Package ‘RPANDA’

June 11, 2019

Version 1.6
Date 2019-06-04
Type Package
Title Phylogenetic ANalyses of Diversification
Depends R (>= 2.14.2), picante, methods
Suggests testthat
Imports ape, pspline, deSolve, igraph, TESS, cluster, fpc, pvclust,
corpor, phytools, mvMORPH (>= 1.1.0), stats, graphics,
grDevices, utils, geiger, mvtnorm, Matrix, pracma, glassoFast,
Rmpfr, fields, coda, parallel
Encoding UTF-8
Author Hélène Morlon [aut, cre, cph],
Eric Lewitus [aut, cph],
Fabien Condamine [aut, cph],
Marc Manceau [aut, cph],
Julien Clavel [aut, cph],
Jonathan Drury [aut, cph],
Olivier Billaud [aut, cph],
Odile Maliet [aut, cph]
Maintainer Hélène Morlon <morlon@biologie.ens.fr>
Description Implements macroevolutionary analyses on phylogenetic trees. See
Morlon et al. (2010) <DOI:10.1371/journal.pbio.1000493>, Morlon et al. (2011)
<DOI:10.1073/pnas.1102543108>, Condamine et al. (2013) <DOI:10.1111/ele.12062>,
Manceau et al. (2016) <DOI:10.1093/sysbio/syw115>, Morlon et al. (2016) <DOI:10.1111/2041-
210X.12526>, Clavel & Morlon (2017) <DOI:10.1073/pnas.1606868114>,
Drury et al. (2017) <DOI:10.1093/sysbio/syx079>, Lewitus & Mor-
lon (2017) <DOI:10.1093/sysbio/syx095>,
019-0908-0>.
License GPL-2
URL: https://github.com/hmorlon/PANDA
Repository: CRAN
RoxygenNote: 6.1.1
NeedsCompilation: yes
Date/Publication: 2019-06-11 11:00:04 UTC

R topics documented:

RPANDA-package .. 4
ancestral .. 5
Anolis.data .. 7
Balaenopteridae 8
BGB.examples .. 9
BICompare .. 9
Calomys ... 10
Caprimulgidae 11
Caprimulgidae_ClaDS2 11
Cetacea ... 13
ClaDS0_example 14
c02 .. 15
c02_res ... 15
coccolithophore 16
CreateClassObject 17
CreateGeobyClassObject 18
CreateGeoObject 20
CreateGeoObject_BioGeoBEARS 22
createModel .. 24
createModelCoevolution 25
d13c ... 26
fitTipData 27
fitTipData-methods 28
fit_bd .. 28
fit_ClaDS 32
fit_ClaDS0 34
fit_coal_cst 36
fit_coal_var 38
fit_env .. 40
fit_sgd .. 43
fit_t_comp 44
fit_t_comp_subgroup 46
fit_t_env 49
fit_t_pl .. 53
foraminifera 55
getDataLikelihood 56
dataLikelihood-methods 57
dataLikelihood-methods 57
getMAPS_ClaDS 57
R topics documented:

- `getMAPS_ClaDS0` ... 59
- `getTipDistribution` .. 60
- `getTipDistribution-methods` ... 61
- `GIC.fit_pl.r panda` .. 62
- `gic_criterion` ... 63
- `greenalgae` .. 65
- `InfTemp` .. 66
- `JSDtree` .. 67
- `JSDtree_cluster` .. 68
- `JSDc_cluster` .. 69
- `landplant` ... 70
- `likelihood_bd` .. 71
- `likelihood_coal_cst` .. 72
- `likelihood_coal_var` ... 74
- `likelihood_sgd` ... 75
- `likelihood_subgroup_model` .. 76
- `likelihood_t_DD` .. 78
- `likelihood_t_DD_geog` .. 79
- `likelihood_t_env` .. 81
- `likelihood_t_MC` .. 83
- `likelihood_t_MC_geog` .. 84
- `lines.fit_t.env` .. 85
- `modelSelection` .. 87
- `modelSelection-methods` ... 87
- `MPhiFFT` .. 88
- `ostracoda` ... 88
- `PhenotypicACDC-class` .. 89
- `PhenotypicADiag-class` ... 90
- `PhenotypicBM-class` .. 91
- `PhenotypicDD-class` .. 92
- `PhenotypicGMM-class` ... 93
- `PhenotypicModel-class` .. 94
- `PhenotypicOU-class` .. 96
- `PhenotypicPM-class` .. 97
- `Phocoenidae` ... 98
- `phyl.pca_pl` ... 99
- `Phyllostomidae` .. 100
- `Phyllostomidae_genera` .. 101
- `plot.fit_t.env` .. 102
- `plot_BICompare` ... 103
- `plot_ClaDS0_chains` .. 104
- `plot_ClaDS_chains` ... 105
- `plot_ClaDS_phylo` ... 106
- `plot_dtt` .. 107
- `plot_fit_bd` ... 108
- `plot_fit_env` ... 109
- `plot_prob_dtt` ... 110
- `plot_spectR` ... 112
Description

Implements macroevolutionary analyses on phylogenetic trees

Details

Package:	RPANDA
Type:	Package
Version:	1.5
Date:	2018-01-29
License:	GPL (>= 2)

More information on the RPANDA package and worked examples can be found in Morlon et al. (2016)

Author(s)

Hélène Morlon <morlon@biologie.ens.fr>
Julien Clavel <clavel@biologie.ens.fr>
Fabien Condamine <fabien.condamine@gmail.com>
Jonathan Drury <jonathan.p.drury@gmail.com>
Eric Lewitus <elewitus@hivresearch.org>
Marc Manceau <marc.manceau@gmail.com>
Olivier Billaud <olivier.billaud@agroparistech.fr>

References

ancestral

Estimation of traits ancestral states.

Description

Reconstruct the ancestral states at the root (and possibly for each node) of a phylogenetic tree from models fit obtained using the fit_t_xx functions.
Usage

ancestral(object)

Arguments

object A model fit object obtained by the fit_t_xx class of functions.

Details

ancestral is an S3 method that reconstruct the ancestral states at the root and possibly for each node of a phylogenetic tree from the models fit obtained by the fit_t_xx class of functions (e.g., fit_t_pl, fit_t_comp and fit_t_env). Ancestral states are estimated using generalized least squares (GLS; Martins & Hansen 1997, Cunningham et al. 1998).

Value

a list with the following components

root the reconstructed ancestral states at the root
nodes the reconstructed ancestral states at each nodes (not yet implemented for all the methods)

Note

The function is used internally in phyl.pca_pl.

Author(s)

J. Clavel

References

See Also

fit_t_pl, fit_t_env, phyl.pca_pl, GIC, gic_criterion
Anolis.data

Examples

require(mvMORPH)
set.seed(1)
n <- 32 # number of species
p <- 31 # number of traits

tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)

simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

fit a multivariate BM with Penalized likelihood
fit <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt")

Perform the ancestral states reconstruction
anc <- ancestral(fit)

retrieve the scores
head(anc$nodes)

Anolis.data Anolis dataset

Description

Phylogeny, trait data, and geography.object for a subclade of Greater Antillean Anolis lizards.

Usage

data(Anolis.data)

Details

Illustrative phylogeny trimmed from the maximum clade credibility tree of Mahler et al. 2013, corresponding phylogenetic principal component data from Mahler et al. 2013, and biogeography data from Mahler & Ingram 2014 (in the form of a geography object, as detailed in the CreateGeoObject help file).

References

See Also

CreateGeoObject

Examples

```r
data(Balaenopteridae)
plot(Balaenopteridae)
print(Balaenopteridae)
print(Balaenopteridae$geo)
```

<table>
<thead>
<tr>
<th>Balaenopteridae</th>
<th>Balaenopteridae phylogeny</th>
</tr>
</thead>
</table>

Description

Ultrametric phylogenetic tree of the 9 extant Balaenopteridae species

Usage

```r
data(Balaenopteridae)
```

Details

This phylogeny was extracted from Steeman et al. Syst Bio 2009 cetacean phylogeny

References

Examples

```r
data(Balaenopteridae)
print(Balaenopteridae)
plot(Balaenopteridae)
```
BGB.examples

BioGeoBEARS stochastic maps

Description

Phylogenies and example stochastic maps for Canidae (from an unstratified BioGeoBEARS analysis) and Ochotonidae (from a stratified BioGeoBEARS analysis)

Usage

data(BGB.examples)

References

See Also

`CreateGeoObject_BioGeoBEARS`

Examples

data(BGB.examples)
par(mfrow=c(1,2))
plot(BGB.examples$Canidae.phylo)
plot(BGB.examples$Ochotonidae.phylo)

BICmpare

Identify modalities in a phylogeny

Description

Computes the BIC values for a specified number of modalities in the distance matrix of a phylogenetic tree and that of randomly bifurcating trees; identifies these modalities using k-means clustering.

Usage

BICmpare(phylo,t,meth=c("ultrametric"))
Arguments

- `phylo` (an object of type `phylo` (see ape documentation))
- `t` (the number of modalities to be tested)
- `meth` (whether the randomly bifurcating "control" tree should be ultrametric or non-ultrametric)

Value

- A list with the following components:
 - `BIC_test` (BIC values for finding t modalities in the distance matrix of a tree and the lowest five percent of 1000 random ("control") trees)
 - `clusters` (a vector specifying which nodes in the tree belong to each of t modalities)
 - `BSS/TSS` (the ratio of between-cluster sum of squares over total sum of squares)

Author(s)

E Lewitus

References

Lewitus, E., Morlon, H., Characterizing and comparing phylogenies from their Laplacian spectrum, bioRxiv doi: http://dx.doi.org/10.1101/026476

See Also

- `plot_BICmpare`, `spectR`, `JSDtree`

Examples

```
data(Cetacea)
#BICmpare(Cetacea,5)
```

Calomys

Calomys phylogeny

Description

Ultrametric phylogenetic tree of 11 of the 13 extant Calomys species

Usage

```
data(Calomys)
```

Details

This phylogeny is from Pigot et al. PloS Biol 2012
References

Pigot et al. (2012) Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record *PloS Biol* 10:1-9

Manceau, M., Lambert, A., Morlon, H. (submitted)

Examples

data(Calomys)
print(Calomys)
plot(Calomys)

Caprimulgidae The Caprimulgidae phylogeny.

Description

The MCC phylogeny for the *Caprimulgidae*, from Jetz et al. (2012).

Usage

data("Caprimulgidae")

Source

Examples

data("Caprimulgidae")

plot(Caprimulgidae)

Caprimulgidae_ClaDS2 An example run of ClaDS2.

Description

An example of the run on the inference of ClaDS2 on the *Caprimulgidae* phylogeny, thinned every 10 iterations.

Usage

data("Caprimulgidae_ClaDS2")
Format

A list object with fields:

- **tree** The Caprimulgidae phylogeny on which we ran the model.
- **sample_fraction** The sample fraction for the clade.
- **sampler** The chains obtained by running ClaDS2 on the Caprimulgidae phylogeny.

Details

The Caprimulgidae phylogeny was obtained from Jetz et al. (2012)

Author(s)

O. Maliet

Source

References

See Also

- fit_ClaDS
- plot_ClaDS_chains
- getMAPS_ClaDS

Examples

data(Caprimulgidae_ClaDS2)

plot the mcmc chains
plot_ClaDS_chains(Caprimulgidae_ClaDS2$sampler)

extract the Maxima A Posteriori for each parameter
maps = getMAPS_ClaDS(Caprimulgidae_ClaDS2$sampler, thin = 1)
print(paste0("sigma = ", maps[1], " ; alpha = ",
 maps[2], " ; epsilon = ", maps[3], " ; l_0 = ", maps[4]))

plot the inferred branch specific speciation rates
plot_ClaDS_phylo(Caprimulgidae_ClaDS2$tree, maps[-(1:4)])
Cetacea

Cetacean phylogeny

Description

Ultrametric phylogenetic tree for 87 of the 89 extant cetacean species

Usage

`data(Cetacea)`

Details

This phylogeny was constructed by Bayesian phylogenetic inference from six mitochondrial and nine nuclear genes. It was calibrated using seven paleontological age constraints and a relaxed molecular clock approach. See Steeman et al. (2009) for details.

Source

References

Steeman ME et al. (2009) Radiation of extant cetaceans driven by restructuring of the oceans *Syst Biol* 58:573-585

Examples

`data(Cetacea)`

`print(Cetacea)`

`plot(Cetacea)`
An example run of ClaDS0.

Description
An example of the run on the inference of ClaDS0 on a simulated phylogeny, thinned every 10 iterations.

Usage
data("ClaDS0_example")

Format
A list object with fields:

- tree: The simulated phylogeny on which we ran the model.
- speciation_rates: The simulated speciation rates.
- Cl0_chains: The output of the run_ClaDS0 run.

References

See Also
fit_ClaDS0

Examples
data(ClaDS0_example)

plot the resulting chains for the first 4 parameters
plot_ClaDS0_chains(ClaDS0_example$Cl0_chains, param = 1:4)

extract the Maximum A Posteriori for each of the parameters
MAPS = getMAPS_ClaDS0(ClaDS0_example$tree,
 ClaDS0_example$Cl0_chains,
 thin = 10)

plot the simulated (on the left) and inferred speciation rates (on the right)
on the same color scale
plot_ClaDS Phylo(ClaDS0_example$tree,
 ClaDS0_example$speciation_rates,
 MAPS[[-(1:3)])
co2

co2 data since the Jurassic

Description

Atmospheric co2 data since the Jurassic

Usage

`data(co2)`

Details

Atmospheric co2 data since the Jurassic taken from Mayhew et al., (2008, 2012) and derived from the GeoCarb-III model (Berner and Kothavala, 2001). The data are reported as the ratio of the mass of co2 at time t to that at present. The format is a dataframe with the two following variables:

- `age` a numeric vector corresponding to the geological age, in Myrs before the present
- `co2` a numeric vector corresponding to the estimated co2 at that age

References

Examples

`data(co2)`

`plot(co2)`

co2_res

co2 data since the beginning of the Cenozoic

Description

Atmospheric co2 data since the beginning of the Cenozoic

Usage

`data(co2_res)`
Implied CO₂ data since the beginning of the Cenozoic taken from Hansen et al., (2013). The data are the amount of CO₂ in ppm required to yield observed global temperature throughout the Cenozoic:

- age: a numeric vector corresponding to the geological age, in Myrs before the present
- CO₂: a numeric vector corresponding to the estimated CO₂ at that age

Source

References

Examples
- data(Cetacea)
- print(Cetacea)
- plot(Cetacea)

coccolithophore

Coccolithophore diversity since the Jurassic

Description

Coccolithophore fossil diversity since the Jurassic

Usage

data(coccolithophore)

Details

Coccolithophore fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the two following variables:

- age: a numeric vector corresponding to the geological age, in Myrs before the present
- coccolithophore: a numeric vector corresponding to the estimated coccolithophore change at that age
References

Examples

data(coccolithophore)
plot(coccolithophore)

CreateClassObject Create class object

Description

This function returns names of internode intervals, named descendants of each node, and a class object formatted in a way that can be passed to CreateGeobyClassObject

Usage

CreateClassObject(simmap,rnd=5)

Arguments

| simmap | stochastic map from make.simmap in phytools |
| rnd | integer indicating the number of decimal places to which times should be rounded (default value is 5) (see round) |

Details

This function formats the class object so that it can be correctly passed to the numerical integration performed in fit_t_comp_subgroup.

