Package ‘RNAseqQC’

May 27, 2022

Title Quality Control for RNA-Seq Data
Version 0.1.3
Description Functions for semi-automated quality control of bulk RNA-seq data.
License Apache License (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
Depends R (>= 4.0)
Imports AnnotationHub, AnnotationFilter, ensembldb, circlize, DESeq2, SummarizedExperiment, vrn, ComplexHeatmap, matrixStats, grid, ggpoindensity, ggrepel, gghighlight, ggplot2, ggsci, cowplot, patchwork, purrr, dplyr, stringr, tidyr, tibble, RColorBrewer, tidyselect, magrittr
Suggests rmarkdown, knitr, recount3, apeglm
VignetteBuilder knitr
NeedsCompilation no
Author Frederik Ziebell [aut, cre] (<https://orcid.org/0000-0003-3673-1721>), GlaxoSmithKline Research & Development Limited [cph] (GlaxoSmithKline Research & Development Limited; registered address: 980 Great West Road, Brentford, Middlesex TW8 9GS, United Kingdom)
Maintainer Frederik Ziebell <frederik.x.ziebell@gsk.com>
Repository CRAN
Date/Publication 2022-05-27 15:30:02 UTC

R topics documented:

filter_genes ... 2
make_dds ... 3
mean_sd_plot ... 4
plot_biotypes ... 4
plot_chromosome ... 5
filter_genes

Filter genes with low counts

Description
Filter genes with low counts

Usage
filter_genes(dds, min_count = 5, min_rep = 3)

Arguments
- dds: A DESeqDataSet
- min_count, min_rep
 - keep genes with at least min_count counts in at least min_rep replicates

Value
A DESeq2::DESeqDataSet object with only those genes that meet the filter criteria.

Examples
library("DESeq2")
dds <- makeExampleDESeqDataSet()
filter_genes(dds)
Description

Make DESeqDataSet from counts matrix and metadata

Usage

```r
make_dds(counts, metadata, ah_record, design = ~1)
```

Arguments

- `counts`: The genes x samples counts matrix. The row names must be ENSEMBL gene IDs.
- `metadata`: data.frame of sample information. Order of rows corresponds to the order of columns in the counts matrix.
- `ah_record`: ID of AnnotationHub record used to retrieve an EnsDb object.
- `design`: The design formula specified in DESeqDataSet(). To view all valid record IDs, run

```r
library(AnnotationHub)
mcols(AnnotationHub()) %>%
as_tibble(rownames="ah_record") %>%
filter(rdataclass="EnsDb")
```

Value

A DESeq2::DESeqDataSet object containing the counts matrix and metadata.

Examples

```r
library("DESeq2")
count_mat <- counts(T47D)
meta <- data.frame(colData(T47D))
dds <- make_dds(counts = count_mat, metadata = meta, ah_record = "AH89426")
```
mean_sd_plot Create a mean-sd plot Make a scatterplot that shows for each gene its standard deviation versus mean.

Description
Create a mean-sd plot Make a scatterplot that shows for each gene its standard deviation versus mean.

Usage
mean_sd_plot(vsd)

Arguments
vsd A DESeqTransform object

Value
A ggplot object of the ggplot2 package that contains the mean-sd plot.

Examples
library("DESeq2")
dds <- makeExampleDESeqDataSet(interceptMean=10, n=5000)
vsd <- vst(dds)
mean_sd_plot(vsd)

plot_biotypes Plot number of counts per sample and biotype

Description
Plot the total number of counts for each sample and the major classes of ENSEMBL gene biotypes (protein coding, lncRNA, etc.)

Usage
plot_biotypes(dds)

Arguments
dds A DESeqDataSet

Value
A ggplot object of the ggplot2 package.
plot_chromosome

Examples

plot_biotypes(T47D)

plot_chromosome

Plot gene expression along a chromosome

Description

Plot gene expression along a chromosome

Usage

plot_chromosome(vsd, chr, scale = FALSE)

Arguments

vsd An object generated by DESeq2::vst()
chr A string denoting a chromosome as annotated by ENSEMBL, e.g. '1', '2', 'X', 'Y', 'MT'
scale Whether to scale the columns of the heatmap

Value

A Heatmap-class object of the ComplexHeatmap package that contains the heatmap of expression values.

