partial_cm

Compute the global confusion matrix from the FPR and TPR obtained from each node

Description
Compute the global confusion matrix from the FPR and TPR obtained from each node.

Usage
```r
partial_cm(
  fpr,
  tpr,
  thresholds,
  negative_count,
  total_count,
  descending = FALSE
)
```

Arguments
- `fpr`: list - False positive rates for each individual ROC
- `tpr`: list - True positive rates for each individual ROC
- `thresholds`: list - Thresholds used to compute the fpr and tpr
- `negative_count`: list - Total number of samples corresponding to the negative case
- `total_count`: list - Total number of samples
- `descending`: thresholds in descending order?

Value
global confusion matrix and thresholds

precision_recall_curve

Compute the precision recall curve

Description
Compute the precision recall curve.

Usage
```r
precision_recall_curve(fpr, tpr, thresholds, negative_count, total_count)
```
roc_curve

Compute Receiver operating characteristic (ROC)

Usage

`roc_curve(fpr, tpr, thresholds, negative_count, total_count)`

Arguments

- **fpr**
 list - False positive rates for each individual ROC.

- **tpr**
 list - True positive rates for each individual ROC.

- **thresholds**
 list - Thresholds used to compute the fpr and tpr.

- **negative_count**
 vector - Total number of samples corresponding to the negative case.

- **total_count**
 vector - Total number of samples.

Value

list with the global precision, recall, and thresholds (increasing)
shift_vector

Shift a vector left or right according to the value provided

Description

Shift a vector left or right according to the value provided

Usage

```r
shift_vector(x, n)
```

Arguments

- `x`: the vector
- `n`: shift

Value

the vector shifted

Examples

```r
shift_vector(c(1,2,3,4), 1)
shift_vector(c(1,2,3,4), -1)
```
Index

partial_cm, 2
precision_recall_curve, 2
roc_curve, 3
shift_vector, 4