Value

a list with the following components:

class.object	a list of matrices specifying the state of each branch during each internode interval (see Details)
times	a vector containing the time since the root of the tree at which nodes or changes in biogeography occur (used internally in other functions)
spans	a vector specifying the distances between times (used internally in other functions)
CreateGeobyClassObject

Author(s)
Jonathan Drury jonathan.p.drury@gmail.com

References

See Also

fit_t_comp_subgroup.CreateGeobyClassObject

Examples

data(Anolis.data)

#Create a make.simmap object
require(phytools)
geo<-(rep("cuba",7),rep("hispioniola",9),"puerto_rico")
names(geo)<-Anolis.data$phylo$tip.label
stochastic.map<-phytools::make.simmap(Anolis.data$phylo,
geo, model="ER", nsim=1)
CreateClassObject(stochastic.map)

CreateGeobyClassObject

Create merged biogeography-by-class object

Description
Create a merged biogeography-by-class object to be passed to fit_t_comp_subgroup using a stochastic map created from any model in BioGeoBEARS (see documentation in BioGeoBEARS package) and a simmap object from phytools (see documentation in phytools package).

Usage

CreateGeobyClassObject(phylo,simmap,trim.class,ana.events,clado.events,
stratified=FALSE,rnd=5)
CreateGeobyClassObject

Arguments

phylo the object of type 'phylo' (see ape documentation) used to build ancestral range stochastic maps in BioGeoBEARS

simmap a phylo object created using `make.simmap` in phytools

trim.class category in the simmap object that represents the subgroup of interest (see Details and Examples)

ana.events the "ana.events" table produced in BioGeoBEARS that lists anagenetic events in the stochastic map

clando.events the "clado.events" table produced in BioGeoBEARS that lists cladogenetic events in the stochastic map

stratified logical indicating whether the ancestral biogeography stochastic map was built from a stratified analysis in BioGeoBEARS

rnd an integer value indicating the number of decimals to which values should be rounded in order to reconcile class and geo.objects (default is 5)

Details

This function merges a class object (which reconstructs group membership through time) and a stochastic map of ancestral biogeography (to reconstruct sympatry through time), such that lineages can only interact when they belong to the same subgroup AND are sympatric.

This allows fitting models of competition where only sympatric members of a subgroup can compete (e.g., all lineages that share similar diets or habitats).

This function should be used to format the geography object so that it can be correctly passed to the numerical integration performed in `fit_t_comp_subgroup`.

Value

Returns a list with the following components:

map a simmap object with phylogeny trimmed to subgroup of interest (including all branches determined to belong to that subgroup)

geography.object a list with the following components:

geo.matrix a list of matrices specifying both sympathy & group membership (==1) or allopatry and/or non-membership in the focal subgroup (==0) for each species pair for each internode interval (see Details)

times a vector containing the time since the root of the tree at which nodes or changes in biogeographyXsubgroup membership occur (used internally in other functions)

spans a vector specifying the distances between times (used internally in other functions)

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com
CreateGeoObject

References

See Also

* fit_t_comp_subgroup, CreateGeoObject_BioGeoBEARS, CreateClassObject

Examples

data(BGB.example)

Canidae.phylo<-BGB.example$Canidae.phylo
names(dummy.group)<-Canidae.phylo$tip.label

Canidae.simmap<-phytools::make.simmap(Canidae.phylo,dummy.group)
#build GeobyClass object with "A" as the focal group

Canidae.geobyclass.object<-CreateGeobyClassObject(phylo=Canidae.phylo,simmap=Canidae.simmap,
trim.class="A",ana.events=BGB.example$Canidae.ana.events,
clado.events=BGB.example$Canidae.clado.events,stratified=FALSE, rnd=5)

phytools::plotSimmap(Canidae.geobyclass.object$map)

CreateGeoObject

Create biogeography object

Description

This function returns names of internode intervals, named descendants of each node, and a geography object formatted in a way that can be passed to *fit_t_comp*

Usage

CreateGeoObject(phylo,map)
CreateGeoObject

Arguments

- **phylo**: an object of type 'phylo' (see ape documentation)
- **map**: either a matrix modified from phylo$edge or a phylo object created using `make.simmap` (see Details and Examples)

Details

This function should be used to format the geography object so that it can be correctly passed to the numerical integration performed in `fit_t_comp`.

The map can either be a matrix formed by specifying the region in which each branch specified by phylo$edge existed, or a stochastic map stored as a phylo object output from `make.simmap` (see Examples).

Value

A list with the following components:

- **geography.object**: a list of matrices specifying sympatry (1) or allopatry (0) for each species pair for each internode interval (see Details)
- **times**: a vector containing the time since the root of the tree at which nodes or changes in biogeography occur (used internally in other functions)
- **spans**: a vector specifying the distances between times (used internally in other functions)

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com

References

See Also

- `fit_t_comp`

Examples

```r
data(Anolis.data)
# Create a geography.object with a modified edge matrix
# First, specify which region each branch belonged to:
Anolis.regions<-c(rep("cuba",14),rep("hispaniola",17),"puerto_rico")
Anolis.map<-cbind(Anolis.data$phylo$edge,Anolis.regions)
CreateGeoObject(Anolis.data$phylo,map=Anolis.map)

# Create a geography.object with a make.simmap object
```
CreateGeoObject_BioGeoBEARS

Create biogeography object using a stochastic map from BioGeoBEARS

Description

Create biogeography object using a stochastic map created from any model in BioGeoBEARS (see documentation in BioGeoBEARS package).

Usage

CreateGeoObject_BioGeoBEARS(full.phylo, trimmed.phylo = NULL, ana.events, clado.events, stratified=FALSE)

Arguments

full.phylo the object of type ‘phylo’ (see ape documentation) that was used to construct the stochastic map in BioGeoBEARS
trimmed.phylo if the desired biogeography object excludes some species that were initially included in the stochastic map, this specifies a phylo object for the trimmed set of species
ana.events the “ana.events” table produced in BioGeoBEARS that lists anagenetic events in the stochastic map
clado.events the “clado.events” table produced in BioGeoBEARS that lists cladogenetic events in the stochastic map
stratified logical indicating whether the stochastic map was built from a stratified analysis in BioGeoBEARS

Value

a list with the following components:

geography.object a list of matrices specifying sympatry (1) or allopatry (0) for each species pair for each internode interval (see Details)
times a vector containing the time since the root of the tree at which nodes or changes in biogeography occur (used internally in other functions)
spans a vector specifying the distances between times (used internally in other functions)
CreateGeoObject_BioGeoBEARS

Author(s)
Jonathan Drury jonathan.p.drury@gmail.com

References

See Also

fit_t_comp CreateGeoObject

Examples

data(BGB.example)

```r

##Example with a non-stratified tree
Canidae.geography.object<-CreateGeoObject_BioGeoBEARS(full.phylo=BGB.example$Canidae.phylo, ana.events=BGB.example$Canidae.ana.events, clado.events=BGB.example$Canidae.clado.events)

#on a subclade
Canidae.trimmed<-drop.tip(BGB.example$Canidae.phylo, Canidae.trimmed$tip.label[1:9])

Canidae.trimmed.geography.object<-CreateGeoObject_BioGeoBEARS(full.phylo=BGB.example$Canidae.phylo, trimmed.phylo=Canidae.trimmed, ana.events=BGB.example$Canidae.ana.events, clado.events=BGB.example$Canidae.clado.events)

##Example with a stratified tree
Ochotonidae.geography.object<-CreateGeoObject_BioGeoBEARS(full.phylo = BGB.example$Ochotonidae.phylo, ana.events = BGB.example$Ochotonidae.ana.events, clado.events = BGB.example$Ochotonidae.clado.events, stratified = TRUE)

#on a subclade
Ochotonidae.trimmed<-drop.tip(BGB.example$Ochotonidae.phylo, Ochotonidae.trimmed$tip.label[1:9])

Ochotonidae.trimmed.geography.object<-CreateGeoObject_BioGeoBEARS(full.phylo=BGB.example$Ochotonidae.phylo, trimmed.phylo=Ochotonidae.trimmed, ana.events=BGB.example$Ochotonidae.ana.events, clado.events=BGB.example$Ochotonidae.clado.events, stratified=TRUE)
```

createModel

Creation of a PhenotypicModel

Description

Creates an object of class PhenotypicModel, intended to represent a model of trait evolution on a specific tree. Distinct keywords correspond to different models, using one phylogenetic tree.

Usage

createModel(tree, keyword)

Arguments

tree an object of class 'phylo' as defined in the R package 'ape'.
keyword a string specifying the model. Available models include "BM", "BM_from0",
 "BM_from0_drifless", "OU", "OU_from0", "ACDC", "DD", "PM", "PM_OUless".

Value

the object of class "PhenotypicModel".

Author(s)

M Manceau

References

Examples

Loading an example tree
tree <- read.tree(text=newick)

Creating the models
modelBM <- createModel(tree, 'BM')
modelOU <- createModel(tree, 'OU')

Printing basic or full informations on the model definitions
show(modelBM)
print(modelOU)
createModelCoevolution

Creation of a PhenotypicGMM

Description

Creates an object of class PhenotypicGMM, a subclass of the class PhenotypicModel intended to represent the Generalist Matching Mutualism model of trait evolution on two specific trees.

Usage

createModelCoevolution(tree1, tree2, keyword)

Arguments

tree1 an object of class 'phylo' as defined in the R package 'ape'.
tree2 an object of class 'phylo' as defined in the R package 'ape'.
keyword a string object. Default value "GMM" returns an object of class PhenotypicGMM, which takes advantage of faster distribution computation. Otherwise, a "PhenotypicModel" is returned, and the computation of the tip distribution will take much longer.

Value

an object of class "PhenotypicModel" or "PhenotypicGMM".

Author(s)

M Manceau

References

Examples

#Loading example trees
tree1 <- read.tree(text=newick1)
newick2 <- "(((X:1.5,Y:1.5):3,Z:4.5);"
tree2 <- read.tree(text=newick2)

#Creating the model
modelGMM <- createModelCoevolution(tree1, tree2)

#Printing basic or full informations on the model definitions
show(modelGMM)
print(modelGMM)

#Simulates tip trait data
dataGMM <- simulateTipData(modelGMM, c(0, 0, 5, -5, 1, 1), method=2)

d13c
d13c data since the Jurassic

Description

Benthic d13c weathering ratio since the Jurassic

Usage

data(d13c)

Details

Ratio of stable carbon isotopes since the Jurassic calculated by Hannisdal and Peters (2011) and Lazarus et al. (2014) from marine carbonates. The format is a dataframe with the two following variables:

- age a numeric vector corresponding to the geological age, in Myrs before the present
- d13c a numeric vector corresponding to the estimated d13c at that age

References

Examples

data(d13c)
plot(d13c)
fitTipData

Maximum likelihood estimators of a model’s parameters

Description

Finds the maximum likelihood estimators of the parameters, returns the likelihood and the inferred parameters.

Usage

```r
fitTipData(object, data, params0, GLSstyle, v)
```

Arguments

- `object`: an object of class 'PhenotypicModel'.
- `data`: vector of tip trait data.
- `params0`: vector of parameters used to initialize the optimization algorithm. Default value is NULL, in which case the optimization procedure starts with the vector 'params0' specified within the 'model' object.
- `GLSstyle`: boolean specifying the way the mean trait value at the root is estimated. Default value is FALSE in which case the mean at the root is considered as any other parameter. If TRUE, the mean value at the root is estimated with the GLS method, as explained, e.g. in Hansen 1997.
- `v`: boolean specifying the verbose mode. Default value: FALSE.

Details

Warning: This function uses the standard R optimizer "optim". It may not always converge well. Please double check the convergence by trying distinct parameter sets for the initialisation.

Value

- `value`: A numerical value: the lowest -log(likelihood) value found during the optimization procedure.
- `inferredParams`: The maximum likelihood estimators of the model’s parameters.
- `convergence`: An integer code specifying the convergence of the optim function. Please refer to the optim function help files.

