Package ‘RND’

October 12, 2022

Type Package
Title Risk Neutral Density Extraction Package
Version 1.2
Date 2017-01-10
Author Kam Hamidieh <khamidieh@gmail.com>
Maintainer Kam Hamidieh <khamidieh@gmail.com>
Description Extract the implied risk neutral density from options using various methods.
Depends R (>= 3.0.1)
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-01-11 00:14:55

R topics documented:

RND-package ... 2
approximate.max ... 3
bsm.objective ... 4
compute.implied.volatility 6
dew .. 8
dgb .. 9
dmln .. 10
dmln.am ... 12
dshimko ... 13
ew.objective ... 15
extract.am.density ... 16
extract.bsm.density .. 20
extract.ew.density ... 22
extract.gb.density ... 24
extract.mln.density ... 26
extract.rates .. 28
extract.shimko.density 29
RND-package

Risk Neutral Density Extraction Package

Description

This package is a collection of various functions to extract the implied risk neutral density from option.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>RND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2</td>
</tr>
<tr>
<td>Date:</td>
<td>2017-01-10</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
</tbody>
</table>

Author(s)

Kam Hamidieh <khamidieh@gmail.com>

References

Examples

###
You should see that all methods extract the same density!
###

\[
\begin{align*}
 r &= 0.05 \\
 \text{te} &= 60/365 \\
 s0 &= 1000 \\
 \text{sigma} &= 0.25 \\
 y &= 0.02 \\
\end{align*}
\]

call.strikes.bsm = seq(from = 500, to = 1500, by = 5)
market.calls.bsm = price.bsm.option(r = r, te = te, s0 = s0,
 k = call.strikes.bsm, sigma = sigma, y = y)$call

put.strikes.bsm = seq(from = 500, to = 1500, by = 5)
market.puts.bsm = price.bsm.option(r = r, te = te, s0 = s0,
 k = put.strikes.bsm, sigma = sigma, y = y)$put

###
See where your results will be outputted to...
###

getwd()

###
Running this may take a few minutes...
###

###
MOE(market.calls.bsm, call.strikes.bsm, market.puts.bsm,
put.strikes.bsm, s0, r , te, y, "bsm2")
###

approximate.max
Max Function Approximation

Description

approximate.max gives a smooth approximation to the max function.

Usage

approximate.max(x, y, k = 5)

Arguments

- \(x\) the first argument for the max function
- \(y\) the second argument for the max function
k a tuning parameter. The larger this value, the closer the function output to a true max function.

Details

approximate.max approximates the max of x, and y as follows:

\[g(x, y) = \frac{1}{1 + \exp(-k(x - y))}, \quad \max(x, y) \approx xg(x, y) + y(1 - g(x, y)) \]

Value

approximate maximum of x and y

Author(s)

Kam Hamidieh

References

Examples

```r
# To see how the max function compares with approximate.max,
# run the following code.
#
# i = seq(from = 0, to = 10, by = 0.25)
y = i - 5
max.values = pmax(0, y)
approximate.max.values = approximate.max(0, y, k=5)
matplot(i, cbind(max.values, approximate.max.values), lty = 1, type = "l",
col=c("black","red"), main = "Max in Black, Approximate Max in Red")
```

bsm.objective

BSM Objective Function

Description

bsm.objective is the objective function to be minimized in extract.bsm.density.

Usage

```r
bsm.objective(s0, r, te, y, market.calls, call.strikes, call.weights = 1,
market.puts, put.strikes, put.weights = 1, lambda = 1, theta)
```
Arguments

- \(s_0 \) current asset value
- \(r \) risk free rate
- \(t_e \) time to expiration
- \(y \) dividend yield
- `market.calls` market calls (most expensive to cheapest)
- `call.strikes` strikes for the calls (smallest to largest)
- `call.weights` weights to be used for calls
- `market.puts` market calls (cheapest to most expensive)
- `put.strikes` strikes for the puts (smallest to largest)
- `put.weights` weights to be used for calls
- `lambda` Penalty parameter to enforce the martingale condition
- `theta` initial values for the optimization. This must be a vector of length 2: first component is \(\mu \), the lognormal mean of the underlying density, and the second component is \(\sqrt{t\sigma} \) which is the time scaled volatility parameter of the underlying density.

Details

This function evaluates the weighted squared differences between the market option values and values predicted by the Black-Scholes-Merton option pricing formula.

Value

Objective function evaluated at a specific set of values.

Author(s)

Kam Hamidieh

References

Examples

```r
r = 0.05
te = 60/365
s0 = 1000
sigma = 0.25
y = 0.01
call.strikes = seq(from = 500, to = 1500, by = 25)
market.calls = price.bsm.option(r = r, te = te, s0 = s0, k = call.strikes, sigma = sigma, y = y)$call
```
perfect initial values under BSM framework

```r
mu.0 = log(s0) + (r - y - 0.5 * sigma^2) * te
zeta.0 = sigma * sqrt(te)
```

The objective function should be *very* small

```r
bsm.obj.val = bsm.objective(theta=c(mu.0, zeta.0), r = r, y=y, te = te, s0 = s0,
market.calls = market.calls, call.strikes = call.strikes,
market.puts = market.puts, put.strikes = put.strikes, lambda = 1)
```

compute.implied.volatility

Compute Impied Volatility

Description

`compute.implied.volatility` extracts the implied volatility for a call option.

Usage

```r
compute.implied.volatility(r, te, s0, k, y, call.price, lower, upper)
```

Arguments

- **r** risk free rate
- **te** time to expiration
- **s0** current asset value
- **k** strike of the call option
- **y** dividend yield
- **call.price** call price
- **lower** lower bound of the implied volatility to look for
- **upper** upper bound of the implied volatility to look for
Details

The simple R uniroot function is used to extract the implied volatility.

Value

sigma extracted implied volatility

Author(s)

Kam Hamidieh

References

Examples

```
# Create prices from BSM with various sigma's
#
# r    = 0.05
# y    = 0.02
# te   = 60/365
# s0   = 400

sigma.range = seq(from = 0.1, to = 0.8, by = 0.05)
k.range = floor(seq(from = 300, to = 500, length.out = length(sigma.range)))
bsm.calls = numeric(length(sigma.range))

for (i in 1:length(sigma.range))
{
    bsm.calls[i] = price.bsm.option(r = r, te = te, s0 = s0, k = k.range[i],
                                     sigma = sigma.range[i], y = y)$call
}
bsm.calls
k.range

# Computed implied sigma's should be very close to sigma.range.
#
compute.implied.volatility(r = r, te = te, s0 = s0, k = k.range, y = y,
                           call.price = bsm.calls, lower = 0.001, upper = 0.999)
sigma.range
```
dew

Edgeworth Density

Description

dew is the probability density function implied by the Edgeworth expansion method.

Usage

dew(x, r, y, te, s0, sigma, skew, kurt)

Arguments

x value at which the density is to be evaluated
r risk free rate
y dividend yield
te time to expiration
s0 current asset value
sigma volatility
skew normalized skewness
kurt normalized kurtosis

Details

This density function attempts to capture deviations from lognormal density by using Edgeworth expansions.

