3, se.x=1, se.y=1, rho=0,
lower.tail = TRUE, type="all")
##upper tail
qprodnormal(p=.1, mu.x=.5, mu.y=.3, se.x=1, se.y=1, rho=0,
lower.tail = FALSE, type="all")
```
Index

* data
 memory_exp, 9

* distribution
 ci, 2
 pMC, 10
 qMC, 12

* mediation
 medci, 7

* regression
 ci, 2
 pMC, 10
 qMC, 12

* sets
 memory_exp, 9

 ci, 2, 8

 density, 7

 factor, 9

 formula, 3, 10, 13

 lavaan, 3

 list, 3, 5, 8, 12, 14

 mbco, 4
 medci, 4, 7, 10, 12, 13, 15
 memory_exp, 9
 mxOption, 5
 pMC, 10
 pprodnormal, 8, 11
 qMC, 12
 qprodnormal, 8, 13
 vector, 3, 10, 13