Author(s)

M Manceau

References

Examples

#Loading an example tree

#Creating the models
modelBM <- createModel(tree, 'BM')

dataBM <- simulateTipData(modelBM, c(0,0,0,1))

#Fitting the model to the data
fitTipData(modelBM, dataBM, v=TRUE)

Methods

signature(object = "PhenotypicModel") This is the only method available for this function.
Same behaviour for any PhenotypicModel.

fit_bd ~ Maximum likelihood fit of the general birth-death model

Description

Fits the birth-death model with potentially time-varying rates and potentially missing extant species

Usage

fit_bd(phylo, tot_time, f.lamb, f.mu, lamb_par, mu_par, f = 1,
meth = "Nelder-Mead", cst.lamb = FALSE, cst.mu = FALSE,
expo.lamb = FALSE, expo.mu = FALSE, fix.mu = FALSE,
dt=0, cond = "crown")
Arguments

- **phylo**: an object of type 'phylo' (see ape documentation)
- **tot_time**: the age of the phylogeny (crown age, or stem age if known). If working with crown ages, tot_time is given by `max(node.age(phylo)$ages)`.
- **f.lamb**: a function specifying the hypothesized functional form (e.g. constant, linear, exponential, etc.) of the variation of the speciation rate λ with time. Any functional form may be used. This function has two arguments: the first argument is time; the second argument is a numeric vector of the parameters of the time-variation (to be estimated).
- **f.mu**: a function specifying the hypothesized functional form (e.g. constant, linear, exponential, etc.) of the variation of the extinction rate μ with time. Any functional form may be used. This function has two arguments: the first argument is time; the second argument is a numeric vector of the parameters of the time-variation (to be estimated).
- **lamb_par**: a numeric vector of initial values for the parameters of f.lamb to be estimated (these values are used by the optimization algorithm). The length of this vector is used to compute the total number of parameters in the model, so to fit a model with constant speciation rate (for example), lamb_par should be a vector of length 1. Otherwise aic values will be wrong.
- **mu_par**: a numeric vector of initial values for the parameters of f.mu to be estimated (these values are used by the optimization algorithm). The length of this vector is used to compute the total number of parameters in the model, so to fit a model without extinction (for example), mu_par should be empty (vector of length 0). Otherwise aic values will be wrong.
- **f**: the fraction of extant species included in the phylogeny
- **meth**: optimization to use to maximize the likelihood function, see `optim` for more details.
- **cst.lamb**: logical: should be set to TRUE only if f.lamb is constant (i.e. does not depend on time) to use analytical instead of numerical computation in order to reduce computation time.
- **cst.mu**: logical: should be set to TRUE only if f.mu is constant (i.e. does not depend on time) to use analytical instead of numerical computation in order to reduce computation time.
- **expo.lamb**: logical: should be set to TRUE only if f.lamb is exponential to use analytical instead of numerical computation in order to reduce computation time.
- **expo.mu**: logical: should be set to TRUE only if f.mu is exponential to use analytical instead of numerical computation in order to reduce computation time.
- **fix.mu**: logical: if set to TRUE, the extinction rate μ is fixed and will not be optimized.
- **dt**: the default value is 0. In this case, integrals in the likelihood are computed using R "integrate" function, which can be quite slow. If a positive dt is given as argument, integrals are computed using a piece-wise constant approximation, and dt represents the length of the intervals on which functions are assumed to be constant. For an exponential dependency of the speciation rate with time, we found that dt=1e-3 gives a good trade-off between precision and computation time.
cond conditioning to use to fit the model:
 - FALSE: no conditioning (not recommended);
 - "stem": conditioning on the survival of the stem lineage (use when the stem age is known, in this case tot_time should be the stem age);
 - "crown" (default): conditioning on a speciation event at the crown age and survival of the 2 daughter lineages (use when the stem age is not known, in this case tot_time should be the crown age).

Details

The lengths of lamb_par and mu_par are used to compute the total number of parameters in the model, so to fit a model with constant speciation rate (for example), lamb_par should be a vector of length 1. Otherwise aic values will be wrong. In the f.lamb and f.mu functions, the first argument (time) runs from the present to the past. Hence, if the parameter controlling the variation of \(\lambda \) with time is estimated to be positive (for example), this means that the speciation rate decreases from past to present.

Value

a list with the following components

model the name of the fitted model
LH the maximum log-likelihood value
aicc the second order Akaike’s Information Criterion
lamb_par a numeric vector of estimated f.lamb parameters, in the same order as defined in f.lamb
mu_par a numeric vector of estimated f.mu parameters, in the same order as defined in f.mu (if fix.mu is FALSE)

Author(s)

H Morlon

References

See Also

plot_fit_bd, plot_dtt, likelihood_bd
Examples

Some examples may take a little bit of time. Be patient!

data(Cetacea)
tot_time <- max(node.age(Cetacea)$ages)

Fit the pure birth model (no extinction) with a constant speciation rate
of the speciation rate with time
f.lamb <- function(t,y){y[1]}
f.mu <- function(t,y){0}
lamb_par <- c(0.09)
mu_par <- c()
#result_cst <- fit_bd(Cetacea,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=87/89,cst.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
#result_cst$model <- "pure birth with constant speciation rate"

Fit the pure birth model (no extinction) with exponential variation
of the speciation rate with time
f.lamb <- function(t,y){y[1] * exp(y[2] * t)}
f.mu <- function(t,y){0}
lamb_par <- c(0.05, 0.01)
mu_par <- c()
#result_exp <- fit_bd(Cetacea,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=87/89,expo.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
#result_exp$model <- "pure birth with exponential variation in speciation rate"

Fit the pure birth model (no extinction) with linear variation of
the speciation rate with time
f.lamb <- function(t,y){y[1] + y[2] * t}
f.mu <- function(t,y){0}
lamb_par <- c(0.09, 0.001)
mu_par <- c()
#result_lin <- fit_bd(Cetacea,tot_time,f.lamb,f.mu,lamb_par,mu_par,f=87/89,fix.mu=TRUE,dt=1e-3)
#result_lin$model <- "pure birth with linear variation in speciation rate"

Fit a birth-death model with exponential variation of the speciation
rate with time and constant extinction
f.lamb <- function(t,y){y[1] * exp(y[2] * t)}
f.mu <- function(t,y){y[1]}
lamb_par <- c(0.05, 0.01)
mu_par <- c(0.005)
#result_bexp_dcst <- fit_bd(Cetacea,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=87/89,expo.lamb=TRUE,cst.mu=TRUE,dt=1e-3)
#result_bexp_dcst$model <- "birth-death with exponential variation in speciation rate
and constant extinction"

Find the best model
#index <- which.min(c(result_cst$aicc, result_exp$aicc, result_lin$aicc,result_bexp_dcst$aicc))
#rbind(result_cst, result_exp, result_lin, result_bexp_dcst)[index,]
fit_ClaDS

Fit ClaDS to a phylogeny

Description

Performs the inference of branch-specific speciation rates and the model’s hyper parameters for the model with constant extinction rate (ClaDS1) or constant turnover rate (ClaDS2).

Usage

fit_ClaDS(tree, sample_fraction, iterations, thin = 50, file_name = NULL, it_save = 1000, model_id = "ClaDS2", nCPU = 1, mcmcSampler = NULL, ...)

Arguments

tree
An object of class 'phylo'
sample_fraction
The sampling fraction for the clade on which the inference is performed.
iterations
Number of steps in the MCMC, should be a multiple of thin.
thin
Number of iterations between two chain state's recordings.
file_name
Name of the file in which the result will be saved. Use file_name = NULL (the default) to disable this option.
it_save
Number of iteration between each backup of the result in file_name.
model_id
"ClaDS1" for constant extinction rate, "ClaDS2" (the default) for constant turnover rate.
nCPU
The number of CPUs to use. Should be either 1 or 3.
mcmcSampler
Optional output of fit_ClaDS to continue an already started run.
...
Optional arguments, see details.

Details

This function uses a blocked Differential Evolution (DE) MCMC sampler, with sampling from the past of the chains (Ter Braak, 2006; ter Braak and Vrugt, 2008). This sampler is self-adaptive because proposals are generated from the past of the chains. In this sampler, three chains are run simultaneously. Block updates is implemented by first drawing the number of parameters to be updated from a truncated geometric distribution with mean 3, drawing uniformly which parameter to update, and then following the normal DE algorithm.

The available optional arguments are:

Nchain
Number of MCMC chains (default to 3).
res_ClaDS0
The output of ClaDS0 to use as a startpoint. If NULL (the default) a random startpoint is used for the branch-specific speciation rates for each chain.
l0
The starting value for lambda_0 (not used if res_ClaDS0 != NULL).
s0 The starting value for sigma (not used if res_ClaDS0 != NULL).

nlambda Number of subdivisions for the rate space discretization (use in the likelihood computation). Default to 1000.

nt Number of subdivisions for the time space discretization (use in the likelihood computation). Default to 30.

Value

A 'list' object with fields:

- **post** The posterior function.
- **startvalue** The starting value for the MCMC.
- **numPars** The number of parameter in the model, including the branch-specific speciation rates.
- **Nchain** The number of MCMC chains ran simultaneously.
- **currentLPs** The current values of the logposterior for th Nchains chains.
- **proposalGenerator** The proposal distribution for the MCMC sampler.
- **former** The last output of post for each of the chains.
- **thin** Number of iterations between two chain state’s recordings.
- **alpha_effect** A vector of size nrow(tree$edge), where the ith element is the number of branches on the path from the crown of the tree and branch i (used internally in other functions).
- **consoleupdates** The frequency at which the sampler state should be printed.
- **likelihood** The likelihood function, used internally.
- **relToAbs** A function mapping the relative changes in speciation rates to the absolute speciation rates for the object phylo, used internally.

Author(s)

O. Maliet

References

See Also

fit_ClaDS0, plot_ClaDS_chains.
Examples

```r
data("Caprimulgidae")
sample_fraction = 0.61

sampler = fit_ClaDS0(Caprimulgidae, sample_fraction, 1000, thin = 50,
                       file_name = NULL, model_id="ClaDS0", nCPU = 1)
plot_ClaDS0_chains(sampler)

# continue the same run
sampler = fit_ClaDS0(Caprimulgidae, sample_fraction, 50, mcmcSampler = sampler)

# plot the result of the analysis (saved in "Caprimulgidae_ClaDS0", after thinning)
data("Caprimulgidae_ClaDS0")

# plot the mcmc chains
plot_ClaDS0_chains(Caprimulgidae_ClaDS0$sampler)

# extract the Maxima A Posteriori for each parameter
maps = getMAPS_ClaDS0(Caprimulgidae_ClaDS0$sampler, thin = 1)
print(paste0("sigma = ", maps[1], "; alpha = ",
              maps[2], "; epsilon = ", maps[3], "; L_0 = ", maps[4]))

# plot the inferred branch specific speciation rates
plot_ClaDS0_phylo(Caprimulgidae_ClaDS0$tree, maps[-(1:4)])
```

fit_ClaDS0

Infer ClaDS0’s parameter on a phylogeny

Description

Infer branch-specific speciation rates and the model’s hyper parameters for the pure-birth model

Usage

```r
fit_ClaDS0(tree, name, pamhLocalName = "pamhLocal",
           iteration = 1e+07, thin = 20000, update = 1000,
           adaptation = 10, seed = NULL, nCPU = 3)
```
Arguments

- **tree**: An object of class 'phylo'.
- **name**: The name of the file in which the results will be saved. Use name = NULL to disable this option.
- **pamhLocalName**: The function is writing in a text file to make the execution quicker, this is the name of this file.
- **iteration**: Number of iterations after which the gelman factor is computed and printed. The function stops if it is below 1.05.
- **thin**: Number of iterations between two chain state's recordings.
- **update**: Number of iterations between two adjustments of the proposal parameters during the adaptation phase of the sampler.
- **adaptation**: Number of times the proposal is adjusted during the adaptation phase of the sampler.
- **seed**: An optional seed for the MCMC run.
- **nCPU**: The number of CPUs to use. Should be either 1 or 3.

Details

This function uses a Metropolis within Gibbs MCMC sampler with a bactrian proposal (ref) with an initial adaptation phase. During this phase, the proposal is adjusted "adaptation" times every "update" iterations to reach a goal acceptance rate of 0.3.

To monitor convergence, 3 independant MCMC chains are run simultaneously and the Gelman statistics is computed every "iteration" iterations. The inference is stopped when the maximum of the one dimentional Gelman statistics (computed for each of the parameters) is below 1.05.

Value

A `mcmc.list` object with the three MCMC chains.

Author(s)

O. Maliet

References

See Also

`getMAPS_ClaDS0`, `plot_ClaDS0.chains`, `fit_ClaDS`
Examples

```r
set.seed(1)

obj = sim_ClaDS(lambda_0=0.1,
                mu_0=0.5,
                sigma_lamb=0.7,
                alpha_lamb=0.90,
                condition="taxa",
                taxa_stop = 20,
                prune_extinct = TRUE)

tree = obj$tree
speciation_rates = obj$lamb[obj$rates]
extinction_rates = obj$mu[obj$rates]

plot_ClaDS_phylo(tree, speciation_rates)

sampler = fit_ClaDS0(tree = tree,
                     name="ClaDS0_example.Rdata",
                     nCPU=1,
                     pamhLocalName = "local",
                     iteration=500000,
                     thin=2000,
                     update=1000, adaptation=5)

# extract the Maximum A Posteriori for each of the parameters
MAPS = getMAPS_ClaDS0(tree, sampler, thin = 10)

# plot the simulated (on the left) and inferred speciation rates (on the right)
# on the same color scale
plot_ClaDS_phylo(tree, speciation_rates, MAPS[-(1:3)])
```

fit_coal_cst

Maximum likelihood fit of the equilibrium model

Description

Fits the equilibrium diversity model with potentially time-varying turnover rate and potentially missing extant species to a phylogeny, by maximum likelihood. The implementation allows only exponential time variation of the turnover rate, although this could be modified using expressions in Morlon et al. PloSB 2010. Notations follow Morlon et al. PLoSB 2010.

Usage

```r
fit_coal_cst(phylo, tau0 = 1e-2, gamma = 1, cst.rate = FALSE,
             meth = "Nelder-Mead", N0 = 0)
```
Arguments

phylo an object of type ‘phylo’ (see ape documentation)
tau0 initial value of the turnover rate at present (used by the optimization algorithm)
gamma initial value of the parameter controlling the exponential variation in turnover rate (used by the optimization algorithm)
cst.rate logical: should be set to TRUE to fit an equilibrium diversity model with time-constant turnover rate (know as the Hey model, model 1 in Morlon et al. PloSB 2010). By default, a model with exponential time-varying rate exponential is fitted (model 2 in Morlon et al. PloSB 2010).
meth optimization to use to maximize the likelihood function, see optim for more details.
N0 Number of extant species. With default value(0), N0 is set to the number of tips in the phylogeny. That is, the phylogeny is assumed to be 100% complete.

Details

This function fits models 1 (when cst.rate=TRUE) and 2 (when cst.rate=FALSE) from the PloSB 2010 paper. Likelihoods arising from these models are directly comparable to likelihoods from the fit_coal_var function, thus allowing to test support for equilibrium versus expanding diversity scenarios. Time runs from the present to the past. Hence, if gamma is estimated to be positive (for example), this means that the speciation rate decreases from past to present.

Value

a list with the following components

model the name of the fitted model
LH the maximum log-likelihood value
aicc the second order Akaike’s Information Criterion
tau0 the estimated turnover rate at present
gamma the estimated parameter controlling the exponential variation in turnover rate (if cst.rate is FALSE)

Author(s)

H Morlon

References

fit_coal_var

Fit birth-death model using a coalescent approach

Description

Fits the expanding diversity model with potentially time-varying rates and potentially missing extant species to a phylogeny, by maximum likelihood. The implementation allows only exponential time variation of the speciation and extinction rates, although this could be modified using expressions in Morlon et al. PloSB 2010. Notations follow Morlon et al. PLoSB 2010.