Value

density value at x

Author(s)

Kam Hamidieh

References

Examples

Look at a true lognorma density & related dew
#
r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
strikes = seq(from=600, to = 1400, by = 1)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

skew.4 = ln.skew * 1.50
kurt.4 = ln.kurt * 1.50

skew.5 = ln.skew * 0.50
kurt.5 = ln.kurt * 2.00

ew.density.4 = dew(x=strikes, r=r, y=y, te=te, s0=s0, sigma=sigma,
 skew=skew.4, kurt=kurt.4)
ew.density.5 = dew(x=strikes, r=r, y=y, te=te, s0=s0, sigma=sigma,
 skew=skew.5, kurt=kurt.5)
bsm.density = dlnorm(x = strikes, meanlog = log(s0) + (r - y - (sigma^2)/2)*te,
 sdlog = sigma*sqrt(te), log = FALSE)

matplot(strikes, cbind(bsm.density, ew.density.4, ew.density.5), type="l",
lty=c(1,1,1), col=c("black","red","blue"),
main="Black = BSM, Red = EW 1.5 Times, Blue = EW 0.50 & 2")

dgb

Generalized Beta Density

Description

dgb is the probability density function of generalized beta distribution.

Usage

dgb(x, a, b, v, w)

Arguments

- **x**: value at which the density is to be evaluated
- **a**: power parameter > 0
- **b**: scale parameter > 0
- **v**: first beta parameter > 0
- **w**: second beta parameter > 0
Details
Let B be a beta random variable with parameters v and w, then \(Z = b(B/(1 - B))^{1/a} \) is a generalized beta with parameters (a,b,v,w).

Value
density value at x

Author(s)
Kam Hamidieh

References

Examples
Just simple plot of the density
#
x = seq(from = 500, to = 1500, length.out = 10000)
a = 10
b = 1000
v = 3
w = 3
dx = dgb(x = x, a = a, b = b, v = v, w = w)
plot(dx ~ x, type="l")

dmln

Density of Mixture Lognormal

Description
mln is the probability density function of a mixture of two lognormal densities.

Usage
dmln(x, alpha.1, meanlog.1, meanlog.2, sdlog.1, sdlog.2)
Arguments

- \(x \): value at which the density is to be evaluated
- \(\alpha_1 \): proportion of the first lognormal. Second one is 1 - \(\alpha_1 \)
- \(\text{meanlog}_1 \): mean of the log of the first lognormal
- \(\text{meanlog}_2 \): mean of the log of the second lognormal
- \(\text{sdlog}_1 \): standard deviation of the log of the first lognormal
- \(\text{sdlog}_2 \): standard deviation of the log of the second lognormal

Details

\(\text{mln} \) is the density \(f(x) = \alpha_1 \cdot g(x) + (1 - \alpha_1) \cdot h(x) \), where \(g \) and \(h \) are densities of two lognormals with parameters (\(\text{meanlog}_1, \text{sdlog}_1 \)) and (\(\text{meanlog}_2, \text{sdlog}_2 \)) respectively.

Value

- out: density value at \(x \)

Author(s)

Kam Hamidieh

References

Examples

```r
# A bimodal risk neutral density!
#
mln.alpha.1 = 0.4
mln.meanlog.1 = 6.3
mln.meanlog.2 = 6.5
mln.sdlog.1 = 0.08
mln.sdlog.2 = 0.06

k = 300:900
dx = dmln(x = k, alpha.1 = mln.alpha.1, meanlog.1 = mln.meanlog.1, meanlog.2 = mln.meanlog.2, sdlog.1 = mln.sdlog.1, sdlog.2 = mln.sdlog.2)
plot(dx ~ k, type="l")
```
Density of Mixture Lognormal for American Options

Description

mln.am is the probability density function of a mixture of three lognormal densities.

Usage

dmln.am(x, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>value at which the density is to be evaluated</td>
</tr>
<tr>
<td>u.1</td>
<td>log mean of the first lognormal</td>
</tr>
<tr>
<td>u.2</td>
<td>log mean of the second lognormal</td>
</tr>
<tr>
<td>u.3</td>
<td>log mean of the third lognormal</td>
</tr>
<tr>
<td>sigma.1</td>
<td>log standard deviation of the first lognormal</td>
</tr>
<tr>
<td>sigma.2</td>
<td>log standard deviation of the second lognormal</td>
</tr>
<tr>
<td>sigma.3</td>
<td>log standard deviation of the third lognormal</td>
</tr>
<tr>
<td>p.1</td>
<td>weight assigned to the first density</td>
</tr>
<tr>
<td>p.2</td>
<td>weight assigned to the second density</td>
</tr>
</tbody>
</table>

Details

mln is density f(x) = p.1 * f1(x) + p.2 * f2(x) + (1 - p.1 - p.2) * f3(x), where f1, f2, and f3 are lognormal densities with log means u.1, u.2, and u.3 and standard deviations sigma.1, sigma.2, and sigma.3 respectively.

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>density value at x</td>
</tr>
</tbody>
</table>

Author(s)

Kam Hamidieh

References

Examples

###
Just look at a generic density and see if it integrates to 1.
###

u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
x = seq(from = 0, to = 250, by = 0.01)
y = dmln.am(x = x, u.1 = u.1, u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2, sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)

plot(y ~ x, type="l")
sum(y * 0.01)

###
Yes, the sum is near 1.
###

dshimko

Density Implied by Shimko Method

dshimko is the probability density function implied by the Shimko method.

Usage

dshimko(r, te, s0, k, y, a0, a1, a2)

Arguments

r risk free rate
te time to expiration
s0 current asset value
k strike at which volatility to be computed
y dividend yield
a0 constant term in the quadratic polynomial
a1 coefficient term of k in the quadratic polynomial
a2 coefficient term of k squared in the quadratic polynomial
Details

The implied volatility is modeled as: $\sigma(k) = a_0 + a_1 k + a_2 k^2$

Value

density value at x

Author(s)

Kam Hamidieh

References

Examples

```
# a0, a1, a2 values come from Shimko's paper.
#

r = 0.05
y = 0.02
a0 = 0.892
a1 = -0.00387
a2 = 0.00000445
te = 60/365
s0 = 400
k = seq(from = 250, to = 500, by = 1)
sigma = 0.15

# Does it look like a proper density and intergate to one?
#
 dx = dshimko(r = r, te = te, s0 = s0, k = k, y = y, a0 = a0, a1 = a1, a2 = a2)
 plot(dx ~ k, type="l")

# sum(dx) should be about 1 since dx is a density.
#
sum(dx)
```
ew.objective

Edgeworth Expansion Objective Function

Description

`ew.objective` is the objective function to be minimized in `ew.extraction`.

Usage

```r
ew.objective(theta, r, y, te, s0, market.calls, call.strikes, call.weights = 1, lambda = 1)
```

Arguments

- `theta`: initial values for the optimization
- `r`: risk free rate
- `y`: dividend yield
- `te`: time to expiration
- `s0`: current asset value
- `market.calls`: market calls (most expensive to cheapest)
- `call.strikes`: strikes for the calls (smallest to largest)
- `call.weights`: weights to be used for calls
- `lambda`: Penalty parameter to enforce the martingale condition

Details

This function evaluates the weighted squared differences between the market option values and values predicted by Edgeworth based expansion of the risk neutral density.

Value

Objective function evaluated at a specific set of values

Author(s)

Kam Hamidieh

References

Examples

```
  r    = 0.05
  y    = 0.03
  s0   = 1000
  sigma = 0.25
  te   = 100/365
  k    = seq(from=800, to = 1200, by = 50)
  v    = sqrt(exp(sigma^2 * te) - 1)
  ln.skew = 3 * v + v^3
  ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

  #
  # The objective function should be close to zero.
  # Also the weights are automatically set to 1.
  #
  market.calls.bsm = price.bsm.option(r = r, te = te, s0 = s0, k=k,
     sigma=sigma, y=y)$call
  ew.objective(theta = c(sigma, ln.skew, ln.kurt), r = r, y = y, te = te, s0=s0,
     market.calls = market.calls.bsm, call.strikes = k, lambda = 1)
```

Description

`extract.am.density` extracts the mixture of three lognormals from American options.