Examples

library("DESeq2")
chr1 <- T47D[which(mcols(T47D)$chromosome=="1"),]
vsd <- vst(chr1)
plot_chromosome(vsd, chr="1")
Description
Plot a gene

Usage
plot_gene(
gene,
dds,
x_var = NULL,
color_by = NULL,
point_alpha = 0.7,
point_rel_size = 2,
show_plot = TRUE
)

Arguments
Gene ID or gene name, i.e. an element of rownames(dds) or of rowData(dds)$gene_name
A DESeqDataSet
Variable to plot on the x-axis. If NULL, then each sample is plotted separately.
Variable (column in colData(dds)) to color points by.
alpha value of geom_point()
relative size of geom_point()
Whether to show the plot or not

Value
The function displays the plot and returns invisible the data frame of expression values and colData annotation for the gene.

Examples
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet()
colData(dds)$patient <- c("1", "1", "2", "2", "3", "3")
dds <- estimateSizeFactors(dds)
plot_gene("gene1", dds)
plot_gene("gene1", dds, x_var="patient", color_by="type")
plot_gene_detection
Plot number of detected genes for each sample

Description

For specified thresholds, the number of detected genes is shown for each sample.

Usage

```r
plot_gene_detection(dds, thresholds = c(3, 10, 20, 50))
```

Arguments

- `dds`: A DESeqDataSet
- `thresholds`: Vector of thresholds for which the number of genes with counts greater or equal than the thresholds is plotted

Value

A ggplot object of the ggplot2 package that contains the gene detection plot.

Examples

```r
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet()
plot_gene_detection(dds)
```

plot_library_complexity
Plot the library complexity

Description

Plot per sample the fraction of genes, versus the fraction of total counts.

Usage

```r
plot_library_complexity(dds)
```

Arguments

- `dds`: A DESeqDataSet
plot_loadings

Value
A ggplot object of the ggplot2 package that contains the library complexity plot.

Examples
library("DESeq2")
set.seed(1)
dsds <- makeExampleDESeqDataSet()
plot_library_complexity(dds)

plot_loadings
Plot loadings of a principal component

Description
Plot loadings of a principal component

Usage
plot_loadings(
 pca_res,
 PC = 1,
 color_by = NULL,
 annotate_top_n = 0,
 highlight_genes = NULL,
 show_plot = TRUE
)

Arguments
pca_res A result returned from plot_pca()
PC Number of the principal component to plot
color_by Variable (column in pca_res$loadings) to color points by.
annotate_top_n Annotate the top n features with positive or negative loading
highlight_genes Vector of gene names or gene IDs to highlight on the plot (overwrites top_n annotation)
show_plot Whether to show the plot

Value
The function displays the loadings plot and returns invisible a list of the plot, the data.frame of the PCA loadings.
Examples

```r
set.seed(1)
data <- matrix(rnorm(100*6), ncol=6)
data <- t(t(data)+c(-1, -1.1, -1.2, 1, 1.1, 1.2))
pca_res <- plot_pca(data)
plot_loadings(pca_res)
```

Description

MA-plot of a differential testing result

Usage

```r
plot_ma(de_res, dds, annotate_top_n = 5, highlight_genes = NULL)
```

Arguments

- `de_res`: An object returned by `DESeq2::results()` or `DESeq2::lfcShrink()`.
- `dds`: The `DESeqDataSet` that was used to build the `de_res` object. This is needed for gene name annotation.
- `annotate_top_n`: Annotate the top n significant genes by fold change (up- and down-regulated).
- `highlight_genes`: Vector of gene names or gene IDs to highlight on the plot (overwrites `top_n` annotation).

Value

A `ggplot` object of the `ggplot2` package that contains the MA-plot. The plot shows three classes of points: Light gray points are genes with low counts that are removed from the analysis by independent filtering. Darker gray points are not significant genes that show a density map to visualize where the majority of non-significant points are located. Finally, red point show significant genes.