Usage

```r
fit_coal_var(phylo, lamb0 = 0.1, alpha = 1, mu0 = 0.01, beta = 0,
meth = "Nelder-Mead", N0 = 0, cst.lamb = FALSE, cst.mu = FALSE,
fix.eps = FALSE, mu.0 = FALSE, pos = TRUE)
```

Arguments

- **phylo**: an object of type ’phylo’ (see ape documentation)
- **lamb0**: initial value of the speciation rate at present (used by the optimization algorithm)
- **alpha**: initial value of the parameter controlling the exponential variation in speciation rate (used by the optimization algorithm)
- **mu0**: initial value of the extinction rate at present (used by the optimization algorithm)
- **beta**: initial value of the parameter controlling the exponential variation in extinction rate.
- **meth**: optimization to use to maximize the likelihood function, see optim for more details.
- **N0**: Number of extant species. With default value(0), N0 is set to the number of tips in the phylogeny. That is, the phylogeny is assumed to be 100% complete.
- **cst.lamb**: logical: should be set to TRUE only if f.lamb is constant (i.e. does not depend on time, models 3, 4b & 5 in Morlon et al. PloSB 2010) to use analytical instead of numerical computation in order to reduce computation time.
- **cst.mu**: logical: should be set to TRUE only if f.mu is constant (i.e. does not depend on time, models 3 & 4a in Morlon et al. PloSB 2010) to use analytical instead of numerical computation in order to reduce computation time.

See Also

- [likelihood_coal_cst](#)
- [fit_coal_var](#)

Examples

```r
data(Cetacea)
result <- fit_coal_cst(Cetacea, tau0=1.e-3, gamma=-1, cst.rate=FALSE, N0=89)
print(result)
```
fit_coal_var

fix.eps logical: should be set to TRUE only if the extinction fraction is constant (i.e. does not depend on time, model 4c in Morlon et al. PloSB 2010)

mu.0 logical: should be set to TRUE to force the extinction rate to 0 (models 5 & 6 in Morlon et al. PloSB 2010)

pos logical: should be set to FALSE only to not enforce positive speciation and extinction rates

Details

The function fits models 3 to 6 from the PloSB 2010 paper. Likelihoods arising from these models are computed using the coalescent approximation and are directly comparable to likelihoods from the fit_coal_cst function, thus allowing to test support for equilibrium versus expanding diversity scenarios.

These models can be fitted using the options specified below:

- model 3:
 with cst.lamb=TRUE & cst.mu=TRUE
- model 4a:
 with cst.lamb=FALSE & cst.mu=TRUE
- model 4b:
 with cst.lamb=TRUE & cst.mu=FALSE
- model 4c:
 with cst.lamb=FALSE, cst.mu=FALSE & fix.eps=TRUE
- model 4d:
 with cst.lamb=FALSE, cst.mu=FALSE & fix.eps=FALSE
- model 5:
 with cst.lamb=TRUE & mu.0=TRUE
- model 6:
 with cst.lamb=FALSE & mu.0=TRUE

Time runs from the present to the past. Hence, if alpha is estimated to be positive (for example), this means that the speciation rate decreases from past to present.

Value

a list with the following components

model the name of the fitted model
LH the maximum log-likelihood value
aicc the second order Akaike’s Information Criterion
model.parameters the estimated parameters

Author(s)

H Morlon
References

See Also

likelihood_coal_var, fit_coal_cst

Examples

data(Cetacea)
result <- fit_coal_var(Cetacea, lamb0=0.01, alpha=-0.001, mu0=0.0, beta=0, N0=89)
print(result)

fit_env

Maximum likelihood fit of the environmental birth-death model

Description

Fits the environmental birth-death model with potentially missing extant species to a phylogeny, by maximum likelihood. Notations follow Morlon et al. PNAS 2011 and Condamine et al. ELE 2013.

Usage

fit_env(phylo, env_data, tot_time, f.lamb, f.mu, lamb_par, mu_par, df= NULL, f = 1, meth = "Nelder-Mead", cst.lamb = FALSE, cst.mu = FALSE, expo.lamb = FALSE, expo.mu = FALSE, fix.mu = FALSE, dt=0, cond = "crown")

Arguments

phylo an object of type 'phylo' (see ape documentation)
env_data environmental data, given as a data frame with two columns. The first column is time, the second column is the environmental data (temperature for instance).
tot_time the age of the phylogeny (crown age, or stem age if known). If working with crown ages, tot_time is given by max(node.age(phylo)$ages).
f.lamb a function specifying the hypothesized functional form of the variation of the speciation rate \(\lambda\) with time and the environmental variable. Any functional form may be used. This function has three arguments: the first argument is time; the second argument is the environmental variable; the third argument is a numeric vector of the parameters controlling the time and environmental variation (to be estimated).
fit_env

f.mu
a function specifying the hypothesized functional form of the variation of the extinction rate μ with time and the environmental variable. Any functional form may be used. This function has three arguments: the first argument is time; the second argument is the environmental variable; the second argument is a numeric vector of the parameters controlling the time and environmental variation (to be estimated).

lamb_par
a numeric vector of initial values for the parameters of f.lamb to be estimated (these values are used by the optimization algorithm). The length of this vector is used to compute the total number of parameters in the model, so to fit a model with constant speciation rate (for example), lamb_par should be a vector of length 1. Otherwise aic values will be wrong.

mu_par
a numeric vector of initial values for the parameters of f.mu to be estimated (these values are used by the optimization algorithm). The length of this vector is used to compute the total number of parameters in the model, so to fit a model without extinction (for example), mu_par should be empty (vector of length 0). Otherwise aic values will be wrong.

df
the degree of freedom to use to define the spline. As a default, smooth.spline(env_data[,1], env_data[,2])$df is used. See sm.spline for details.

f
the fraction of extant species included in the phylogeny

meth
optimization to use to maximize the likelihood function, see optim for more details.

cst.lamb
logical: should be set to TRUE only if f.lamb is constant (i.e. does not depend on time or the environmental variable) to use analytical instead of numerical computation in order to reduce computation time.

cst.mu
logical: should be set to TRUE only if f.mu is constant (i.e. does not depend on time or the environmental variable) to use analytical instead of numerical computation in order to reduce computation time.

expo.lamb
logical: should be set to TRUE only if f.lamb is an exponential function of time (and does not depend on the environmental variable) to use analytical instead of numerical computation in order to reduce computation time.

expo.mu
logical: should be set to TRUE only if f.mu is an exponential function of time (and does not depend on the environmental variable) to use analytical instead of numerical computation in order to reduce computation time.

fix.mu
logical: if set to TRUE, the extinction rate μ is fixed and will not be optimized.

dt
the default value is 0. In this case, integrals in the likelihood are computed using R "integrate" function, which can be quite slow. If a positive dt is given as argument, integrals are computed using a piece-wise constant approximation, and dt represents the length of the intervals on which functions are assumed to be constant. We found that 1e-3 generally provides a good trade-off between precision and computation time.

cond
conditioning to use to fit the model:
- "FALSE": no conditioning (not recommended);
- "stem": conditioning on the survival of the stem lineage (use when the stem age is known, in this case tot_time should be the stem age);
• "crown" (default): conditioning on a speciation event at the crown age and survival of the 2 daughter lineages (use when the stem age is not known, in this case tot_time should be the crown age).

Details

The lengths of lamb_par and mu_par are used to compute the total number of parameters in the model, so to fit a model with constant speciation rate (for example), lamb_par should be a vector of length 1. Otherwise aic values will be wrong. In the f.lamb and f.mu functions, time runs from the present to the past.

Value

a list with the following components

model the name of the fitted model
lh the maximum log-likelihood value
aic the second order Akaike’s Information Criterion
lamb_par a numeric vector of estimated f.lamb parameters, in the same order as defined in f.lamb
mu_par a numeric vector of estimated f.mu parameters, in the same order as defined in f.mu (if fix.mu is FALSE)

Note

The speed of convergence of the fit might depend on the degree of freedom chosen to define the spline.

Author(s)

H Morlon and F Condamine

References

See Also

plot_fit_env, fit_bd, likelihood_bd
Examples

data(Cetacea)
tot_time <- max(node.age(Cetacea)$ages)
data(InTemp)
dof <- smooth.spline(InTemp[,1], InTemp[,2])$df

Fits a model with lambda varying as an exponential function of temperature
and mu fixed to 0 (no extinction). Here t stands for time and x for temperature.
f.lamb <- function(t,x,y){y[1] * exp(y[2] * x)}
f.mu <- function(t,x,y){0}
lambda_par <- c(0.10, 0.01)
mu_par <- c()
result_exp <- fit_env(Cetacea, InTemp, tot_time, f.lamb, f.mu, lamb_par, mu_par,

fit_sgd

Maximum likelihood fit of the SGD model

Description

Fits the SGD model with exponential growth of the metacommunity, by maximum likelihood. Notations follow Manceau et al. (2015)

Usage

fit_sgd(phylo, tot_time, par, f=1, meth = "Nelder-Mead")

Arguments

phylo an object of type 'phylo' (see ape documentation)
tot_time the age of the phylogeny (crown age, or stem age if known). If working with
crown ages, tot_time is given by max(node.age(phylo)$ages)
par a numeric vector of initial values for the parameters (b,d,nu) to be estimated
(f these values are used by the optimization algorithm)
f the fraction of extant species included in the phylogeny
meth optimization to use to maximize the likelihood function, see optim for more
details.

Value

a list with the following components

model the name of the fitted model
LH the maximum log-likelihood value
aicc the second order Akaike’s Information Criterion
par a numeric vector of estimated values of b (birth), b-d (growth) and nu (mutation)
fit_t_comp

Note
While b-d and nu can in general be well estimated, the likelihood surface is quite flat with respect to b, such that the estimated b can vary a lot depending on the choice of the initial parameter values. Estimates of b should not be trusted.

Author(s)
M Manceau

References

See Also
likelihood_sgd

Examples
Some examples may take a little bit of time. Be patient!
data(Calamys)
tot_time <- max(node.age(Calamys)$ages)
par_init <- c(1e7, 1e7-0.5, 1)
fit SGD(Calamys, tot_time, par_init, f=11/13)

Description
Fits matching competition (MC), diversity dependent linear (DDlin), or diversity dependent exponential (DDexp) models of trait evolution to a given dataset and phylogeny.

Usage
fit_t_comp(phylo, data, model=c("MC","DDexp","DDlin"), pars=NULL, geography.object=NULL)

Arguments

phylo an object of type 'phylo' (see ape documentation)
data a named vector of trait values with names matching phylo$tip.label
model model chosen to fit trait data. "MC" is the matching competition model of Nuismer & Harmon 2014, "DDlin" is the diversity-dependent linear model, and "DDexp" is the diversity-dependent exponential model of Weir & Mursleen 2013.
geography.object a list of sympathy through time created using CreateGeoObject
pars vector specifying starting parameter values for maximum likelihood optimization. If unspecified, default values are used (see Details)
Details

If unspecified, par takes the default values of `var(data)/max(nodeHeights(phylo))` for sig2 and 0 for either S for the matching competition model, b for the linear diversity dependence model, or r for the exponential diversity dependence model. Values can be manually entered as a vector with the first element equal to the desired starting value for sig2 and the second value equal to the desired starting value for either S, b, or r. Note: since likelihood optimization uses sig rather than sig2, and since the starting value for is exponentiated to stabilize the likelihood search, if you input a par value, the first value specifying sig2 should be the log(sqrt()) of the desired sig2 starting value.

Value

a list with the following elements:

- LH: maximum log-likelihood value
- aic: Akaike Information Criterion value
- aicc: AIC value corrected for small sample size
- free.parameters: number of free parameters from the model
- sig2: maximum-likelihood estimate of sig2 parameter
- S: maximum-likelihood estimate of S parameter of matching competition model (see Note)
- b: maximum-likelihood estimate of b parameter of linear diversity dependence model
- r: maximum-likelihood estimate of r parameter of exponential diversity dependence model
- z0: maximum-likelihood estimate of z0, the value at the root of the tree
- convergence: convergence diagnostics from optim function (see optim documentation)

Note

In current version, the S parameter is restricted to take on negative values in MC + geography ML optimization.

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel

References

See Also

sim_t_comp, CreateGeoObject, likelihood_t_MC, likelihood_t_MC_geog, likelihood_t_DD, likelihood_t_DD_geog

Examples

data(Anolis.data)
geography.object<-Anolis.data$geography.object
pPC1<-Anolis.data$data
phylo<-Anolis.data$phylo

#Fit three models without biogeography to pPC1 data
MC.fit<-fit_t_comp(phylo, pPC1, model="MC")
DDlin.fit<-fit_t_comp(phylo, pPC1, model="DDlin")
DDexp.fit<-fit_t_comp(phylo, pPC1, model="DDexp")

#Now fit models that incorporate biogeography, NOTE these models take longer to fit
MC.geo.fit<-fit_t_comp(phylo, pPC1, model="MC", geography.object=geography.object)
DDlin.geo.fit<-fit_t_comp(phylo, pPC1, model="DDlin", geography.object=geography.object)
DDexp.geo.fit<-fit_t_comp(phylo, pPC1, model="DDexp", geography.object=geography.object)

fit_t_comp_subgroup

Fits models of trait evolution incorporating competitive interactions, restricting competition to occur only between members of a subgroup.

Description

Fits matching competition (MC), diversity dependent linear (DDlin), or diversity dependent exponential (DDexp) models of trait evolution to a given dataset, phylogeny, and stochastic maps of both subgroup membership and biogeography.

Usage

fit_t_comp_subgroup(full.phylo, ana.events, clado.events, stratified=FALSE, map=data, trim.class, model=c("MC","DDexp","DDlin"), par=NULL, method="Nelder-Mead", bounds=NULL)

Arguments

- full.phylo: an object of type 'phylo' (see ape documentation) containing all of the tips used to estimate ancestral biogeography in BioGeoBEARS
- ana.events: the "ana.events" table produced in BioGeoBEARS that lists anagenetic events in the stochastic map
fit_t_comp_subgroup

clado.events the "clado.events" table produced in BioGeoBEARS that lists cladogenetic events in the stochastic map

stratified logical indicating whether the stochastic map was built from a stratified analysis in BioGeoBEARS

map a phylo object created using `make.simmap` in phytools that contains reconstructed subgroup membership

data a named vector of trait values for subgroup members with names matching `full.phylo$tip.label`

trim.class subgroup whose members are competing

model model chosen to fit trait data, "MC" is the matching competition model of Nuissmer & Harmon 2014, "DDLlin" is the diversity-dependent linear model, and "DDExp" is the diversity-dependent exponential model of Weir & Mursleen 2013.

par vector specifying starting parameter values for maximum likelihood optimization. If unspecified, default values are used (see Details)

method optimization algorithm to use (see `optim`)

bounds (optional) list of bounds to pass to optimization algorithm (see details at `optim`)

Details

If unspecified, `par` takes the default values of \(\text{var(data)} / \text{max(nodeHeights(phylo))} \) for \(\text{sig2} \) and 0 for either \(S \) for the matching competition model, \(b \) for the linear diversity dependence model, or \(r \) for the exponential diversity dependence model. Values can be manually entered as a vector with the first element equal to the desired starting value for \(\text{sig2} \) and the second value equal to the desired starting value for either \(S, b, \) or \(r \). Note: since likelihood optimization uses \(\text{sig} \) rather than \(\text{sig2} \), and since the starting value for \(\text{sig} \) is exponentiated to stabilize the likelihood search, if you input a `par` value, the first value specifying \(\text{sig2} \) should be the `log(sqrt())` of the desired \(\text{sig2} \) starting value.