Usage

```
extract.am.density(initial.values = rep(NA, 10), r, te, s0, market.calls,
     call.weights = NA, market.puts, put.weights = NA, strikes, lambda = 1,
     hessian.flag = F, cl = list(maxit = 10000))
```

Arguments

- `initial.values`: initial values for the optimization
- `r`: risk free rate
- `te`: time to expiration
- `s0`: current asset value
- `market.calls`: market calls (most expensive to cheapest)
- `call.weights`: weights to be used for calls. Set to 1 by default.
- `market.puts`: market calls (cheapest to most expensive)
put.weights weights to be used for puts. Set to 1 by default.
strikes strikes (smallest to largest)
lambda Penalty parameter to enforce the martingale condition
hessian.flag If FALSE then no Hessian is produced
cl List of parameter values to be passed to the optimization function

Details

The extracted density is in the form of \(f(x) = p.1 \times f_1(x) + p.2 \times f_2(x) + (1 - p.1 - p.2) \times f_3(x), \)
where \(f_1, f_2, \) and \(f_3 \) are lognormal densities with log means \(u.1, u.2, \) and \(u.3 \) and standard deviations \(\sigma.1, \sigma.2, \) and \(\sigma.3 \) respectively.

For the description of \(w.1 \) and \(w.2 \) see equations (7) & (8) of Melick and Thomas paper below.

Value

- \(w.1 \) First weight, a number between 0 and 1, to weigh the option price bounds
- \(w.2 \) Second weight, a number between 0 and 1, to weigh the option price bounds
- \(u.1 \) log mean of the first lognormal
- \(u.2 \) log mean of the second lognormal
- \(u.3 \) log mean of the third lognormal
- \(\sigma.1 \) log sd of the first lognormal
- \(\sigma.2 \) log sd of the second lognormal
- \(\sigma.3 \) log sd of the third lognormal
- \(p.1 \) weight assigned to the first density
- \(p.2 \) weight assigned to the second density
- converge.result Captures the convergence result
- hessian Hessian Matrix

Author(s)

Kam Hamidieh

References

Examples

Try with synthetic data first.

```r
r = 0.01
te = 60/365
w.1 = 0.4
w.2 = 0.25
u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
theta = c(w.1, w.2, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)
p.3 = 1 - p.1 - p.2
```

Generate some synthetic American calls & puts

```r
expected.f0 = sum(c(p.1, p.2, p.3) * exp(c(u.1, u.2, u.3) +
                  (c(sigma.1, sigma.2, sigma.3)^2)/2))
expected.f0
```

```r
strikes = 50:150
market.calls = numeric(length(strikes))
market.puts = numeric(length(strikes))
```

```r
for (i in 1:length(strikes))
{
  if (strikes[i] < expected.f0) {
    market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
                                       u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
                                       sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value
    market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
                                       u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
                                       sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value
  } else {
    market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
                                       u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
                                       sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value
    market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
                                       u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
```

```r
```
```r
```
IMPORTANT: The code that follows may take 1-2 minutes.

Copy and paste onto R console the commands

They should be close the actual initials.

> s0 = expected.f0 * exp(-r * te)
> s0

> extract.am.density(initial.values = theta, r = r, te = te, s0 = s0,
> market.calls = market.calls, market.puts = market.puts, strikes = strikes,
> lambda = 1, hessian.flag = FALSE)
> theta

Now try without our the correct initial values...

> optim.obj.no.init = extract.am.density(r = r, te = te, s0 = s0,
> market.calls = market.calls, market.puts = market.puts, strikes = strikes,
> lambda = 1, hessian.flag = FALSE)
> optim.obj.no.init
> theta

We do get different values but how do the densities look like?

> x = 10:190
> y.1 = dmln.am(x = x, p.1 = theta[9], p.2 = theta[10],
> u.1 = theta[3], u.2 = theta[4], u.3 = theta[5],
> sigma.1 = theta[6], sigma.2 = theta[7], sigma.3 = theta[8])
> o = optim.obj.no.init
> y.2 = dmln.am(x = x, p.1 = o$p.1, p.2 = o$p.2,
u.1 = o$u.1, u.2 = o$u.2, u.3 = o$u.3,
sigma.1 = o$sigma.1, sigma.2 = o$sigma.2, sigma.3 = o$sigma.3)
> matplot(x, cbind(y.1,y.2), main = "Exact = Black, Approx = Red", type="l", lty=1)
###
Densities are close.
###

extract.bsm.density
Extract Lognormal Density

Description

bsm.extraction extracts the parameters of the lognormal density as implied by the BSM model.

Usage

```r
density = extract.bsm.density(initial.values = c(NA, NA), r, y, te, s0, market.calls, 
call.strikes, call.weights = 1, market.puts, put.strikes, put.weights = 1, 
lambda = 1, hessian.flag = F, cl = list(maxit = 10000))
```

Arguments

- `initial.values`: initial values for the optimization
- `r`: risk free rate
- `y`: dividend yield
- `te`: time to expiration
- `s0`: current asset value
- `market.calls`: market calls (most expensive to cheapest)
- `call.strikes`: strikes for the calls (smallest to largest)
- `call.weights`: weights to be used for calls
- `market.puts`: market calls (cheapest to most expensive)
- `put.strikes`: strikes for the puts (smallest to largest)
- `put.weights`: weights to be used for puts
- `lambda`: Penalty parameter to enforce the martingale condition
- `hessian.flag`: if F, no hessian is produced
- `cl`: list of parameter values to be passed to the optimization function

Details

If `initial.values` are not specified then the function will attempt to pick them automatically. `cl` is a list that can be used to pass parameters to the `optim` function.
Value

Let S_T with the lognormal random variable of the risk neutral density.

- **mu**: mean of log(S_T)
- **zeta**: sd of log(S_T)
- **converge.result**: Did the result converge?
- **hessian**: Hessian matrix

Author(s)

Kam Hamidieh

References

Examples

```r
# # Create some BSM Based options
#

r    = 0.05
te   = 60/365
s0   = 1000
sigma = 0.25
y    = 0.01

call.strikes = seq(from = 500, to = 1500, by = 25)
market.calls = price.bsm.option(r = r, te = te, s0 = s0,
                                 k = call.strikes, sigma = sigma, y = y)$call

put.strikes = seq(from = 510, to = 1500, by = 25)
market.puts = price.bsm.option(r = r, te = te, s0 = s0,
                                k = put.strikes, sigma = sigma, y = y)$put

# # Get extract the parameter of the density
#

extract.bsm.density(r = r, y = y, te = te, s0 = s0, market.calls = market.calls,
                     call.strikes = call.strikes, market.puts = market.puts,
                     put.strikes = put.strikes, lambda = 1, hessian.flag = FALSE)
```

The extracted parameters should be close to these actual values:
#
actual.mu = log(s0) + (r - y - 0.5 * sigma^2) * te
actual.zeta = sigma * sqrt(te)
actual.mu
actual.zeta

extract.ew.density
Extract Edgeworth Based Density

Description

`ew.extraction` extracts the parameters for the density approximated by the Edgeworth expansion method.