Examples

```r
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(n=1500, m=6, betaSD=.3, interceptMean=6)
rowData(dds)$gene_name <- rownames(dds)
dds <- DESeq(dds)
de_res <- results(dds)
plot_ma(de_res, dds)
```
plot_pca

Plot results of a principal component analysis

Description

Plot results of a principal component analysis

Usage

```r
plot_pca(
  obj,
  PC_x = 1,
  PC_y = 2,
  n_feats = 500,
  scale_feats = FALSE,
  na_frac = 0.3,
  metadata = NULL,
  color_by = NULL,
  shape_by = NULL,
  point_alpha = 0.7,
  point_rel_size = 2,
  show_plot = TRUE
)
```

Arguments

- `obj` A (features x samples) matrix or SummarizedExperiment object
- `PC_x` The PC to show on the x-axis.
- `PC_y` The PC to show on the y-axis.
- `n_feats` Number of top-variable features to include.
- `scale_feats` Whether to scale the features.
- `na_frac` Only consider features with the stated maximum fraction of NAs or NaNs. NA/NaNs will be mean-imputed for PCA.
- `metadata` A data.frame used for annotating samples. `rownames(metadata)` must match `colnames(obj)`.
- `color_by` Variable by which to color points. Must be a column in metadata or in `colData(obj)`.
- `shape_by` Variable by which to color points. Must be a column in metadata or in `colData(obj)`.
- `point_alpha` Alpha value of `geom_point()`
- `point_rel_size` Relative size of `geom_point()`
- `show_plot` Whether to show the plot or not

Value

The function displays the plot and returns invisible a list of the plot, the data.frame to make the plot, the vector of percentages of variance explained and the loadings matrix.
plot_pca_scatters

Examples

set.seed(1)
data <- matrix(rnorm(100*6), ncol=6)
data <- t(t(data)+c(-1, -1.1, -1.2, 1, 1.1, 1.2))
plot_pca(data)

plot_pca_scatters
Plot matrix of PCA scatter plots

Description

Plot matrix of PCA scatter plots

Usage

plot_pca_scatters(
 obj,
 n_PCs = min(10, nrow(obj), ncol(obj)),
 show_var_exp = T,
 n_feats = 500,
 scale_feats = FALSE,
 na_frac = 0.3,
 metadata = NULL,
 color_by = NULL,
 shape_by = NULL,
 point_alpha = 0.7,
 point_rel_size = 2
)

Arguments

obj A (features x samples) matrix or SummarizedExperiment object
n_PCs Number of principal components to plot
show_var_exp Whether to show a plot of the percentage of variance explained by each PC in the bottom left corner.
n_feats Number of top-variable features to include.
scale_feats Whether to scale the features.
na_frac Only consider features with the stated maximum fraction of NAs or NaNs. NA/NaNs will be mean-imputed for PCA.
metadata A data.frame used for annotating samples. rownames(metadata) must match colnames(obj).
color_by Variable by which to color points. Must be a column in metadata or in colData(obj).
shape_by Variable by which to color points. Must be a column in metadata or in colData(obj).
point_alpha alpha value of geom_point()
point_rel_size relative size of geom_point()
Value

The function displays the scatter plots of the PCs

Examples

```r
set.seed(1)
data <- matrix(rnorm(100*6), ncol=6)
data <- t(t(data)+c(-1, -1.1, -1.2, 1, 1.1, 1.2))
plot_pca_scatters(data)
```

Description

Plot clustering of samples in a distance heatmap

Usage

```r
plot_sample_clustering(
  vsd,
  n_feats = 500,
  anno_vars = NULL,
  distance = "euclidean"
)
```

Arguments

- `vsd` An object generated by `DESeq2::vst()`
- `n_feats` Number of top-variable features (genes) to consider
- `anno_vars` Character vector of columns in `colData(vsd)` to annotate samples
- `distance` The type of distance metric to consider. Either 'euclidean', 'pearson' or 'spearman'

Value

A Heatmap-class object of the ComplexHeatmap package that contains the heatmap of pairwise sample distances.

Examples

```r
library("DESeq2")
dds <- makeExampleDESeqDataSet(m=8, interceptMean=10)
vsd <- vst(dds)
plot_sample_clustering(vsd)
```
plot_sample_MAs
MA plots of samples

Description

For each level of the grouping variable, the gene-wise median over all samples is computed to obtain a reference sample. Then, each sample is plotted against the reference.

Usage

```r
plot_sample_MAs(vsd, group, y_lim = 3)
```

Arguments

- `vsd`: An object generated by `DESeq2::vst()`
- `group`: A grouping variable, must be a column of `colData(vsd)`
- `y_lim`: Y-axis limits, the axis will run from `-y_lim` to `y_lim`

Value

A list of `ggplot` objects of the `ggplot2` package, with each element corresponding to one MA-plot.

