ROI Plug-in NEOS

Hochreiter, Ronald
ron@hochreiter.net

Schwendinger, Florian
FlorianSchwendinger@gmx.at

February 16, 2019

Contents

1 NEOS .. 2
 1.1 Solvers ... 2

2 ROI.plugin.neos introduction 2
 2.1 First example .. 3
 2.2 Provide a user name 4
 2.3 Obtain the original solver message 4
 2.4 Obtain the model .. 6
 2.5 Asynchronous execution 8

3 Use cases ... 8
 3.1 A seemingly simple optimization problem 8
 3.1.1 Introduction .. 8
 3.1.2 Basic problem 9
 3.1.3 Extension .. 10
1 NEOS

The NEOS Server can be used to solve several types of optimization problems. The optimization problems can be uploaded to the server and solved by a chosen solver. More information can be found at https://neos-server.org/neos/.

1.1 Solvers

<table>
<thead>
<tr>
<th>Solver</th>
<th>LP</th>
<th>MILP</th>
<th>QP</th>
<th>MIQP</th>
<th>QCQP</th>
<th>MIQCQP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlphaECP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ANTIGONE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARON</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDMLP</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bonmin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cbc</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONOPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPLEX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DICOPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FICO-Xpress</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipopt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knitro</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINDOGlobal</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSEK</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PATHNLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SNOPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 ROI.plugin.neos introduction

The R Optimization Infrastructure (ROI) plug-in ROI.plugin.neos allows to make use of the optimization solvers provided on the NEOS server. Thereby the optimization problem can be formulated directly in R, the optimization problem is sent to the NEOS server and after the problem is solved the solution is fetched from the NEOS server and transformed into the typical ROI solution format.

We set ROI_LOAD_PLUGINS to FALSE so no plugin is loaded automatically. This can speed up the loading of ROI if many plugins are installed.

Sys.setenv(ROI_LOAD_PLUGINS = FALSE)
library(ROI)

ROI: R Optimization Infrastructure
Registered solver plugins: nlminb.
Default solver: auto.

library(ROI.plugin.neos)

2.1 First example

We define the problem like any other optimization problem in ROI

```r
x <- OP(objective = c(3, 1, 3), maximum = TRUE)
constraints(x) <- L_constraint(L = rbind(c(-1, 2, 1), c(0, 4, -3), c(1, -3, 2)),
                           dir = leq(3), rhs = c(4, 2, 3))
types(x) <- c("I", "C", "I")
```

but instead of solving the problem locally with "glpk" or "lp solve" we send the problem to the NEOS server to be solved by the SCIP solver.

```r
(s <- ROI_solve(x, solver = "neos", method = "scip"))
```

Optimal solution found.
The objective value is: 2.675000e+01

```r
solution(s)
```

[1] 5.00 2.75 3.00

Note that method is matched after performing the following cleaning function

```r
clean <- function(x) tolower(gsub("\W", "", x))
```

which means

```r
clean("SCIP")
```

[1] "scip"

```r
clean("scip")
```

[1] "scip"

```r
clean("-scip.")
```

[1] "scip"

```r
clean("ScIp.")
```

[1] "scip"

```r
clean("scip")
```

[1] "scip"

would all select the "SCIP" solver.

3
2.2 Provide a user name

Some solvers (e.g. "cplex") need a working email address, furthermore NEOS gives a higher priority to registered users.

ROI_solve(x, solver = "neos", method = "cplex")

Error in SOLVE(x, cntrl): CPLEX will not run unless you provide a valid email address.