Usage

```r
extract.ew.density(initial.values = c(NA, NA, NA), r, y, te, s0, market.calls, call.strikes, call.weights = 1, lambda = 1, hessian.flag = F, cl = list(maxit = 10000))
```

Arguments

- `initial.values`: initial values for the optimization
- `r`: risk free rate
- `y`: dividend yield
- `te`: time to expiration
- `s0`: current asset value
- `market.calls`: market calls (most expensive to cheapest)
- `call.strikes`: strikes for the calls (smallest to largest)
- `call.weights`: weights to be used for calls
- `lambda`: Penalty parameter to enforce the martingale condition
- `hessian.flag`: if F, no hessian is produced
- `cl`: list of parameter values to be passed to the optimization function

Details

If `initial.values` are not specified then the function will attempt to pick them automatically. `cl` in form of a list can be used to pass parameters to the `optim` function.
Value

- sigma: volatility of the underlying lognormal
- skew: normalized skewness
- kurt: normalized kurtosis
- converge.result: Did the result converge?
- hessian: Hessian matrix

Author(s)

Kam Hamidieh

References

Examples

```r
# ln.skew & ln.kurt are the normalized skewness and kurtosis of a true lognormal.
#

r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
strikes = seq(from=600, to = 1400, by = 1)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

# Now "perturb" the lognormal
#
new.skew = ln.skew * 1.50
new.kurt = ln.kurt * 1.50
```

new.skew & new.kurt should not be extracted.
Note that weights are automatically set to 1.
#
extract.gb.density

Generalized Beta Extraction

Description

extract.gb.density extracts the generalized beta density from market options.

Usage

extract.gb.density(initial.values = c(NA, NA, NA, NA), r, te, y, s0, market.calls, call.strikes, call.weights = 1, market.puts, put.strikes, put.weights = 1, lambda = 1, hessian.flag = F, cl = list(maxit = 10000))

Arguments

initial.values initial values for the optimization
r risk free rate
te time to expiration
y dividend yield
s0 current asset value
market.calls market calls (most expensive to cheapest)
call.strikes strikes for the calls (smallest to largest)
call.weights weights to be used for calls
market.puts market calls (cheapest to most expensive)
put.strikes strikes for the puts (smallest to largest)
put.weights weights to be used for puts
lambda Penalty parameter to enforce the martingale condition
hessian.flag if F, no hessian is produced
cl list of parameter values to be passed to the optimization function

Details

This function extracts the generalized beta density implied by the options.
Value

- a: extracted power parameter
- b: extracted scale parameter
- v: extracted first beta parameter
- w: extracted second beta parameter

converge.result

- Did the result converge?

hessian

- Hessian matrix

Author(s)

- Kam Hamidieh

References

Examples

```
# # create some GB based calls and puts #

r = 0.03
te = 50/365
k = seq(from = 800, to = 1200, by = 10)
a = 10
b = 1000
v = 2.85
w = 2.85
y = 0.01
s0 = exp((y-r)*te) * b * beta(v + 1/a, w - 1/a)/beta(v,w)
s0

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.gb.option(r = r, te = te, y = y, s0 = s0,
    k = call.strikes, a = a, b = s0, v = v, w = w)$call

put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.gb.option(r = r, te = te, y = y, s0 = s0,
    k = put.strikes, a = a, b = s0, v = v, w = w)$put
```
extract.mln.density

Extract Mixture of Lognormal Densities

Description

mln.extraction extracts the parameters of the mixture of two lognormals densities.

Usage

extract.mln.density(initial.values = c(NA, NA, NA, NA, NA), r, y, te, s0,
market.calls, call.strikes, call.weights = 1, market.puts, put.strikes,
put.weights = 1, lambda = 1, hessian.flag = F, cl = list(maxit = 10000))

Arguments

initial.values initial values for the optimization
r risk free rate
y dividend yield
te time to expiration
s0 current asset value
market.calls market calls (most expensive to cheapest)
call.strikes strikes for the calls (smallest to largest)
call.weights weights to be used for calls
market.puts market calls (cheapest to most expensive)
put.strikes strikes for the puts (smallest to largest)
put.weights weights to be used for puts
lambda Penalty parameter to enforce the martingale condition
hessian.flag if F, no hessian is produced
cl list of parameter values to be passed to the optimization function

Details

mln is the density f(x) = alpha.1 * g(x) + (1 - alpha.1) * h(x), where g and h are densities of two lognormals with parameters (mean.log.1, sdlog.1) and (mean.log.2, sdlog.2) respectively.
Value
- alpha.1: extracted proportion of the first lognormal. Second one is 1 - alpha.1
- meanlog.1: extracted mean of the log of the first lognormal
- meanlog.2: extracted mean of the log of the second lognormal
- sdlog.1: extracted standard deviation of the log of the first lognormal
- sdlog.2: extracted standard deviation of the log of the second lognormal
- converge.result: Did the result converge?
- hessian: Hessian matrix

Author(s)
Kam Hamidieh

References

Examples

```r
# Create some calls and puts based on mln and # see if we can extract the correct values.
#
r = 0.05
y = 0.02
te = 60/365
meanlog.1 = 6.8
meanlog.2 = 6.95
sdlog.1 = 0.065
sdlog.2 = 0.055
alpha.1 = 0.4

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.mln.option(r = r, y = y, te = te, k = call.strikes,
                                 alpha.1 = alpha.1, meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
                                 sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$call
```
s0 = price.mln.option(r = r, y = y, te = te, k = call.strikes, alpha.1 = alpha.1,
meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$s0
s0

put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.mln.option(r = r, y = y, te = te, k = put.strikes,
alpha.1 = alpha.1, meanlog.1 = meanlog.1,
meanlog.2 = meanlog.2, sdlog.1 = sdlog.1,
sdlog.2 = sdlog.2)$put

###
The extracted values should be close to the actual values.
###

eextract.mln.density(r = r, y = y, te = te, s0 = s0, market.calls = market.calls,
call.strikes = call.strikes, market.puts = market.puts,
put.strikes = put.strikes, lambda = 1, hessian.flag = FALSE)

extract.rates

Extract Risk Free Rate and Dividend Yield

Description

`extract.rates` extracts the risk free rate and the dividend yield from European options.

Usage

`extract.rates(calls, puts, s0, k, te)`

Arguments

calls | market calls (most expensive to cheapest)
puts | market puts (cheapest to most expensive)
s0 | current asset value
k | strikes for the calls (smallest to largest)
te | time to expiration

Details

The extraction is based on the put-call parity of the European options. Shimko (1993) - see below - shows that the slope and intercept of the regression of the calls minus puts onto the strikes contains the risk free and the dividend rates.
Value

risk.free.rate
- extracted risk free rate

dividend.yield
- extracted dividend rate

Author(s)

Kam Hamidieh

References

Examples

Create calls and puts based on BSM
#
r = 0.05
te = 60/365
s0 = 1000
k = seq(from = 900, to = 1100, by = 25)
sigma = 0.25
y = 0.01

bsm.obj = price.bsm.option(r =r, te = te, s0 = s0, k = k, sigma = sigma, y = y)
calls = bsm.obj$call
puts = bsm.obj$put

Extract rates should give the values of r and y above:
#

rates = extract.rates(calls = calls, puts = puts, k = k, s0 = s0, te = te)
rates

extract.shimko.density

Extract Risk Neutral Density based on Shimko’s Method

Description

shimko.extraction extracts the implied risk neutral density based on modeling the volatility as a quadratic function of the strikes.
extract.shimko.density

Usage

extract.shimko.density(market.calls, call.strikes, r, y, te, s0, lower, upper)

Arguments

market.calls market calls (most expensive to cheapest)
call.strikes strikes for the calls (smallest to largest)
r risk free rate
y dividend yield
t time to expiration
s0 current asset value
lower lower bound for the search of implied volatility
upper upper bound for the search of implied volatility

Details

The correct values for range of search must be specified.