Value

a list with the following elements:

LH maximum log-likelihood value

aic Akaike Information Criterion value

aicc AIC value corrected for small sample size

free.parameters number of free parameters from the model

sig2 maximum-likelihood estimate of \(\text{sig2} \) parameter

S maximum-likelihood estimate of \(S \) parameter of matching competition model (see Note)

b maximum-likelihood estimate of \(b \) parameter of linear diversity dependence model

r maximum-likelihood estimate of \(r \) parameter of exponential diversity dependence model

z0 maximum-likelihood estimate of \(z0 \), the value at the root of the tree

convergence convergence diagnostics from `optim` function (see `optim` documentation)
Note

In current version, the S parameter is restricted to take on negative values in MC + geography ML optimization.

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com

References

See Also

- `likelihood_subgroup_model`
- `CreateGeobyClassObject`

Examples

data(BGB.examples)

Canidae.phylo<-BGB.examples$Canidae.phylo
names(dummy.group)<-Canidae.phylo$tip.label

Canidae.simmap<-phytools::make.simmap(Canidae.phylo,dummy.group)

set.seed(123)
Canidae.data<-rnorm(length(Canidae.phylo$tip.label))
names(Canidae.data)<-Canidae.phylo$tip.label
Canidae.A<-Canidae.data[which(dummy.group=="A")]

fitA<-fit_t_comp_subgroup(full.phylo=Canidae.phylo,ana.events=BGB.examples$Canidae.ana.events,clado.events=BGB.examples$Canidae.clado.events,stratified=FALSE,map=Canidae.simmap,data=Canidae.A,trim.class="A",model="DDexp")
Description

Fits model of trait evolution for which evolutionary rates depends on an environmental function, or more generally a time varying function.

Usage

```r
fit_t_env(phylo, data, env_data, error=NULL, model=c("EnvExp", "EnvLin"),
          method="Nelder-Mead", control=list(maxit=20000), ...)
```

Arguments

- `phylo`: An object of class 'phylo' (see ape documentation)
- `data`: A named vector of phenotypic trait values.
- `env_data`: Environmental data, given as a time continuous function (see, e.g. `splinefun`) or a data frame with two columns. The first column is time, the second column is the environmental data (temperature for instance).
- `error`: A named vector with standard error (SE) for each species. Default is NULL, if NA, then the SE is estimated from the data.
- `model`: The model describing the functional form of variation of the evolutionary rate σ^2 with time and the environmental variable. Default models are "EnvExp" and "EnvLin" (see details). An user defined function of any functional form may be used (forward in time). This function has three arguments: the first argument is time; the second argument is the environmental variable; the third argument is a numeric vector of the parameters controlling the time and environmental variation (to be estimated). See the example below.
- `method`: Methods used by the optimization routine (see ?optim for details).
- `control`: Max. bound for the number of iteration of the optimizer; other options can be fixed on the list (see ?optim).
- `...`: Arguments to be passed to the function. See details.

Details

`fit_t_env` allows fitting environmental models of trait evolution. The default models *EnvExp* and *EnvLin* represents models for which the evolutionary rates are changing as a function of environmental changes though times as defined below.

EnvExp:

$$\sigma^2(t) = \sigma_0^2 e^{(\beta T(t))}$$

EnvLin:

$$\sigma^2(t) = \sigma_0^2 + \beta T(t)$$
Users defined models should have the following form (see also examples below):

```r
fun <- function(t, env, param){ param*env(t)}
```

- **t**: is the time parameter.
- **env**: is a time function of an environmental variable. See for instance object created by `splinefun` when interpolating coordinate of points.
- **param**: is a vector of parameters to estimate.

For instance, the EnvExp function can be coded as:

```r
fun <- function(t, env, param){ param[1]*exp(param[2]*env(t))}
```

where `param[1]` is the σ^2 parameter and `param[2]` is the β parameter. Note that in this later case, two starting values should be provided in the `param` argument.

e.g.:

```r
sigma=0.1
beta=0
```

```r
fit_t_env(tree, data, env_data=InfTemp, model=fun, param=c(sigma,beta))
```

The various options are passed through "...".

- **-param**: The starting values used for the model. Must match the total number of parameters of the specified models. If "error=NA", a starting value for the SE to be estimated must be provided with user-defined models.
- **-scale**: scale the amplitude of the environmental curve between 0 and 1. This may improve the parameters search in some situations.
- **-df**: the degree of freedom to use for defining the spline. As a default, `smooth.spline(env_data[,1], env_data[,2])$df` is used. See `sm.spline` for details.
- **-upper**: the upper bound for the parameter search when the "L-BFGS-B" method is used. See `optim` for details.
- **-lower**: the lower bound for the parameter search when the "L-BFGS-B" method is used. See `optim` for details.
- **-sig2**: can be used instead of `param` to define the starting sigma value only
- **-beta**: can be used instead of `param` to define the beta starting value only
- **-maxdiff**: difference in time between tips and present day for phylogenetic trees with no concomitant species (default is 0)

Value

- a list with the following components

 - **LH**: the maximum log-likelihood value
 - **aic**: the Akaike’s Information Criterion
 - **aicc**: the second order Akaike’s Information Criterion
 - **free.parameters**: the number of estimated parameters
param: a numeric vector of estimated parameters, sigma and beta respectively for the defaults models. In the same order as defined by the user if a customized model is provided.

root: the estimated root value

convergence: convergence status of the optimizing function; "0" indicates convergence (See ?optim for details)

hess.value: reliability of the likelihood estimates calculated through the eigen-decomposition of the hessian matrix. "0" means that a reliable estimate has been reached

env_func: the environmental function

tot.time: the root age of the tree

model: the fitted model (default models or user specified)

SE: the estimated SE for species mean when "error=NA"

Note

The users defined function is evaluated forward in time i.e.: from the root to the tips (time = 0 at the (present) tips). The speed of convergence of the fit might depend on the degree of freedom chosen to define the spline.

Author(s)

J. Clavel

References

See Also

plot.fit_t.env, likelihood_t_env

Examples

data(Cetacea)
data(InfTemp)

Simulate a trait with temperature dependence on the Cetacean tree
set.seed(123)

trait <- sim_t_env(Cetacea, param=c(0.1,-0.2), env_data=InfTemp, model="EnvExp", root.value=0, step=0.001, plot=TRUE)

Fit the Environmental-exponential model
Fit the environmental model
result1=fit_t_env(Cetacea, trait, env_data=InfTemp, scale=TRUE)
plot(result1)

Add to the plot the results from different smoothing of the temperature curve
result2<fit_t_env(Cetacea, trait, env_data=InfTemp, df=10, scale=TRUE)
lines(result2, col=“red”)

result3<fit_t_env(Cetacea, trait, env_data=InfTemp, df=50, scale=TRUE)
lines(result3, col=“blue”)

Fit the environmental linear model
fit_t_env(Cetacea, trait, env_data=InfTemp, model=“envlin”, df=50, scale=TRUE)

Fit user defined model (note that several other environmental variables
can be simultaneously encapsulated in this function through the env argument)

We define the function for the model
my_fun<-function(t, env_cont, param){
}

res<fit_t_env(Cetacea, trait, env_data=InfTemp, model=my_fun,
 param=c(0.1, 0), scale=TRUE)
Retrieve the parameters and compare to 'result1'
res
plot(res, col=“red”)

Fit user defined environmental function
require(psspline)
spline_result <- sm.spline(x=InfTemp[,1], y=InfTemp[,2], df=50)
env_func <- function(t)(predict(spline_result, t))
t<-unique(InfTemp[,1])

We build the interpolated smoothing spline function
env_data<-splinefun(t, env_func(t))

We then fit the model
fit_t_env(Cetacea, trait, env_data=env_data)

Various parameterization (box constraints, df, scaling of the curve...) example
fit_t_env(Cetacea, trait, env_data=InfTemp, model=“envlin”, method=“L-BFGS-B”,
 scale=TRUE, lower=-30, upper=20, df=10)

A very general model...

We define the function for the Early-Burst/AC model:
maxtime = max(branching.times(Cetacea))

sigma*2*e^(rt)
my_fun_ebac <- function(t, env_cont, param){
 time = (maxtime - t)
}
res<-fit_t_env(Cetacea, trait, env_data=InfTemp, model=my_fun_ebac,
param=c(0.1,0), scale=TRUE)
res # note that "r" is positive: it's the AC model (~OU model on ultrametric tree)

fit_t_pl

High-dimensional phylogenetic models of trait evolution

Description

Fits high-dimensional model of trait evolution on trees through penalized likelihood. A phylogenetic Leave-One-Out Cross-Validated log-likelihood (LOOCV) is used to estimate model parameters.

Usage

```r
fit_t_pl(Y, tree, model=c("BM", "OU", "EB", "lambda"),
method=c("RidgeAlt", "RidgeArch", "RidgeAltapprox", "LASSO", "LASSOapprox"),
targM=c("null", "Variance", "unitVariance"), REML=TRUE, up=NULL, low=NULL,
tol=NULL, starting=NULL, SE=NULL,
scale=height=TRUE, ...)
```

Arguments

- **Y**: A matrix of phenotypic traits values (the variables are represented as columns)
- **tree**: An object of class 'phylo' (see ape documentation)
- **model**: The evolutionary model. "BM" is Brownian Motion, "OU" is Ornstein-Uhlenbeck, "EB" is Early Burst, and "lambda" is Pagel's lambda transformation.
- **targM**: The target matrix used for the Ridge regularizations. "null" is a null target, "Variance" for a diagonal unequal variance target, "unitVariance" for an equal diagonal target. Only works with "RidgeArch", "RidgeAlt", and "RidgeAltapprox" methods.
- **REML**: Use REML (default) or ML for estimating the parameters.
- **up**: Upper bound for the parameter search of the evolutionary model (optional).
- **low**: Lower bound for the parameter search of the evolutionary model (optional).
tol minimum value for the regularization parameter. Singularities can occur with a zero value in high-dimensional cases. (default is NULL)

starting Starting values for the parameter search (optional).

SE Standard errors associated with values in Y. If TRUE, SE will be estimated.

scale.height Whether the tree should be scaled to unit length or not. (default is TRUE)

... Options to be passed through. (e.g., echo=FALSE to stop printing messages)

Details

fit_t_pl allows fitting various multivariate evolutionary models to high-dimensional datasets (where the number of variables p is larger than n). Models estimates are more accurate than maximum likelihood methods. Models fit can be compared using the GIC criterion (see ?GIC). Details about the methods are described in Clavel et al. (2019).

Value

a list with the following components

loocv the (negative) cross-validated penalized likelihood
model.par the evolutionary model parameter estimates
gamma the regularization/tuning parameter of the penalized likelihood
corrstruct a list with the transformed variables and the phylogenetic tree with branch length stretched to the model estimated parameters
model the evolutionary model
method the penalization method
p the number of traits
n the number of species
targM the target used for Ridge Penalization
R a list with the estimated evolutionary covariance matrix and it’s inverse
REML logical indicating if the REML (TRUE) or ML (FALSE) method has been used
variables Y is the input dataset and tree is the phylogenetic tree
SE the estimated standard error

Note

The LASSO is computationally intensive. Please wait! For highly-dimensional datasets you should favor the "RidgeArch" method to speed up the computations. The Ridge penalties with "null" or "unitVariance" targets are rotation invariants.

Author(s)

J. Clavel
foraminifera

References

See Also

ancestral, phyl.pca_pl, GIC.fit_pl.rpanda, gic_criterion mvgl

Examples

```r
require(mvMORPH)
set.seed(1)
n <- 32 # number of species
p <- 31 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)

# simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

# fit the model
fit_t_pl(Y, tree, model="BM", method="BridgeAlt")

# try on rotated axis (using PCA)
trans <- prcomp(Y, center=FALSE)
fit_t_pl(trans$x, tree, model="BM", method="BridgeAlt")

# Estimate the SE (similar to Pagel's lambda for BM).
# Advised with empirical datasets
fit_t_pl(Y, tree, model="BM", method="BridgeAlt", SE=TRUE)
```

foraminifera

Foraminifera diversity since the Jurassic

Description

Foraminifera fossil diversity since the Jurassic

Usage

data(foraminifera)
Details

Foraminifera fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the two following variables:

age a numeric vector corresponding to the geological age, in Myrs before the present
foraminifera a numeric vector corresponding to the estimated foraminifera change at that age

References

Examples

data(foraminifera)
plot(foraminifera)

getdataLikelihood

Description

Computes -log(likelihood) of tip trait data under a given set of parameters, and for a specified model of trait evolution.

Usage

getdataLikelihood(object, data, params, v)

Arguments

object an object of class 'PhenotypicModel'.
data vector of tip trait data.
params vector of parameters, given in the same order as in the 'model' object.
v boolean specifying the verbose mode. Default value : FALSE.

Value

A numerical value : -log(likelihood) of the model.

Author(s)

M Manceau
References

Examples

#Loading an example tree
tree <- read.tree(text=newick)

#Creating the models
modelBM <- createModel(tree, 'BM')

#Simulating tip traits under the model :
dataBM <- simulateTipData(modelBM, c(0,0,0,1))

#Likelihood of the data :
getDataLikelihood(modelBM, dataBM, c(0,0,0,1))

getDataLikelihood-methods

~~ Methods for Function getDataLikelihood ~~

Description

~~ Methods for function getDataLikelihood ~~

Methods

signature(object = "PhenotypicModel") This is the only method available for this function. Same behaviour for any PhenotypicModel.

getMAPS_ClaDS

Gets the Maximum A Posteriori for each ClaDS parameter

Description

Extract the MAPs (Maximum A Posteriori) for the marginal posterior distributions estimated with fit_ClaDS

Usage

getMAPS_ClaDS(sampler, burn = 1/2, thin = 1)
Arguments

- **sampler**: The output of a fit_ClaDS run.
- **burn**: Number of iterations to drop in the beginning of the chains.
- **thin**: Thinning parameter, one iteration out of "thin" is kept to compute the MAPs.