The username and email address can be provided as control argument.

s <- ROI_solve(x, solver = "neos", method = "cplex",
email = "your_mailaddress@somewhere.net")

2.3 Obtain the original solver message

The entire solver message can be obtained as follows.

str(solution(s, "msg"))

List of 5
$ solution : num [1:3] 5 2.75 3
$ objval : num 26.8
$ solver_status: num 1
$ model_status : num 8
$ message : chr "Executed on prod-exec-4.neos-server.org\nGAMS 24.9.2 r64480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 1\nGeneral Algebraic Modeling System\nCOMPILATION TIME = 0.001 SECONDS 3 MB 24.9.2 r64480 LEX-LEG\nGAMS 24.9.2 r64480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 2\nGeneral Algebraic Modeling System\nModel Statistics SOLVE LinearProblem Using MIP From line 48\nMODEL STATISTICS\nBLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6\nBLOCKS OF VARIABLES 3 SINGLE VARIABLES 6\nNON ZERO ELEMENTS 16 DISCRETE VARIABLES 2\nGENERATION TIME = 0.002 SECONDS 4 MB 24.9.2 r64480 LEX-LEG"

We remove "\f" since otherwise it would give an error in knitr.

cat(gsub("\f", "", solution(s, "msg")$message))

Executed on prod-exec-4.neos-server.org
GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 1
General Algebraic Modeling System
COMPILATION TIME = 0.001 SECONDS 3 MB 24.9.2 r64480 LEX-LEG
GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 2
General Algebraic Modeling System
Model Statistics SOLVE LinearProblem Using MIP From line 48
MODEL STATISTICS
BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6
BLOCKS OF VARIABLES 3 SINGLE VARIABLES 6
NON ZERO ELEMENTS 16 DISCRETE VARIABLES 2
GENERATION TIME = 0.002 SECONDS 4 MB 24.9.2 r64480 LEX-LEG

4
SOLVE SUMMARY

MODEL LinearProblem OBJECTIVE obj
TYPE MIP DIRECTION MAXIMIZE
SOLVER SCIP FROM LINE 48
**** SOLVER STATUS 1 Normal Completion
**** MODEL STATUS 8 Integer Solution
**** OBJECTIVE VALUE 26.7500
RESOURCE USAGE, LIMIT 0.002 1000.000
ITERATION COUNT, LIMIT 6 2000000000

SCIP 24.9.2 r64480 Released Nov 14, 2017 LEG x86 64bit/Linux

---- EQU ObjSum . . .
---- EQU LinLeq
---- LOWER LEVEL UPPER
R1 -INF 3.500 4.000
R2 -INF 2.000 2.000
R3 -INF 2.750 3.000

---- EQU IntEq
---- LOWER LEVEL UPPER
C1 . . .
C3 . . .

---- VAR obj -INF 26.750 +INF
---- VAR x
---- LOWER LEVEL UPPER
C1 . 5.000 +INF
C2 . 2.750 +INF
C3 . 3.000 +INF

---- VAR int
---- LOWER LEVEL UPPER
C1 . 5.000 +INF
C3 . 3.000 +INF
2.4 Obtain the model

The optimization model `ROI.plugin.neos` sends to NEOS can be inspected by setting the argument `dry_run` to TRUE.

```r
model_call <- ROI_solve(x, solver = "neos", method = "mosek",
                         dry_run = TRUE)

cat(as.list(model_call)$xmlstring)
```

```xml
<?xml version="1.0" encoding="UTF-8"?>
<document>
  <category>milp</category>
  <solver>MOSEK</solver>
  <inputMethod>GAMS</inputMethod>
  <model><![CDATA[Option IntVarUp = 0;
  
  Set i / R1*R0 /;
  Set j / C1*C3 /;
  Set jint(j) / C1, C3 /;]]>
```

```c
```
Parameter objL(j)
/C1 3
C2 1
C3 3/;

Variables obj;
Positive Variables x(j);
Integer Variables int(jint);

Equations
ObjSum
IntEq(jint);

ObjSum .. obj =e= sum(j, x(j) * objL(j)) ;
IntEq(jint) .. x(jint) =e= int(jint);

Model LinearProblem /all/;

Solve LinearProblem using MIP maximizing obj;

option decimals = 8;

display '---BEGIN.SOLUTION---', x.l, '---END.SOLUTION---';

file results /results.txt/;
results.nw = 0;
results.nd = 15;
results.nr = 2;
results.nz = 0;
put results;
put 'solution: /
loop(j, put, x.l(j)/);
put 'objval: /
put LinearProblem.objval/;
put 'solver_status: /
put LinearProblem.solvestat/;
put 'model_status: /
put LinearProblem.modelstat/]
</model>