Value

implied.curve.obj
variable that holds a0, a1, and a2 which are the constant terms of the quadratic polynomial

shimko.density
density evaluated at the strikes

implied.volatilities
implied volatilities at each call.strike

Author(s)

Kam Hamidieh

References

Examples

Test the function shimko.extraction. If BSM holds then a1 = a2 = 0.
#
 r = 0.05
 y = 0.02
te = 60/365
s0 = 1000
k = seq(from = 800, to = 1200, by = 5)
sigma = 0.25

bsm.calls = price.bsm.option(r = r, te = te, s0 = s0, k = k,
 sigma = sigma, y = y)$call
extract.shimko.density(market.calls = bsm.calls, call.strikes = k, r = r, y = y, te = te,
 s0 = s0, lower = -10, upper = 10)

Note: a0 is about equal to sigma, and a1 and a2 are close to zero.

fit.implied.volatility.curve

Fit Implied Quadratic Volatility Curve

Description

fit.implied.volatility.curve estimates the coefficients of the quadratic equation for the implied volatilities.

Usage

fit.implied.volatility.curve(x, k)

Arguments

- **x** a set of implied volatilities
- **k** range of strikes

Details

This function estimates volatility σ as a quadratic function of strike k with the coefficients a_0, a_1, a_2: $\sigma(k) = a_0 + a_1 k + a_2 k^2$

Value

- **a0** constant term in the quadratic polynomial
- **a1** coefficient term of k in the quadratic polynomial
- **a2** coefficient term of k squared in the quadratic polynomial
- **summary.obj** statistical summary of the fit

Author(s)

Kam Hamidieh
References

Examples

Suppose we see the following implied volatilities and strikes:
#
implied.sigma = c(0.11, 0.08, 0.065, 0.06, 0.05)
strikes = c(340, 360, 380, 400, 410)
tmp = fit.implied.volatility.curve(x = implied.sigma, k = strikes)
tmp

strike.range = 340:410
plot(implied.sigma ~ strikes)
lines(strike.range, tmp$a0 + tmp$a1 * strike.range + tmp$a2 * strike.range^2)

gb.objective Generalized Beta Objective

Description

gb.objective is the objective function to be minimized in extract.gb.density.

Usage

gb.objective(theta, r, te, y, s0, market.calls, call.strikes, call.weights = 1,
 market.puts, put.strikes, put.weights = 1, lambda = 1)

Arguments

theta initial values for optimization
r risk free rate
te time to expiration
y dividend yield
s0 current asset value
market.calls market calls (most expensive to cheapest)
call.strikes strikes for the calls (smallest to largest)
call.weights weights to be used for calls
market.puts market calls (cheapest to most expensive)
gb.objective

put.strikes strikes for the puts (smallest to largest)
put.weights weights to be used for puts
lambda Penalty parameter to enforce the martingale condition

Details

This is the function minimized by extract.gb.desnity function.

Value

obj value of the objective function

Author(s)

Kam Hamidieh

References

Examples

The objective should be very small!
Note the weights are automatically set to 1.
#

r = 0.03
te = 50/365
k = seq(from = 800, to = 1200, by = 10)
a = 10
b = 1000
v = 2.85
w = 2.85
y = 0.01
s0 = exp((y-r)*te) * b * beta(v + 1/a, w - 1/a)/beta(v,w)
s0

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.gb.option(r = r, te = te, s0 = s0, y = y,
 k = call.strikes, a = a, b = b, v = v, w = w)$call

put.strikes = seq(from = 805, to = 1200, by = 10)
get.point.estimate

Description

get.point.estimate estimates the risk neutral density by center differentiation.

Usage

get.point.estimate(market.calls, call.strikes, r, te)

Arguments

market.calls market calls (most expensive to cheapest)
call.strikes strikes for the calls (smallest to largest)
r risk free rate
te time to expiration

Details

This is a non-parametric estimate of the risk neutral density. Due to center differentiation, the density values are not estimated at the highest and lowest strikes.

Value

point.estimate values of the estimated density at each strike

Author(s)

Kam Hamidieh

References

Examples

Recover the lognormal density based on BSM

```r
r = 0.05
te = 60/365
s0 = 1000
k = seq(from = 500, to = 1500, by = 1)
sigma = 0.25
y = 0.01

bsm.calls = price.bsm.option(r = r, te = te, s0 = s0, k = k, sigma = sigma, y = y)$call
density.est = get.point.estimate(market.calls = bsm.calls,
    call.strikes = k, r = r, te = te)

len = length(k)-1
### Note, estimates at two data points (smallest and largest strikes) are lost
plot(density.est ~ k[2:len], type = "l")
```

mln.am.objective

Objective function for the Mixture of Lognormal of American Options

Description

`mln.am.objective` is the objective function to be minimized in `extract.am.density`.

Usage

```r
mln.am.objective(theta, s0, r, te, market.calls, call.weights = NA, market.puts,
    put.weights = NA, strikes, lambda = 1)
```

Arguments

- `theta`: initial values for the optimization
- `s0`: current asset value
- `r`: risk free rate
- `te`: time to expiration
- `market.calls`: market calls (most expensive to cheapest)
- `call.weights`: weights to be used for calls
- `market.puts`: market calls (cheapest to most expensive)
- `put.weights`: weights to be used for calls
- `strikes`: strikes for the calls (smallest to largest)
- `lambda`: Penalty parameter to enforce the martingale condition
mln is density \(f(x) = p_1 \cdot f_1(x) + p_2 \cdot f_2(x) + (1 - p_1 - p_2) \cdot f_3(x) \), where \(f_1, f_2, \) and \(f_3 \) are lognormal densities with log means \(u_1, u_2, \) and \(u_3 \) and standard deviations \(\sigma_1, \sigma_2, \) and \(\sigma_3 \) respectively.

Value

\[obj \quad \text{Value of the objective function} \]

Author(s)

Kam Hamidieh

References

Examples

```r
r = 0.01
te = 60/365
w.1 = 0.4
w.2 = 0.25
u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
p.2 = 0.45
theta = c(w.1, w.2, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)
p.3 = 1 - p.1 - p.2
expected.f0 = sum(c(p.1, p.2, p.3) * exp(c(u.1, u.2, u.3) +
                      (c(sigma.1, sigma.2, sigma.3)^2)/2)
                     )
expected.f0
strikes = 30:170
market.calls = numeric(length(strikes))
market.puts = numeric(length(strikes))
for (i in 1:length(strikes))
{
    if (strikes[i] < expected.f0) {
    ```
market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

} else {

market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value

market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value

}

Quickly look at the option values...
###
par(mfrow=c(1,2))
plot(market.calls ~ strikes, type="l")
plot(market.puts ~ strikes, type="l")
par(mfrow=c(1,1))

** IMPORTANT **: The code that follows may take a few seconds.
Copy and paste onto R console the commands
that follow the greater sign >.
###
Next try the objective function. It should be zero.
Note: Let weights be the defaults values of 1.
###
> s0 = expected.f0 * exp(-r * te)
> s0
#
> mln.am.objective(theta, s0 =s0, r = r, te = te, market.calls = market.calls,
market.puts = market.puts, strikes = strikes, lambda = 1)
#
Now directly try the optimization with perfect initial values.
###
> optim.obj.with.synthetic.data = optim(theta, mln.am.objective, s0 = s0, r=r, te=te,
market.calls = market.calls, market.puts = market.puts, strikes = strikes,
lambda = 1, hessian = FALSE , control=list(maxit=10000))
mln.objective

Objective function for the Mixture of Lognormal

Description

mln.objective is the objective function to be minimized in extract.mln.density.

Usage