Value

A vector MAPS containing the MAPs for the marginal posterior distribution for each of the model’s parameters.

MAPS[-(1:4)] are the estimated branch-specific speciation rates, given in the same order as the edges of the phylogeny on which the inference was performed.

Author(s)

O. Maliet

References

See Also

fit_ClaDS, *plot_ClaDS_chains*, *getMAPS_ClaDS*

Examples

data("Caprimulgidae_ClaDS2")

MAPS = getMAPS_ClaDS(Caprimulgidae_ClaDS2$sampler, thin = 1)

print(paste0("sigma = ", MAPS[1], " ; alpha = ", MAPS[2], " ; epsilon = ", MAPS[3], " ; l_0 = ", MAPS[4]))

plot_ClaDS_phylo(Caprimulgidae_ClaDS2$tree, MAPS[-(1:4)])
getMAPS_ClaDS0

Description

Extract the MAPs (Maximum A Posteriori) for the marginal posterior distributions estimated with run_ClaDS0.

Usage

```r
getMAPS_ClaDS0(phylo, sampler, burn=1/2, thin=1)
```

Arguments

- `phylo` An object of class 'phylo'.
- `sampler` The output of a run_ClaDS0 run.
- `burn` Number of iterations to drop in the beginning of the chains.
- `thin` Thinning parameter, one iteration out of "thin" is kept to compute the MAPs.

Value

A vector MAPS containing the MAPs for the marginal posterior distribution for each of the model’s parameters.

MAPS[1:3] are the estimated hyperparameters, with MAPS[1] the sigma parameter (new rates stochasticity), MAPS[2] the alpha parameter (new rates trend), and MAPS[3] the initial speciation rate lambda_0.

MAPS[-(1:3)] are the estimated branch-specific speciation rates, given in the same order as the phyloD$edges.

Author(s)

O. Maliet

References

See Also

`fit_ClaDS0`, `plot_ClaDS0_chains`, `getMAPS_ClaDS`
getTipDistribution

Examples

```r
set.seed(1)

obj = sim_ClaDS( lambda_0=0.1,
mu_0=0.5,
sigma_lamb=0.7,
alpha_lamb=0.90,
condition="taxa",
taxa_stop = 20,
prune_extinct = TRUE)

tree = obj$tree
speciation_rates = obj$lamb[object$rates]
extinction_rates = obj$mu[object$rates]
data("ClaDS0_example")

# extract the Maximum A Posteriori for each of the parameters
MAPS = getMAPS_ClaDS0(ClaDS0_example$tree,
          ClaDS0_example$Cl0_chains,
          thin = 10)

# plot the simulated (on the left) and inferred speciation rates (on the right)
# on the same color scale
plot_ClaDS_phylo(ClaDS0_example$tree,
          ClaDS0_example$speciation_rates,
          MAPS[,-1:3])
```

description

Computes the mean and variance of the tip trait distribution under a specified model of trait evolution.

Usage

```r
getTipDistribution(object, params, v)
```

Arguments

- **object**: an object of class 'PhenotypicModel'
- **params**: vector of parameters, given in the same order as in the 'model' object.
- **v**: boolean specifying the verbose mode. Default value : FALSE.

Value

- **mean**: Expectation vector of the tip trait distribution.
- **Sigma**: Variance-covariance matrix of the tip trait distribution.
getTipDistribution-methods

Author(s)

M Manceau

References

Examples

#Loading an example tree
tree <- read.tree(text=newick)

#Creating a BM model
modelBM <- createModel(tree, 'BM')

#Tip trait distribution under the model:
getTipDistribution(modelBM, c(0,0,0,1))

getTipDistribution-methods

Distribution of tip trait values.

Description

Computes the mean and variance of the tip trait distribution under a specified model of trait evolution.

Methods

signature(object = "PhenotypicModel") In the most general case, this function computes the expectation vector and the variance-covariance matrix using a numerical integration procedure that may take time.
signature(object = "PhenotypicACDC") The function has been optimized for this subclass.
signature(object = "PhenotypicADIag") The function has been optimized for this subclass.
signature(object = "PhenotypicBM") The function has been optimized for this subclass.
signature(object = "PhenotypicDD") The function has been optimized for this subclass.
signature(object = "PhenotypicGMM") The function has been optimized for this subclass.
signature(object = "PhenotypicOU") The function has been optimized for this subclass.
signature(object = "PhenotypicPM") The function has been optimized for this subclass.

References

Description

The GIC allows comparing models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).

Usage

```r
## S3 method for class 'fit_pl.rpanda'
GIC(object, ...)
```

Arguments

- `object`: An object of class "fit_pl.rpanda". See ?fit_t_pl
- `...`: Options to be passed through.

Details

GIC allows comparing the fit of various models estimated by Penalized Likelihood (see ?fit_t_pl). It's a wrapper to the gic_criterion function.

Value

A list with the following components:

- `loglikelihood`: the log-likelihood estimated for the model with estimated parameters
- `GIC`: the GIC criterion
- `bias`: the value of the bias term estimated to compute the GIC

Author(s)

J. Clavel

References

See Also

gic_criterion, fit_t_pl, mvglsl

Examples

```r
require(mvMORPH)
sf.set.seed(1)
n <- 32 # number of species
p <- 40 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)
# simulate a dataset
Y <- mvSIM(tree, model="BM", nsim=1, param=list(sigma=R))
fit1 <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt")
fit2 <- fit_t_pl(Y, tree, model="OU", method="RidgeAlt")
GIC(fit1); GIC(fit2)
```

gic_criterion
Generalized Information Criterion (GIC) to compare models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).

Description
The GIC allows comparing models fit by Maximum Likelihood (ML) or Penalized Likelihood (PL).

Usage

gic_criterion(Y, tree, model="BM", method=c("RidgeAlt", "RidgeArch", "LASSO", "ML", "RidgeAltapprox", "LASSOapprox"), targM=c("null", "Variance", "unitVariance"), param=NULL, tuning=0, REML=TRUE, ...)

Arguments

- **Y**: A matrix of phenotypic traits values (the variables are represented as columns)
- **tree**: An object of class 'phylo' (see ape documentation)
- **model**: The evolutionary model, "BM" is Brownian Motion, "OU" is Ornstein-Uhlenbeck, "EB" is Early Burst, and "lambda" is Pagel's lambda transformation.

targM: The target matrix used for the Ridge regularizations. "null" is a null target, "Variance" for a diagonal unequal variance target, "unitVariance" for an equal diagonal target. Only works with "RidgeArch", "RidgeAlt" methods.

param: Parameter for the evolutionary model (see "model" above).

tuning: The tuning/regularization parameter.

REML: Use REML (default) or ML for estimating the parameters.

...: Additional options. Not used yet.

Details

gic_criterion allows comparing the fit of various models estimated by Penalized Likelihood (see ?fit_t_pl). Use the wrapper GIC instead for models fit with fit_t_pl.

Value

a list with the following components

LogLikelihood: the log-likelihood estimated for the model with estimated parameters

GIC: the GIC criterion

bias: the value of the bias term estimated to compute the GIC

Note

The tuning parameter is assumed to be zero when using the "ML" method.

Author(s)

J. Clavel

References

See Also

GIC.fit_pl.rpanda, fit_t_pl
greenalgae

Examples

```r
require(mvMORPH)
set.seed(123)
n <- 32 # number of species
p <- 2 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)

# simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

# Compute the GIC for ML
gic_criterion(Y, tree, model="BM", method="ML", tuning=0) # ML

# Compare with PL?
#test <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt")
#GIC(test)
```

greenalgae

Green algae diversity since the Jurassic

Description

Green algae fossil diversity since the Jurassic

Usage

```r
data(greenalgae)
```

Details

Green algae fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the following variables:

- **age** a numeric vector corresponding to the geological age, in Myrs before the present
- **greenalgae** a numeric vector corresponding to the estimated green algae change at that age

References

Examples

data(greenalgae)
plot(greenalgae)

Description

Paleotemperature data across the Cenozoic inferred from delta O18 measurements

Usage

data(InfTemp)

Details

Paleotemperature data inferred from delta O18 measurements using the equation of Epstein et al. (1953). The format is a dataframe with the two following variables:

Age a numeric vector corresponding to the geological age, in Myrs before the present
Temperature a numeric vector corresponding to the inferred temperature at that age

References

Examples

data(InfTemp)
plot(InfTemp)
JSDtree

Jensen-Shannon distance between phylogenies

Description

Computes the Jensen-Shannon distance metric between spectral density profiles of phylogenies.

Usage

```r
JSDtree(phylo, meth=c("standard"))
```

Arguments

- **phylo**: a list of objects of type ‘phylo’ (see ape documentation)
- **meth**: the method used to compute the spectral density, which can either be "standard", "normal1", or "normal2". If set to "normal1", computes the spectral density normalized to the degree matrix. If set to "normal2", computes the spectral density normalized to the number of eigenvalues. If set to "standard", computes the unnormalized version of the spectral density (see the associated paper for an explanation)

Value

a matrix providing the Jensen-Shannon distance values between phylogeny pairs

Author(s)

E Lewitus

References

Lewitus, E., Morlon, H., Characterizing and comparing phylogenies from their Laplacian spectrum, bioRxiv doi: http://dx.doi.org/10.1101/026476

See Also

`JSDtree_cluster`, `spectR`, `BICompare`

Examples

```r
trees<-TESS::tess.sim.age(n=20, age=10, 0.15, 0.05, MRCA=TRUE)
JSDtree(trees)
```
Description

Clusters phylogenies using hierarchical and k-medoids clustering

Usage

```r
JSDtree_cluster(JSDtree, alpha=0.9, draw=T)
```

Arguments

- `JSDtree`: a matrix of distances between phylogeny pairs, typically the output of the JSDtree function when the distance is measured as the Jensen-Shannon distance.
- `alpha`: the confidence value for demarcating clusters in the hierarchical clustering plot; the default is 0.9.
- `draw`: plot heatmap and hierarchical cluster in new windows.

Value

plots a heatmap and a hierarchical cluster with bootstrap support, and outputs results of the k-medoids clustering in the form of a list with the following components:

- `clusters`: the optimal number of clusters around medoids (see pamk documentation).
- `cluster_assignments`: assignments of trees to clusters.
- `cluster_support`: a list with the following components: `widths`: a table specifying the cluster to which each tree belongs, the neighbor (i.e., most similar) cluster, and the silhouette width of the observation (see silhouette documentation); `clus.avg.widths`: average silhouette width for each cluster; `vg.width`: average silhouette width across all clusters.

Note

The k-medoids clustering may not work with fewer than 10 trees.

Author(s)

E. Lewitus

References

Lewitus, E., Morlon, H., Characterizing and comparing phylogenies from their Laplacian spectrum, bioRxiv doi: http://dx.doi.org/10.1101/026476
JSDt_cluster

See Also

JSDtree

Examples

trees<-TESS::tess.sim(age(n=20,age=10,0.15,0.05,MRCATRUE)
res<-JSDtree(trees)
#JSDtree_cluster(res,alpha=0.9,draw=T)

JSDt_cluster Clustering on the Jensen-Shannon distance between phylogenetic trait data

Description

Computes the Jensen-Shannon distance metric between spectral density profiles of phylogenetic trait data and clusters on those distances.

Usage

JSDt_cluster(phylo,mat,plot=F)

Arguments

phylo an object of type 'phylo' (see ape documentation)
mat a matrix of trait data with one trait per column and rows aligned to phylo tips
plot plot hierarchical cluster in a new window

Value

plots a heatmap and hierarchical cluster with bootstrap support (>0.9) and outputs results of the k-medoids clustering on the optimal number of clusters in the form of a list with the following components

clusters a list with the following components: size, max_diss, av_diss, diameter, and separation
J-Matrix a matrix providing the Jensen-Shannon distance values between pairs of phylogenetic trait data
cluster assignment a table that lists for each trait its cluster assignment and silhouette width

Author(s)

E Lewitus
References

See Also

spectR_t

Examples

data(Cetacea)
nc<-length(Cetacea$tip.label)
mat<-replicate(20, rnorm(n))
colnames(mat)<-1:dim(mat)[2]
JSDT_cluster(Cetacea,mat)

landplant

Land plant diversity since the Jurassic

Description

Land plant fossil diversity since the Jurassic

Usage

data(landplant)

Details

Land plant fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the two following variables:

age a numeric vector corresponding to the geological age, in Myrs before the present
landplant a numeric vector corresponding to the estimated land plant change at that age

References

Examples

data(landplant)
plot(landplant)
Description

Computes the likelihood of a phylogeny under a birth-death model with potentially time-varying rates and potentially missing extant species. Notations follow Morlon et al. PNAS 2011.

Usage

likelihood_bd(phylo, tot_time, f.lamb, f.mu, f, cst.lamb = FALSE, cst.mu = FALSE,
expo.lamb = FALSE, expo.mu = FALSE, dt=0, cond = "crown")

Arguments

phylo an object of type 'phylo' (see ape documentation)
tot_time the age of the phylogeny (crown age, or stem age if known). If working with crown ages, tot_time is given by max(node.age(phylo)$ages).
f.lamb a function specifying the time-variation of the speciation rate λ. This function as a single argument (time). Any function may be used.
f.mu a function specifying the time-variation of the speciation rate µ. This function as a single argument (time). Any function may be used.
f the fraction of extant species included in the phylogeny
cst.lamb logical: should be set to TRUE only if f.lamb is constant (i.e. does not depend on time) to use analytical instead of numerical computation in order to reduce computation time.
cst.mu logical: should be set to TRUE only if f.mu is constant (i.e. does not depend on time) to use analytical instead of numerical computation in order to reduce computation time.
expo.lamb logical: should be set to TRUE only if f.lamb is exponential to use analytical instead of numerical computation in order to reduce computation time.
expo.mu logical: should be set to TRUE only if f.mu is exponential to use analytical instead of numerical computation in order to reduce computation time.
dt the default value is 0. In this case, integrals in the likelihood are computed using R "integrate" function, which can be quite slow. If a positive dt is given as argument, integrals are computed using a piece-wise contant approximation, and dt represents the length of the intervals on which functions are assumed to be constant. For an exponential dependency of the speciation rate with time, we found that dt=1e-3 gives a good trade-off between precision and computation time.

cond conditioning to use to fit the model:

• FALSE: no conditioning (not recommended);
• "stem": conditioning on the survival of the stem lineage (use when the stem age is known, in this case tot_time should be the stem age);
• "crown" (default): conditioning on a speciation event at the crown age and survival of the 2 daughter lineages (use when the stem age is not known, in this case tot_time should be the crown age).