</document>
2.5 Asynchronous execution

In some situations it can be advantageous to do the calculations asynchronous. For example you have a rather big optimization problem and otherwise your connection would run into a time out. Asynchronous can be easily performed by setting the parameter `wait` to `FALSE`.

```r
neos_job <- ROI_solve(x, solver = "neos", method = "scip", wait = FALSE)
str(neos_job)
## List of 8
## $ job_number : int 6571509
## $ password : chr "vbGPJahp"
## $ status :function ()
## $ info :function ()
## $ final_results :function ()
## $ output_file :function (file_name)
## $ objective_function:function (x)
## - attr(*, "class")= chr "function"
## $ solution :function ()
## - attr(*, "class")= chr "neos_job"
```

- Make R wait till the job finishes!
- while (neos_job$status() != "Done") Sys.sleep(2)
- Obtain the solution from the server and transform it into the typical
- ROI solution object.

```r
(s <- neos_job$solution())
## Optimal solution found.
## The objective value is: 2.675000e+01
```

```r
solution(s)
## [1] 5.00 2.75 3.00
```

3 Use cases

3.1 A seemingly simple optimization problem

3.1.1 Introduction

We present a seemingly simple optimization problem which is in fact pretty hard to solve and shows that an utilization of the NEOS server through the package `ROI.plugin.neos` makes sense and is easy and fun to use.

We need the following R packages for our demonstration:

```r
library(dplyr)
library(ROI)
library(ROI.plugin.glpk)
library(ompr)
```
3.1.2 Basic problem

Let’s consider the following problem from Bertsimas and Freund (2000) where the Magnetron Company manufactures two types of microwave ovens: full-size and compact. Each full-size oven requires 2 hours of general assembly and 2 hours of electronic assembly, whereas each compact oven requires 1 hour of general assembly and 3 hours of electronic assembly. For the current production period, there are 500 hours of general assembly labor and 800 hours of electronic assembly labor available. The company estimates that it can sell up to 220 full-size and 180 compact ovens with an earnings contribution of EUR 120 per full-size oven and EUR 130 per compact oven. Magnetron wants to find a production plan that maximizes earnings!

Of course, this is a standard linear program that can be solved manually or using a modeling language, but let’s start with the definition of an abstract meta decision model, which solves our problem:

variable F, C
maximize 120F + 130C
subject to
 2F + C <= 500;
 2F + 3C <= 800;
 F <= 220, C <= 180
 F >= 0, C >= 0

Solving it manually with ROI can be done the following way:

lp <- OP(L_objective(c(120, 130), c("full", "compact")),
 L_constraint(L = rbind(c(2, 1), c(2, 3)),
 dir = c("<=", "<="), rhs = c(500, 800)),
 maximum = TRUE,
 bounds = V_bound(ub = c(220, 180)))
(sol <- ROI_solve(lp, solver = "glpk"))

Optimal solution found.
The objective value is: 4.050000e+04

solution(sol)

full compact
175 150

Solving it with a modeling approach like `ompr` reads as follows:

result <- MIPModel()
add_variable(full, type = "continuous", lb = 0, ub=220)
add_variable(compact, type = "continuous", lb = 0, ub=180)
set_objective(120*full + 130*compact, "max")
add_constraint(2*full + 1*compact <= 500)
add_constraint(2*full + 3*compact <= 800) \\>%
solve_model(with_ROI(solver = "glpk"))
get_solution(result, full)
full
175
get_solution(result, compact)
compact
150

3.1.3 Extension

It was assumed that the prices of full-size and compact microwave ovens are set so that the resulting unit contributions to earnings are EUR 120 and EUR 130 per oven for full-size and compact microwave ovens, respectively. As it turns out, the unit earnings contribution of EUR 120 per oven for full-size ovens derives from the fact that Magnetron has set the price of a full-size oven to be EUR 270, and the variable production cost of a full-size oven is EUR 150 (and so the unit contribution to earnings is 120 = 270 − 150. Also, the unit earnings contribution of EUR 130 per oven for compact ovens derives from the fact that Magnetron has set the price of a compact oven to be EUR 230, and the variable production cost of a compact oven is EUR 100 (and so the unit contribution to earnings is EUR 130 = 230 − 100. As a next step in the marketing/production planning process, the company would like to determine the optimal combination of prices and production levels to maximize the overall contribution to earnings.