```r
mln.objective(theta, r, y, te, s0, market.calls, call.strikes, call.weights,
        market.puts, put.strikes, put.weights, lambda = 1)
```

Arguments

- `theta`: initial values for the optimization
- `r`: risk free rate
- `y`: dividend yield
- `te`: time to expiration
- `s0`: current asset value
- `market.calls`: market calls (most expensive to cheapest)
- `call.strikes`: strikes for the calls (smallest to largest)
- `call.weights`: weights to be used for calls
- `market.puts`: market calls (cheapest to most expensive)
- `put.strikes`: strikes for the puts (smallest to largest)
- `put.weights`: weights to be used for puts
- `lambda`: Penalty parameter to enforce the martingale condition

Details

mln is the density \(f(x) = \alpha_1 \cdot g(x) + (1 - \alpha_1) \cdot h(x) \), where \(g \) and \(h \) are densities of two lognormals with parameters \((\text{mean.log.1, sdlog.1})\) and \((\text{mean.log.2, sdlog.2})\) respectively.

Value

- `obj`: value of the objective function
Author(s)

Kam Hamidieh

References

Examples

```
# The mln objective function should be close to zero.
# The weights are automatically set to 1.
#
# r = 0.05
te = 60/365
y = 0.02

meanlog.1 = 6.8
meanlog.2 = 6.95
sdlog.1 = 0.065
sdlog.2 = 0.055
alpha.1 = 0.4

# This is the current price implied by parameter values:
s0 = 981.8815

call.strikes = seq(from = 800, to = 1200, by = 10)
market.calls = price.mln.option(r=r, y = y, te = te, k = call.strikes,
    alpha.1 = alpha.1, meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
    sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$call

put.strikes = seq(from = 805, to = 1200, by = 10)
market.puts = price.mln.option(r = r, y = y, te = te, k = put.strikes,
    alpha.1 = alpha.1, meanlog.1 = meanlog.1, meanlog.2 = meanlog.2,
    sdlog.1 = sdlog.1, sdlog.2 = sdlog.2)$put

mln.objective(theta=c(alpha.1,meanlog.1, meanlog.2 , sdlog.1, sdlog.2),
    r = r, y = y, te = te, s0 = s0,
    market.calls = market.calls, call.strikes = call.strikes,
    market.puts = market.puts, put.strikes = put.strikes, lambda = 1)
```
MOE

Description

MOE function extracts the risk neutral density based on all models and summarizes the results.

Usage

MOE(market.calls, call.strikes, market.puts, put.strikes, call.weights = 1, put.weights = 1, lambda = 1, s0, r, te, y, file.name = "myfile")

Arguments

market.calls market calls (most expensive to cheapest)
call.strikes strikes for the calls (smallest to largest)
market.puts market calls (cheapest to most expensive)
put.strikes strikes for the puts (smallest to largest)
call.weights Weights for the calls (must be in the same order of calls)
put.weights Weights for the puts (must be in the same order of puts)
lambda Penalty parameter to enforce the martingale condition
s0 Current asset value
r risk free rate
te time to expiration
y dividend yield
file.name File names where analysis is to be saved. SEE DETAILS!

Details

The MOE function in a few key strokes extracts the risk neutral density via various methods and summarizes the results.

This function should only be used for European options.

NOTE: Three files will be produced: filename will have the pdf version of the results. file.namecalls.csv will have the predicted call values. file.nameputs.csv will have the predicted put values.

Value

bsm.mu mean of log(S(T)), when S(T) is lognormal
bsm.sigma SD of log(S(T)), when S(T) is lognormal
gb.a extracted power parameter, when S(T) is assumed to be a GB rv
gb.b extracted scale parameter, when S(T) is assumed to be a GB rv
gb.v extracted first beta parameter, when S(T) is assumed to be a GB rv
gb.w extracted second beta parameter, when $S(T)$ is assumed to be a GB rv
mln.alpha.1 extracted proportion of the first lognormal. Second one is $1 - \alpha.1$ in mixture of lognormals
mln.meanlog.1 extracted mean of the log of the first lognormal in mixture of lognormals
mln.meanlog.2 extracted mean of the log of the second lognormal in mixture of lognormals
mln.sdlog.1 extracted standard deviation of the log of the first lognormal in mixture of lognormals
mln.sdlog.2 extracted standard deviation of the log of the second lognormal in mixture of lognormals
ew.sigma volatility when using the Edgeworth expansions
ew.skew normalized skewness when using the Edgeworth expansions
ew.kurt normalized kurtosis when using the Edgeworth expansions
a0 extracted constant term in the quadratic polynomial of Shimko method
a1 extracted coefficient term of k in the quadratic polynomial of Shimko method
a2 extracted coefficient term of k^2 in the quadratic polynomial of Shimko method

Author(s)
Kam Hamidieh

References

Examples

```r
###
### You should see that all methods extract the same density!
###

r = 0.05
te = 60/365
s0 = 1000
sigma = 0.25
y = 0.02

strikes = seq(from = 500, to = 1500, by = 5)
bsm.prices = price.bsm.option(r = r, te = te, s0 = s0, 
                                       k = strikes, sigma = sigma, y = y)
calls = bsm.prices$call
puts = bsm.prices$put
```

###
See where your results will go...
###

getwd()

Running this may take 1-2 minutes...
###
MOE(market.calls = calls, call.strikes = strikes, market.puts = puts,
put.strikes = strikes, call.weights = 1, put.weights = 1,
lambda = 1, s0 = s0, r = r, te = te, y = y, file.name = "myfile")
###
You may get some warning messages. This happens because the
automatic initial value selection sometimes picks values
that produce NaNs in the generalized beta density estimation.
These messages are often inconsequential.
###

West Texas Intermediate Crude Oil Options on 2013-10-01

Description

This dataset contains West Texas Intermediate (WTI) crude oil options with 43 days to expiration at the end of the business day October 1, 2012. On October 1, 2012, WTI closed at 92.44.

Usage

```r
data(oil.2012.10.01)
```

Format

A data frame with 332 observations on the following 7 variables.

- **type**: a factor with levels **C** for call option, **P** for put option
- **strike**: option strike
- **settlement**: option settlement price
- **openint**: option open interest
- **volume**: trading volume
- **delta**: option delta
- **impliedvolatility**: option implied volatility

Source

Examples

```r
data(oil.2012.10.01)
```
Description

pgb is the cumulative distribution function (CDF) of a generalized beta random variable.

Usage

\[\text{pgb}(x, a, b, v, w) \]

Arguments

- **x**
 - value at which the CDF is to be evaluated
- **a**
 - power parameter > 0
- **b**
 - scale parameter > 0
- **v**
 - first beta parameter > 0
- **w**
 - second beta parameter > 0

Details

Let \(B \) be a beta random variable with parameters \(v \) and \(w \). Then \(Z = b \cdot (B/(1-B))^{1/a} \) is a generalized beta random variable with parameters \((a, b, v, w)\).

Value

- **out**
 - CDF value at \(x \)

Author(s)

Kam Hamidieh

References

Examples