Details

When specifying f.lamb and f.mu, time runs from the present to the past (hence if the speciation rate decreases with time, f.lamb must be a positive function of time).

Value

the loglikelihood value of the phylogeny, given f.lamb and f.mu

Author(s)

H Morlon

References

Examples

data(Cetacea)
tot_time <- max(node.age(Cetacea)$ages)
Compute the likelihood for a pure birth model (no extinction) with
an exponential variation of speciation rate with time
lamb_par <- c(0.1, 0.01)
f.lamb <- function(t){lamb_par[1] * exp(lamb_par[2] * t)}
f.mu <- function(t){0}
f <- 87/89
lh <- likelihood_bd(Cetacea,tot_time,f.lamb,f.mu,f,cst.mu=TRUE,expo.lamb=TRUE, dt=1e-3)

likelihood_coal_cst Likelihood of a phylogeny under the equilibrium diversity model

Description

Computes the likelihood of a phylogeny under the equilibrium diversity model with potentially time-varying rates and potentially missing extant species. Notations follow Morlon et al. PloSB 2010.

Usage

likelihood_coal_cst(Vtimes, ntips, tau0, gamma, N0)
likelihood_coal_cst

Arguments

Vtimes a vector of branching times (sorted from present to past)
ntips the number of tips in the phylogeny
tau0 the turnover rate at present
gamma the parameter controlling the exponential variation in turnover rate. With gamma=0, the turnover rate is constant over time.
N0 the number of extant species

Details

Time runs from the present to the past. Hence, a positive gamma (for example) means that the turnover rate declines from past to present.

Value

a list containing the following components:

res the loglikelihood value of the phylogeny, given tau0 and gamma
all vector of all the individual loglikelihood values corresponding to each branching event

Author(s)

H Morlon

References

Examples

```r
data(Cetacea)
Vtimes <- sort(branching.times(Cetacea))
tau0 <- 0.1
gamma <- 0.001
ntips <- Ntip(Cetacea)
N0 <- 89
likelihood <- likelihood_coal_cst(Vtimes,ntips,tau0,gamma,N0)
```
likelihood_coal_var
Likelihood of a birth-death model using a coalescent approach

Description
Computes the likelihood of a phylogeny under the expanding diversity model with potentially time-varying rates and potentially missing extant species to a phylogeny. Notations follow Morlon et al. PloSB 2010.

Usage

```r
likelihood_coal_var(Vtimes, ntips, lamb0, alpha, mu0, beta, N0, pos = TRUE)
```

Arguments

- `Vtimes` a vector of branching times (sorted from present to past)
- `ntips` number of species in the phylogeny
- `lamb0` the speciation rate at present
- `alpha` the parameter controlling the exponential variation in speciation rate.
- `mu0` the extinction rate at present
- `beta` the parameter controlling the exponential variation in extinction rate.
- `N0` the number of extant species
- `pos` logical: should be set to FALSE only to not enforce positive speciation and extinction rates

Details
Time runs from the present to the past. Hence, a positive alpha (for example) means that the speciation rate declines from past to present.

Value

a list containing the following components:

- `res` the loglikelihood value of the phylogeny, given the parameters
- `all` vector of all the individual loglikelihood values corresponding to each branching event

Author(s)
H Morlon

References
Examples

```r
data(Cetacea)
Vtimes <- sort(branching.times(Cetacea))
lamb0 <- 0.1
alpha <- 0.001
mu0 <- 0
beta <- 0
ntips <- Ntip(Cetacea)
N0 <- 89
likelihood <- likelihood_coal_var(Vtimes, ntips, lamb0, alpha, mu0, beta, N0)
```

Description

Computes the likelihood of a phylogeny under the SGD model with exponential increasing of the metacommunity, and potentially missing extant species. Notations follow Manceau et al. (2015).

Usage

`likelihood_sgd(phylo, tot_time, b, d, nu, f)`

Arguments

- **phylo**: an object of type 'phylo' (see ape documentation)
- **tot_time**: the age of the phylogeny (crown age, or stem age if known). If working with crown ages, `tot_time` is given by `max(node.age(phylo)$ages)`.
- **b**: the (constant) birth rate of individuals in the model.
- **d**: the (constant) death rate of individuals in the model.
- **nu**: the (constant) mutation rate of individuals in the model.
- **f**: the fraction of extant species included in the phylogeny

Value

The likelihood value of the phylogeny, given the model and the parameter values `b`, `d`, `nu`.

Author(s)

M Manceau

References

Examples

```r
data(Cetacea)
tot_time <- max(node.age(Cetacea)$ages)
b <- 1e6
d <- 1e6-0.5
nu <- 0.6
f <- 87/89
#lh <- likelihood_sgd(Cetacea, tot_time, b, d, nu, f)
```

```r
likelihood_subgroup_model
likelihood of a dataset under models with biogeography fit to a subgroup.
```

Description

Computes the likelihood of a dataset under either the linear or exponential diversity dependent model with specified \(\sigma^2 \) and slope values and with a geography.object formed using `creategeoobject`.

Usage

```r
likelihood_subgroup_model(data,phylo,geography.object,model=c("MC","Dexp","Dlin"),
par,return.z0=FALSE,maxN=NULL)
```

Arguments

- **phylo**
 - an object of type 'phylo' (see ape documentation) produced as "map" from `creategeoobject`. NB: the length of this object need not match number of items in data, since map may include tips outside of group with some part of their branch in the group

- **data**
 - a named vector of continuous data for a subgroup of interest with names corresponding to phylo$tip.label

- **geography.object**
 - a list of sympatry/group membership through time created using `creategeoobject`

- **model**
 - model chosen to fit trait data, "Dlin" is the diversity-dependent linear model, and "Dexp" is the diversity-dependent exponential model of Weir & Mursleene 2013.

- **par**
 - a vector listing a value for log(\(\sigma^2 \)) (see Note) and either \(b \) (for the linear diversity dependent model) or \(r \) (for the exponential diversity dependent model), in that order.

- **return.z0**
 - logical indicating whether to return an estimate of the trait value at the root given the parameter values (if TRUE, function returns root value rather than negative log-likelihood)

- **maxN**
 - when fitting D0lin model, it is necessary to specify the maximum number of sympatric lineages to ensure that the rate returned does not correspond to negative \(\sigma^2 \) values at any point in time (see Details).
Details

When specifying par, log(sig2) (see Note) must be listed before the slope parameter (b or r).

maxN can be calculated using maxN=max(vapply(geo.object$geography.object, function(x)max(rowSums(x)),1)).

where geo.object is the output of CreateGeoObject

Value

The negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny, sig2 and slope values, and geography.object.

If return.z0=TRUE, the estimated root value for the par values is returned instead of the negative log-likelihood.

Note

To stabilize optimization, this function exponentiates the input sig2 value, thus the user must input the log(sig2) value to compute the correct log likelihood (see example).

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel

References

See Also

fit_t_comp CreateGeoObject likelihood_t_DD

Examples

data(BGB.examples)

Canidae.phylo<-BGB.examples$Canidae.phylo
names(dummy.group)<-Canidae.phylo$tip.label

Canidae.simmap<-phytools::make.simmap(Canidae.phylo, dummy.group)

set.seed(123)
Canidae.data<-rnorm(length(Canidae.phylo$tip.label))
names(Canidae.data)<-Canidae.phylo$tip.label
Canidae.A<-Canidae.data[which(dummy.group=="A")]
Canidae.geobyclass.object<-CreateGeoByClassObject(phylo=Canidae.phylo,
simmap=Canidae.simmap, trim.class="A", ana.events=BGB.examples$Canidae.ana.events,
clado.events=BGB.examples$Canidae.clado.events,stratified=FALSE, rnd=5)

par <- c(log(0.01),-0.0005)
maxN<max(vapply(Canidae.geobyclass.object$geography.object$geography.object,
function(x)max(rowSums(x)),1))

lh <- -likelihood_subgroup_model(data=Canidae.A, phylo=Canidae.geobyclass.object$map,
geo.object=Canidae.geobyclass.object$geography.object, model="DDlin", par=par,
return.z0=FALSE, maxN=maxN)

likelihood_t_DD

Likelihood of a dataset under diversity-dependent models.

Description
Computes the likelihood of a dataset under either the linear or exponential diversity dependent model with specified sigma2 and slope values.

Usage
likelihood_t_DD(phylo, data, par,model=c("DDlin","DDexp"))

Arguments

phylo an object of type 'phylo' (see ape documentation)
data a named vector of continuous data with names corresponding to phylo$tip.label
par a vector listing a value for log(sig2) (see Note) and either b (for the linear diversity dependent model) or r (for the exponential diversity dependent model), in that order.
model model chosen to fit trait data, "DDlin" is the diversity-dependent linear model, and "DDexp" is the diversity-dependent exponential model of Weir & Mursleen 2013.

Details
When specifying par, log(sig2) must be listed before the slope parameter (b or r).

Value
the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny and sig2 and slope values.
Note

To stabilize optimization, this function exponentiates the input sig2 value, thus the user must input the log(sig2) value to compute the correct log likelihood (see example).

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com

Julien Clavel

References

See Also

fit_t_comp likelihood_t_DD_geog

Examples

```r
data(Anolis.data)
phylo <- Anolis.data$phylo
pPC1 <- Anolis.data$data

# Compute the likelihood that the r value is twice the ML estimate for the DDexp model
par <- c(0.08148371, (2*-0.3223835))
ll <- -likelihood_t_DD(phylo,pPC1,par,model="DDexp")
```

likelihood_t_DD_geog
Likelihood of a dataset under diversity-dependent models with biogeography.

Description

Computes the likelihood of a dataset under either the linear or exponential diversity dependent model with specified sigma2 and slope values and with a geography object formed using `CreateGeoObject`.

Usage

```r
likelihood_t_DD_geog(phylo, data, par, geo.object, model=c("DDe","DDexp"), maxN=NA)
```
Arguments

- **phylo**: an object of type 'phylo' (see ape documentation)
- **data**: a named vector of continuous data with names corresponding to `phylo$tip.label`
- **par**: a vector listing a value for $\log(\text{sig2})$ (see Note) and either b (for the linear diversity dependent model) or r (for the exponential diversity dependent model), in that order.
- **geo.object**: a list of sympatry through time created using `CreateGeoObject`
- **model**: model chosen to fit trait data, "DDlin" is the diversity-dependent linear model, and "DDexp" is the diversity-dependent exponential model of Weir & Mursleen 2013.
- **maxN**: when fitting DDlin model, it is necessary to specify the maximum number of sympatric lineages to ensure that the rate returned does not correspond to negative sig2 values at any point in time (see Details).

Details

When specifying `par`, $\log(\text{sig2})$ (see Note) must be listed before the slope parameter (b or r).

`maxN` can be calculated using

```r
maxN=max(vapply(geo.object$geography.object,function(x)max(rowSums(x)),1)),
```

where `geo.object` is the output of `CreateGeoObject`

Value

the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny, sig2 and slope values, and `geography.object`.

Note

To stabilize optimization, this function exponentiates the input sig2 value, thus the user must input the $\log(\text{sig2})$ value to compute the correct log likelihood (see example).

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel

References

See Also

`fit_t_comp` `CreateGeoObject` `likelihood_t_DD`
Examples

data(Anolis.data)
phylo <- Anolis.data$phylo
pC1 <- Anolis.data$data
geography.object <- Anolis.data$geography.object

Compute the likelihood with geography using ML parameters for fit without geography
par <- c(log(0.01153294), -0.0006692378)
maxN <- max(vapply(geography.object$geography.object, function(x) max(rowSums(x)), 1))
lh <- -likelihood_t_DD_geog(phylo, pC1, par, geography.object, model = "DDlin", maxN = maxN)

likelihood_t_env Likelihood of a dataset under environmental models of trait evolution.

Description

Computes the likelihood of a dataset under either the linear or exponential environmental model, or an user defined environmental model. This function is used internally by fit_t_env.

Usage

likelihood_t_env(phylo, data, model = c("EnvExp", "EnvLin"), ...)

Arguments

phylo an object of class 'phylo' (see ape documentation)
data a named vector of continuous data with names corresponding to phylo$tip.label
... "param", "fun", "times", "mtot" and "error" arguments.
-param: a vector with the parameters used in the environmental function. The first value is sigR and the second is beta.
-fun: a time continuous function of an environmental variable (see e.g. ?fit_t_env)
-times: a vector of branching times starting at zero (e.g. max(branching.times(phylo)) - branching.times(phylo))
-mtot: root age of the tree (e.g. max(branching.times(phylo)))
-error: a vector of standard error (se) for each species
If the "times" argument is not provided, the "phylo" object is used to compute it as well as 'mtot'.
Note that the argument "mu" can be used to specify the root state (e.g. when using an mcmc sampler)

model model chosen to fit trait data, "EnvExp" is the exponential-environmental model, and "EnvLin" is the linear-environmental model. Otherwise, an user specified model can be provided.

Details

the "fun" argument can be filled by an environmental dataframe.
likelihood_t_env

Value

the log-likelihood value of the environmental model

Author(s)

Julien Clavel

References

See Also

`fit_t_env`

Examples

```r
data(Cetacea)
data(InfTemp)

# Simulate a trait with temperature dependence on the Cetacean tree
set.seed(123)

trait <- sim_t_env(Cetacea, param=c(0.1,-0.2), env_data=InfTemp, model="EnvExp",
                   root.value=0, step=0.001, plot=TRUE)

# Compute the likelihood
likelihood_t_env(Cetacea, trait, param=c(0.1, 0), fun=InfTemp, model="EnvExp")

# Provide the times
brtime<-branching.times(Cetacea)
mtot<-max(brtime)
times<-mtot-brtime

likelihood_t_env(Cetacea,trait,param=c(0.1, 0), fun=InfTemp, times=times, mtot=mtot, model="EnvExp")

# Provide the environmental function rather than the dataset (faster if used recursively)
spline_result <- sm.spline(InfTemp[,1],InfTemp[,2], df=50)
env_func <- function(t){predict(spline_result,t)}
t<-unique(InfTemp[,1])
# We build the interpolated smoothing spline function
env_data<-splinefun(t,env_func(t))

likelihood_t_env(Cetacea, trait, param=c(0.1, 0), fun=env_data, times=times, mtot=mtot, model="EnvExp")
```
likelihood_t_MC

Likelihood of a dataset under the matching competition model.

Description

Computes the likelihood of a dataset under the matching competition model with specified \(\sigma^2 \) and \(S \) values.