Examples

```r
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(n=1000, m=4, interceptMean=10)
colData(dds)$type <- c("A","A","B","B")
vsd <- vst(dds)
plot_sample_MAs(vsd, group="type")
```

plot_total_counts
Plot total counts per sample

Description

Plot the distribution of the total number of counts per sample as histogram.

Usage

```r
plot_total_counts(dds, n_bins = 50)
```

Arguments

- `dds`: A `DESeqDataSet`
- `n_bins`: Number of histogram bins
Value

A ggplot object of the ggplot2 package that contains the histogram of total counts per sample.

Examples

```r
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(m=30)
plot_total_counts(dds)
```

plot_within_level_sample_MAs

Plot correlations of samples within a level of a group

Description

For the given level, the gene-wise median over all samples is computed to obtain a reference sample. Then, each sample is plotted against the reference as MA-plot.

Usage

```r
plot_within_level_sample_MAs(vsd, group, level, y_lim = 4)
```

Arguments

- `vsd`: An object generated by `DESeq2::vst()`
- `group`: A grouping variable, must be a column of `colData(vsd)`
- `level`: A level of the grouping variable
- `y_lim`: Y-axis limits, the axis will run from \(-y_lim\) to \(y_lim\)

Value

A list of ggplot objects of the ggplot2 package that contains for each sample of the specified level the the sample vs reference MA-plot.

Examples

```r
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(n=1000, m=4, interceptMean=10)
colData(dds)$type <- c("A", "A", "B", "B")
vsd <- vst(dds)
plot_within_level_sample_MAs(vsd, group="type", level="A")
```
Description

This function takes a list of plots as input and makes a pdf with `ncol x nrow` plots per page.

Usage

```r
save_plots_to_pdf(
  plots,
  file = "plots.pdf",
  ncol,
  nrow,
  subfig_width = subfig_height * 16/9,
  subfig_height = 2.5,
  legend_position = "original"
)
```

Arguments

- `plots` List of plots that is passed to the `plotlist` argument of `cowplot::plot_grid`
- `file` file where the plots are saved
- `ncol` number of columns per page for the grid of plots
- `nrow` number of rows per page for the grid of plots
- `subfig_width` width of a plot of the grid in inches
- `subfig_height` height of a plot of the grid in inches
- `legend_position` either 'original' if the original legend of each sub-plot is shown, 'none', if no legend should be shown in any of the sub-plots, 'bottom', if no legend should be shown in the sub plots and one shared legend at the bottom or 'right', which is same as 'bottom', but shown on the right

Value

The function returns nothing but is called for it's side effect, which is to save a pdf of plots to the filesystem.

Examples

```r
library("ggplot2")
manuf <- unique(mpg$manufacturer)
plots <- lapply(manuf, function(x){
  df <- mpg[mpg$manufacturer==x,]
  ggplot(df, aes(cty, hwy)) +
  # Add plot code here
})
```
T47D

The T47D cell line data of RNA-seq experiment GSE89888

Description

The dataset contains the read counts of experiment GSE89888 in which T47D cells with different mutation statuses were treated with E2 (estradiol) or vehicle.

Usage

T47D

Format

A DESeqDataSet with 43576 rows (of genes) and 24 columns (of samples).

Source

doi:10.1101/2021.05.21.445138

T47D_diff_testing

Differential expression results corresponding to the T47D data set.

Description

Differential expression results corresponding to the T47D data set.

Usage

T47D_diff_testing

Format

A DESeqResults object with 36562 rows and 3 columns.

Source

See the 'data' vignette on how to reproduce this object.
Index

* datasets
 T47D, 16
 T47D_diff_testing, 16

filter_genes, 2
make_dds, 3
mean_sd_plot, 4

plot_biotypes, 4
plot_chromosome, 5
plot_gene, 6
plot_gene_detection, 7
plot_library_complexity, 7
plot_loadings, 8
plot_ma, 9
plot_pca, 10
plot_pca_scatters, 11
plot_sample_clustering, 12
plot_sample_MAs, 13
plot_total_counts, 13
plot_within_level_sample_MAs, 14

save_plots_to_pdf, 15

T47D, 16
T47D_diff_testing, 16