```r
# What does the cdf of a GB look like?
#

a = 1
b = 10
v = 2
w = 2

x = seq(from = 0, to = 500, by = 0.01)
y = pgb(x = x, a = a, b = b, v = v, w = w)
plot(y ~ x, type = "l")
abline(h=c(0,1), lty=2)
```

price.am.option
Price American Options on Mixtures of Lognormals

Description

price.am.option gives the price of a call and a put option at a set strike when the risk neutral density is a mixture of three lognormals.

Usage

```r
price.am.option(k, r, te, w, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)
```

Arguments

- `k`: Strike
- `r`: risk free rate
- `te`: time to expiration
- `w`: Weight, a number between 0 and 1, to weigh the option price bounds
- `u.1`: log mean of the first lognormal
- `u.2`: log mean of the second lognormal
- `u.3`: log mean of the second lognormal
- `sigma.1`: log sd of the first lognormal
- `sigma.2`: log mean of the second lognormal
- `sigma.3`: log mean of the third lognormal
- `p.1`: weight assigned to the first density
- `p.2`: weight assigned to the second density
Details

mln is density $f(x) = p.1 \cdot f_1(x) + p.2 \cdot f_2(x) + (1 - p.1 - p.2) \cdot f_3(x)$, where f_1, f_2, and f_3 are lognormal densities with log means $u.1, u.2$, and $u.3$ and standard deviations $\sigma.1, \sigma.2$, and $\sigma.3$ respectively.

Note: Different weight values, w, need to be assigned to whether the call or put is in the money or not. See equations (7) & (8) of Melick and Thomas paper below.

Value

call.value American call value
put.value American put value
expected.f0 Expected mean value of asset at expiration
prob.f0.gr.k Probability asset values is greater than strike
prob.f0.ls.k Probability asset value is less than strike
expected.f0.f0.gr.k Expected value of asset given asset exceeds strike
expected.f0.f0.ls.k Expected value of asset given asset is less than strike

Author(s)

Kam Hamidieh

References

Examples

```r
###
### Set a few parameters and create some
### American options.
###

r = 0.01
t = 60/365
w.1 = 0.4
w.2 = 0.25
u.1 = 4.2
u.2 = 4.5
u.3 = 4.8
sigma.1 = 0.30
sigma.2 = 0.20
sigma.3 = 0.15
p.1 = 0.25
```
p.2 = 0.45
theta = c(w.1, w.2, u.1, u.2, u.3, sigma.1, sigma.2, sigma.3, p.1, p.2)

p.3 = 1 - p.1 - p.2

expected.f0 = sum(c(p.1, p.2, p.3) * exp(c(u.1, u.2, u.3) +
(c(sigma.1, sigma.2, sigma.3)^2)/2))

strikes = 30:170

market.calls = numeric(length(strikes))
market.puts = numeric(length(strikes))

for (i in 1:length(strikes))
{
 if (strikes[i] < expected.f0) {
 market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value
 market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value
 } else {
 market.calls[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.2, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$call.value
 market.puts[i] = price.am.option(k = strikes[i], r = r, te = te, w = w.1, u.1 = u.1,
 u.2 = u.2, u.3 = u.3, sigma.1 = sigma.1, sigma.2 = sigma.2,
 sigma.3 = sigma.3, p.1 = p.1, p.2 = p.2)$put.value
 }
}

Quickly look at the option values...
###
par(mfrow=c(1,2))
plot(market.calls ~ strikes, type="l")
plot(market.puts ~ strikes, type="l")
par(mfrow=c(1,1))
Description

bsm.option.price computes the BSM European option prices.

Usage

price.bsm.option(s0, k, r, te, sigma, y)

Arguments

s0 current asset value
k strike
r risk free rate
te time to expiration
sigma volatility
y dividend yield

Details

This function implements the classic Black-Scholes-Merton option pricing model.

Value

d1 value of \((\log(s0/k) + (r - y + (sigma^2)/2) * te)/(sigma * sqrt(te))\)
d2 value of d1 - sigma * sqrt(te)
call call price
put put price

Author(s)

Kam Hamidieh

References

Examples

call should be 4.76, put should be 0.81, from Hull 8th, page 315, 316
#

r = 0.10
te = 0.50
s0 = 42
k = 40
sigma = 0.20
y = 0

bsm.option = price.bsm.option(r = r, te = te, s0 = s0, k = k, sigma = sigma, y = y)
bsm.option

Make sure put-call parity holds, Hull 8th, page 351
#
(bsm.option$call - bsm.option$put) - (s0 * exp(-y*te) - k * exp(-r*te))

Description

`price.ew.option` computes the option prices based on Edgeworth approximated densities.

Usage

`price.ew.option(r, te, s0, k, sigma, y, skew, kurt)`

Arguments

- `r`: risk free rate
- `te`: time to expiration
- `s0`: current asset value
- `k`: strike
- `sigma`: volatility
- `y`: dividend rate
- `skew`: normalized skewness
- `kurt`: normalized kurtosis

Details

Note that this function may produce negative prices if `skew` and `kurt` are not well estimated from the data.

Value

- `call`: Edgeworth based call
- `put`: Edgeworth based put
Examples

Here, the prices must match EXACTLY the BSM prices:
#

r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
t = 100/365
k = seq(from=800, to = 1200, by = 50)
v = sqrt(exp(sigma^2 * t) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8

ew.option.prices = price.ew.option(r = r, t = t, s0 = s0, k=k, sigma=sigma,
y=y, skew = ln.skew, kurt = ln.kurt)
bsm.option.prices = price.bsm.option(r = r, t = t, s0 = s0, k=k, sigma=sigma, y=y)

ew.option.prices
bsm.option.prices

####
Now ew prices should be different as we increase the skewness and kurtosis:
####

new.skew = ln.skew * 1.10
new.kurt = ln.kurt * 1.10

new.ew.option.prices = price.ew.option(r = r, t = t, s0 = s0, k=k, sigma=sigma,
y=y, skew = new.skew, kurt = new.kurt)
new.ew.option.prices
bsm.option.prices
Description

price.gb.option computes the price of options.

Usage

price.gb.option(r, te, s0, k, y, a, b, v, w)

Arguments

- r: risk free interest rate
- te: time to expiration
- s0: current asset value
- k: strike
- y: dividend yield
- a: power parameter \(> 0\)
- b: scale parameter \(> 0\)
- v: first beta parameter \(> 0\)
- w: second beta parameter \(> 0\)

Details

This function is used to compute European option prices when the underlying has a generalized beta (GB) distribution. Let \(B\) be a beta random variable with parameters \(v\) and \(w\). Then \(Z = b^{a}(B/(1-B))^{a}(1/a)\) is a generalized beta random variable with parameters with \((a,b,v,w)\).

Value

- prob.1: Probability that a GB random variable with parameters \((a,b,v+1/a,w-1/a)\) will be above the strike
- prob.2: Probability that a GB random variable with parameters \((a,b,v,w)\) will be above the strike
- call: call price
- put: put price

Author(s)

Kam Hamidieh
price.mln.option

References

Examples