The changes in the prices of ovens will result in changes in demand. Suppose that Magnetron has estimated that the demand for their ovens is related to the prices they set as follows, i.e. \(D_F = 490 - P_F \) and \(D_C = 640 - 2P_C \) where \(D_F \) and \(D_C \) are the demands for full-size and compact ovens, and \(P_F \) and \(P_C \) are the respective prices set by Magnetron for full-size and compact ovens. It is obvious that that when \(P_F = 270 \) and \(P_C = 230 \), the demands are as specified in the linear model.

The resulting meta-model looks like this:

\[
\text{variable } F, C, P_F, P_C \\
\text{maximize } F(P_F - 150) + C(P_C - 100) \\
\text{subject to:} \\
2F + C <= 500 \\
2F + 3C <= 800 \\
F <= 490 - P_F \\
C <= 640 - 2P_C \\
F, C, P_F, P_C >= 0
\]

If we want to solve this nonlinear optimization model to determine the optimal pricing and production strategy, we actually run into a problem. This seemingly easy extension is actually problematic. First we try to solve this problem by making use of the CVXR package.

full <- Variable(1)
compact <- Variable(1)
p_full <- Variable(1)
p_compact <- Variable(1)

objective <- Maximize(full * (p_full - 150) + compact * (p_compact - 100))

Warning in full * (p_full - 150): Forming a non-convex expression (affine) * (affine)
Warning in compact * (p_compact - 100): Forming a non-convex expression (affine) * (affine)

constr <- list(2 * full + compact <= 500,
 2 * full + 3 * compact <= 800, full <= 490 - p_full,
 compact <= 640 - 2 * p_compact, full >= 0, compact >= 0,
 p_full >= 0, p_compact >= 0)
magnetron <- Problem(objective, constr)
cvxr_sol <- solve(magnetron)

Error in CVXR::psolve(a, b, ...): Problem does not follow DCP rules.

Here we see that since the problem is non-convex it cannot be solved by CVXR.

Especially in the case of quadratic non-convex optimization problems ROI.plugin.neos comes in handy, as we just need to formulate the model in ROI and can directly send it off to the NEOS server as shown below.

library(slam)
Q <- simple_triplet_matrix(i = 1:4, j = c(2, 1, 4, 3), rep(1, 4))
as.matrix(Q)

[1,] 0 1 0 0
[2,] 1 0 0 0
[3,] 0 0 0 1
[4,] 0 0 1 0

var_names <- c("full", "price_full", "compact", "price_compact")
o <- OP(
 Q_objective(Q = Q, L = c(-150, 0, -100, 0), names = var_names),
 L_constraint(rbind(c(2, 0, 1, 0), c(2, 0, 3, 0),
 c(1, 1, 0, 0), c(0, 0, 1, 2)),
 dir = leq(4), rhs = c(500, 800, 490, 640)),
 maximum = TRUE)

On the NEOS server there exist several options to solve non-convex quadratic problems. In this example we make use of the BARON solver.

(sol <- ROI_solve(o, solver = "neos", method = "BARON"))

Optimal solution found.
The objective value is: 5.128182e+04
solution(sol)

<table>
<thead>
<tr>
<th></th>
<th>full price_full</th>
<th>compact price_compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>##</td>
<td>151.8182</td>
<td>338.1818</td>
</tr>
<tr>
<td>##</td>
<td>165.4545</td>
<td>237.2727</td>
</tr>
</tbody>
</table>

References