```
# A basic GB option pricing....
#

r = 0.03
te = 50/365
s0 = 1000.086
k = seq(from = 800, to = 1200, by = 10)
y = 0.01
a = 10
b = 1000
v = 2.85
w = 2.85

price.gb.option(r = r, te = te, s0 = s0, k = k, y = y, a = a, b = b, v = v, w = w)
```

price.mln.option
Price Options on Mixture of Lognormals

Description

mln.option.price gives the price of a call and a put option at a strike when the risk neutral density is a mixture of two lognormals.

Usage

```
price.mln.option(r, te, y, k, alpha.1, meanlog.1, meanlog.2, sdlog.1, sdlog.2)
```

Arguments

```
r        risk free rate
 te       time to expiration
   y       dividend yield
    k      strike
```
alpha.1 proportion of the first lognormal. Second one is 1 - alpha.1
meanlog.1 mean of the log of the first lognormal
meanlog.2 mean of the log of the second lognormal
sdlog.1 standard deviation of the log of the first lognormal
sdlog.2 standard deviation of the log of the second lognormal

Details

mln is the density f(x) = alpha.1 * g(x) + (1 - alpha.1) * h(x), where g and h are densities of two
lognormals with parameters (mean.log.1, sdlog.1) and (mean.log.2, sdlog.2) respectively.

Value

call call price
put put price
s0 current value of the asset as implied by the mixture distribution

Author(s)

Kam Hamidieh

References

F. Gianluca and A. Roncoroni (2008) Implementing Models in Quantitative Finance: Methods and
Cases

P. Soderlind and L.E.O. Svensson (1997) New techniques to extract market expectations from fi-
nancial instruments. Journal of Monetary Economics, 40, 383-429

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Dis-
tributions Springer-Verlag, London

Examples

#
Try out a range of options
#

r = 0.05
te = 60/365
k = 700:1300
y = 0.02
meanlog.1 = 6.80
meanlog.2 = 6.95
sdlog.1 = 0.065
sdlog.2 = 0.055
alpha.1 = 0.4
price.shimko.option

Description

price.shimko.option prices a European option based on the extracted Shimko volatility function.

Usage

price.shimko.option(r, te, s0, k, y, a0, a1, a2)

Arguments

r risk free rate
te time to expiration
s0 current asset value
k strike
y dividend yield
a0 constant term in the quadratic polynomial
a1 coefficient term of k in the quadratic polynomial
a2 coefficient term of k squared in the quadratic polynomial

Details

This function may produce negative option values when nonsensical values are used for a0, a1, and a2.

Value

call call price
put put price

Author(s)

Kam Hamidieh
References

Examples

```r
r  =  0.05
y  =  0.02
te =  60/365
s0 =  1000
k  =  950
sigma =  0.25
a0 =  0.30
a1 = -0.00387
a2 =  0.0000445

# Note how Shimko price is the same when a0 = sigma, a1=a2=0 but substantially
# more when a0, a1, a2 are changed so the implied volatilities are very high!
#
price.bsm.option(r = r, te = te, s0 = s0, k = k, sigma = sigma, y = y)$call
price.shimko.option(r = r, te = te, s0 = s0, k = k, y = y, 
a0 = sigma, a1 = 0, a2 = 0)$call
price.shimko.option(r = r, te = te, s0 = s0, k = k, y = y, 
a0 = a0, a1 = a1, a2 = a2)$call
```

Description

This dataset contains S&P 500 options with 62 days to expiration at the end of the business day April 19, 2013. On April 19, 2013, S&P 500 closed at 1555.25.

Usage

data(sp500.2013.04.19)

Format

A data frame with 171 observations on the following 19 variables.

bidsize.c call bid size
bid.c call bid price
ask.c call ask price
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asksize.c</td>
<td>call ask size</td>
</tr>
<tr>
<td>chg.c</td>
<td>change in call price</td>
</tr>
<tr>
<td>impvol.c</td>
<td>call implied volatility</td>
</tr>
<tr>
<td>vol.c</td>
<td>call volume</td>
</tr>
<tr>
<td>openint.c</td>
<td>call open interest</td>
</tr>
<tr>
<td>delta.c</td>
<td>call delta</td>
</tr>
<tr>
<td>strike</td>
<td>option strike</td>
</tr>
<tr>
<td>bidsize.p</td>
<td>put bid size</td>
</tr>
<tr>
<td>bid.p</td>
<td>put bid price</td>
</tr>
<tr>
<td>ask.p</td>
<td>put ask price</td>
</tr>
<tr>
<td>asksize.p</td>
<td>put ask size</td>
</tr>
<tr>
<td>chg.p</td>
<td>change in put price</td>
</tr>
<tr>
<td>impvol.p</td>
<td>put implied volatility</td>
</tr>
<tr>
<td>vol.p</td>
<td>put volume</td>
</tr>
<tr>
<td>openint.p</td>
<td>put open interest</td>
</tr>
<tr>
<td>delta.p</td>
<td>put delta</td>
</tr>
</tbody>
</table>

Source

http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx

Examples

```r
data(sp500.2013.04.19)
```

Description

This dataset contains S&P 500 options with 53 days to expiration at the end of the business day June 24, 2013. On June 24, 2013, S&P 500 closed at 1573.09.

Usage

```r
data(sp500.2013.06.24)
```
Format
A data frame with 173 observations on the following 9 variables.

bid.c call bid price
ask.c call ask price
vol.c call volume
openint.c call open interest
strike option strike
bid.p put bid price
ask.p put ask price
vol.p put volume
openint.p put open interest

Source
http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx

Examples
data(sp500.2013.06.24)

vix.2013.06.25 VIX Options on 2013-06-25

Description
This dataset contains VIX options with 57 days to expiration at the end of the business day June 25, 2013. On June 25, 2013, VIX closed at 18.21.

Usage
data(vix.2013.06.25)

Format
A data frame with 35 observations on the following 13 variables.

last.c closing call price
change.c change in call price from previous day
bid.c call bid price
ask.c call ask price
vol.c call volume
openint.c call open interest
strike option strike
last.p closing put price
change.p change in put price from previous day
bid.p put bid price
ask.p put ask price
vol.p put volume
openint.p put open interest

Source

http://www.cboe.com/DelayedQuote/QuoteTableDownload.aspx

Examples

data(vix.2013.06.25)
Index

* Options
 RND-package, 2
* Risk Neutral Density
 RND-package, 2
* S&P 500
 sp500.2013.04.19, 54
 sp500.2013.06.24, 55
* VIX Options
 vix.2013.06.25, 56
* WTI Crude oil options
 oil.2012.10.01, 42
* maximum
 approximate.max, 3
* numerical tricks
 approximate.max, 3
* package
 RND-package, 2
 approximate.max, 3
 bsm.objective, 4
 compute.implied.volatility, 6
 dew, 8
 dgb, 9
 dmln, 10
 dmln.am, 12
 dshimko, 13
 ew.objective, 15
 extract.am.density, 16
 extract.bsm.density, 20
 extract.ew.density, 22
 extract.gb.density, 24
 extract.mln.density, 26
 extract.rates, 28
 extract.shimko.density, 29
 fit.implied.volatility.curve, 31
 gb.objective, 32
 get.point.estimate, 34
 mln.am.objective, 35
 mln.objective, 38
 MOE, 40
 oil.2012.10.01, 42
 pgb, 43
 price.am.option, 44
 price.bsm.option, 46
 price.ew.option, 48
 price.gb.option, 50
 price.mln.option, 51
 price.shimko.option, 53
 RND (RND-package), 2
 RND-package, 2
 sp500.2013.04.19, 54
 sp500.2013.06.24, 55
 vix.2013.06.25, 56