Usage

\[
\text{likelihood_t_MC}(\text{phylo}, \text{data}, \text{par})
\]

Arguments

- **phylo**: an object of type 'phylo' (see ape documentation)
- **data**: a named vector of continuous data with names corresponding to \(\text{phylo}\$\text{tip.label} \)
- **par**: a vector listing a value for \(\log(\sigma^2) \) (see Note) and \(S \) (parameters of the matching competition model), in that order

Details

When specifying \(\text{par} \), \(\log(\sigma^2) \) must be listed before \(S \).

Value

the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny and \(\sigma^2 \) and \(S \) values

Note

To stabilize optimization, this function exponentiates the input \(\sigma^2 \) value, thus the user must input the \(\log(\sigma^2) \) value to compute the correct log likelihood (see example).

Author(s)

Jonathan Drury jonathan.p.drury@gmail.com

Julien Clavel

References

likelihood_t_MC_geog

See Also

fit_t_comp likelihood_t_MC_geog

Examples

data(Anolis.data)
phylo <- Anolis.data$phylo
pPC1 <- Anolis.data$data

Compute the likelihood that the S value is twice the ML estimate
par <- c(0.0003139751, (2^-0.06387258))
lh <- -likelihood_t_MC(phylo,pPC1,par)

Description

Computes the likelihood of a dataset under the matching competition model with specified sigma2 and S values and with a geography.object formed using CreateGeoObject.

Usage

likelihood_t_MC_geog(phylo, data, par, geo.object)

Arguments

phylo an object of type 'phylo' (see ape documentation)
data a named vector of continuous data with names corresponding to phylo$tip.label
par a vector listing a value for log(sig2) (see Note) and S (parameters of the matching competition model), in that order
geo.object a geography object indicating sympatry through time, created using CreateGeoObject

Details

When specifying par, log(sig2) must be listed before S.

Value

the negative log-likelihood value of the dataset (accordingly, the negative of the output should be recorded as the likelihood), given the phylogeny, sig2 and S values, and geography.object.

Note

S must be negative (if it is positive, the likelihood function will multiply input by -1). To stabilize optimization, this function exponentiates the input sig2 value, thus the user must input the log(sig2) value to compute the correct log likelihood (see example).
Author(s)

Jonathan Drury jonathan.p.drury@gmail.com
Julien Clavel

References

See Also

fit_t_comp CreateGeoObject likelihood_t_MC

Examples

data(Anolis.data)
phylo <- Anolis.data$phylo
pPC1 <- Anolis.data$data
gеography.object <- Anolis.data$геography.object

Compute the likelihood with geography using ML parameters for fit without geography
par <- c(0.0003139751, -0.06387258)
lh <- -likelihood_t_MC_geog(phylo, pPC1, par, geography.object)

lines.fit_t.env

Add to a plot line segments joining the phenotypic evolutionary rate through time estimated by the fit_t_env function

Description

Plot estimated evolutionary rate as a function of the environmental data and time.

Usage

S3 method for class 'fit_t.env'
lines(x, steps = 100, ...)

Arguments

x an object of class 'fit_t.env' obtained from a fit_t_env fit.
steps the number of steps from the root to the present used to compute the evolutionary rate σ^2 through time.
... further arguments to be passed to plot. See ?plot.
Value

`lines.fit_t.env` returns invisibly a list with the following components used to add the line segments to the current plot:

- `time_steps`: the times steps where the climatic function was evaluated to compute the rate. The number of steps is controlled through the argument `steps`.
- `rates`: the estimated evolutionary rate through time estimated at each `time_steps`.

Note

All the graphical parameters (see `par`) can be passed through (e.g. line type: `lty`, line width: `lwd`, color: `col` ...)

Author(s)

J. Clavel

References

See Also

- `plot.fit_t.env`, `likelihood_t_env`

Examples

data(Cetacea)
data(InfTemp)

Plot estimated evolutionary rate as a function of the environmental data and time.
set.seed(123)
trait <- sim_t_env(Cetacea, param=c(0.1,-0.2), env_data=InfTemp, model="EnvExp", root.value=0, step=0.01, plot=TRUE)

Fit the Environmental-exponential model with different smoothing parameters
result1=fit_t_env(Cetacea, trait, env_data=InfTemp, scale=TRUE)
result2=fit_t_env(Cetacea, trait, env_data=InfTemp, scale=TRUE, df=10)

first plot result1
plot(result1, lwd=3)

add result2 to the current plot
lines(result2, lty=2, lwd=3, col="red")
Phenotypic model selection from tip trait data.

Description

For each model taken as input, fits the model and returns its AIC value in a recap table.

Usage

modelSelection(object, data)

Arguments

object a vector of objects of class 'PhenotypicModel'.

data vector of tip trait data.

Details

Warning: This function relies on the standard R optimizer "optim". It may not always converge well. Please double check the convergence by trying distinct parameter sets for the initialisation.

Value

A recap table presenting the AIC value of each model.

Author(s)

M Manceau

References

Methods

signature(object = "PhenotypicModel") This is the only method available for this function. Same behaviour for any PhenotypicModel.
MPhiFFT

A class used internally to compute ClaDS’s likelihood

Description

This class represents a matrix \(A = (1/\text{rowSums}(\text{Toep})) \times \text{Toep} \) where \(\text{Toep} \) is a Toeplitz matrix.

References

See Also

fit_ClaDS

ostracoda

Ostracod diversity since the Jurassic

Description

Ostracod fossil diversity since the Jurassic

Usage

data(sealevel)

Details

Ostracod fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the two following variables:

- age a numeric vector corresponding to the geological age, in Myrs before the present
- ostracoda a numeric vector corresponding to the estimated ostracod change at that age

References

Examples

data(ostracoda)
plot(ostracoda)
PhenotypicACDC-class

Class "PhenotypicACDC"

Description

Subclass of the PhenotypicModel class intended to represent the model of ACcelerating or DeCel- erating phenotypic evolution.

Objects from the Class

Objects can be created by calls of the form `new("PhenotypicACDC", ...)`.

Slots

- `matrixCoalescenceTimes`: Object of class "matrix"
- `name`: Object of class "character"
- `period`: Object of class "numeric"
- `aAGamma`: Object of class "function"
- `numbersCopy`: Object of class "numeric"
- `numbersPaste`: Object of class "numeric"
- `initialCondition`: Object of class "function"
- `paramsNames`: Object of class "character"
- `constraints`: Object of class "function"
- `params0`: Object of class "numeric"
- `tipLabels`: Object of class "character"
- `tipLabelsSimu`: Object of class "character"
- `comment`: Object of class "character"

Extends

Class "PhenotypicModel", directly.

Methods

- `getTipDistribution` signature(object = "PhenotypicACDC"): ...

Author(s)

Marc Manceau

References

Examples

```r
class(HBphenotypicadiag)```

**Description**

A subclass of the PhenotypicModel class, intended to represent models of phenotypic evolution with a "A" matrix diagonalizable.

**Objects from the Class**

Objects can be created by calls of the form `new("PhenotypicADiag", ...).`

**Slots**

- `name`: Object of class "character" ~-
- `period`: Object of class "numeric" ~-
- `aAGamma`: Object of class "function" ~-
- `numbersCopy`: Object of class "numeric" ~-
- `numbersPaste`: Object of class "numeric" ~-
- `initialCondition`: Object of class "function" ~-
- `paramsNames`: Object of class "character" ~-
- `constraints`: Object of class "function" ~-
- `params0`: Object of class "numeric" ~-
- `tipLabels`: Object of class "character" ~-
- `tipLabelsSimu`: Object of class "character" ~-
- `comment`: Object of class "character" ~-

**Extends**

Class "PhenotypicModel", directly.

**Methods**

- `getTipDistribution` signature(object = "PhenotypicADiag")...

**Author(s)**

Marc Manceau
References

Examples
showClass("PhenotypicADiag")

PhenotypicBM-class  Class "PhenotypicBM"

Description
A subclass of the PhenotypicModel class, intended to represent the model of Brownian phenotypic evolution.

Objects from the Class
Objects can be created by calls of the form new("PhenotypicBM", ...).

Slots
matrixCoalescenceTimes: Object of class "matrix" ~
name: Object of class "character" ~
period: Object of class "numeric" ~
aAGamma: Object of class "function" ~
numbersCopy: Object of class "numeric" ~
numbersPaste: Object of class "numeric" ~
initialCondition: Object of class "function" ~
paramsNames: Object of class "character" ~
constraints: Object of class "function" ~
params0: Object of class "numeric" ~
tipLabels: Object of class "character" ~
tipLabelsSimu: Object of class "character" ~
comment: Object of class "character" ~

Extends
Class "PhenotypicModel", directly.

Methods
getTipDistribution signature(object = "PhenotypicBM"): ...
Author(s)

Marc Manceau

References


Examples

```
showClass("PhenotypicBM")
```

---

**PhenotypicDD-class**

**Class** "PhenotypicDD"

---

**Description**

A subclass of the PhenotypicModel class, intended to represent the model of Density-Dependent phenotypic evolution.

**Objects from the Class**

Objects can be created by calls of the form `new("PhenotypicDD", ...).

**Slots**

- `matrixCoalescenceJ`: Object of class "matrix"
- `nLivingLineages`: Object of class "numeric"
- `name`: Object of class "character"
- `period`: Object of class "numeric"
- `aAGamma`: Object of class "function"
- `numbersCopy`: Object of class "numeric"
- `numbersPaste`: Object of class "numeric"
- `initialCondition`: Object of class "function"
- `paramsNames`: Object of class "character"
- `constraints`: Object of class "function"
- `params0`: Object of class "numeric"
- `tipLabels`: Object of class "character"
- `tipLabelsSimu`: Object of class "character"
- `comment`: Object of class "character"
**PhenotypicGMM-class**

**Extends**
Class "PhenotypicModel", directly.

**Methods**

**getTipDistribution** signature(object = "PhenotypicDD"): ...

**Author(s)**
Marc Manceau

**References**

**Examples**

`showClass("PhenotypicDD")`

---

**PhenotypicGMM-class**  
*Class "PhenotypicGMM"

**Description**
A subclass of the PhenotypicModel class, intended to represent the Generalist Matching Mutualism model of phenotypic evolution. This is a model of phenotypic evolution with interactions between two clades, running on two trees.

**Objects from the Class**
Objects can be created by calls of the form `new("PhenotypicGMM", ...)`.  

**Slots**

n1: Object of class "numeric" ~
n2: Object of class "numeric" ~
name: Object of class "character" ~
period: Object of class "numeric" ~
aAGamma: Object of class "function" ~
numbersCopy: Object of class "numeric" ~
numbersPaste: Object of class "numeric" ~
initialCondition: Object of class "function" ~
paramsNames: Object of class "character" ~
PhenotypicModel-class

constraints: Object of class "function" ~
params0: Object of class "numeric" ~
tipLabels: Object of class "character" ~
tipLabelsSimu: Object of class "character" ~
comment: Object of class "character" ~

Extends

Class "PhenotypicModel", directly.

Methods

getTipDistribution signature(object = "PhenotypicGMM"): ...

Author(s)

Marc Manceau

References


Examples

showClass("PhenotypicGMM")

PhenotypicModel-class Class "PhenotypicModel"

Description

This class describes a model of phenotypic evolution running on a phylogenetic tree, with or without interactions between lineages.

Objects from the Class

Objects can be created by calls of the form new("PhenotypicModel", ...). Alternatively, you may just want to use the "createModel" function for predefined models.
PhenotypicModel-class

Slots

name: Object of class "character" ~~
period: Object of class "numeric" ~~
aAGamma: Object of class "function" ~~
numbersCopy: Object of class "numeric" ~~
numbersPaste: Object of class "numeric" ~~
initialCondition: Object of class "function" ~~
paramsNames: Object of class "character" ~~
constraints: Object of class "function" ~~
params0: Object of class "numeric" ~~
tipLabels: Object of class "character" ~~
tipLabelsSimu: Object of class "character" ~~
comment: Object of class "character" ~~

Methods

[< signature(x = "PhenotypicModel", i = "ANY", j = "ANY", value = "ANY"): ...
[ signature(x = "PhenotypicModel", i = "ANY", j = "ANY", drop = "ANY"): ...
fitTipData signature(object = "PhenotypicModel"): ...
getDataLikelihood signature(object = "PhenotypicModel"): ...
getTipDistribution signature(object = "PhenotypicModel"): ...
modelSelection signature(object = "PhenotypicModel"): ...
print signature(x = "PhenotypicModel"): ...
show signature(object = "PhenotypicModel"): ...
simulateTipData signature(object = "PhenotypicModel"): ...

Author(s)

Marc Manceau

References


Examples

showClass("PhenotypicModel")
PhenotypicOU-class  

Class "PhenotypicOU"

Description

A subclass of the PhenotypicModel class, intended to represent the Ornstein-Uhlenbeck model of phenotypic evolution.

Objects from the Class

Objects can be created by calls of the form new("PhenotypicOU", ...).

Slots

matrixCoalescenceTimes: Object of class "matrix" ~~
name: Object of class "character" ~~
period: Object of class "numeric" ~~
aAGamma: Object of class "function" ~~
numbersCopy: Object of class "numeric" ~~
numbersPaste: Object of class "numeric" ~~
initialCondition: Object of class "function" ~~
paramsNames: Object of class "character" ~~
constraints: Object of class "function" ~~
params0: Object of class "numeric" ~~
tipLabels: Object of class "character" ~~
tipLabelsSimu: Object of class "character" ~~
comment: Object of class "character" ~~

Extends

Class "PhenotypicModel", directly.

Methods

getTipDistribution signature(object = "PhenotypicOU"): ...

Author(s)

Marc Manceau

References

**PhenotypicPM-class**

**Examples**

```r
showClass("PhenotypicOU")
```

---

**PhenotypicPM-class**  *Class "PhenotypicPM"*

---

**Description**

A subclass of the PhenotypicModel class, intended to represent the Phenotypic Matching model of phenotypic evolution, by Nuismer and Harmon (Eco Lett, 2014).

**Objects from the Class**

Objects can be created by calls of the form `new("PhenotypicPM", ...)`.

**Slots**

- **name**: Object of class "character" ~
- **period**: Object of class "numeric" ~
- **aAGamma**: Object of class "function" ~
- **numbersCopy**: Object of class "numeric" ~
- **numbersPaste**: Object of class "numeric" ~
- **initialCondition**: Object of class "function" ~
- **paramsNames**: Object of class "character" ~
- **constraints**: Object of class "function" ~
- **params0**: Object of class "numeric" ~
- **tipLabels**: Object of class "character" ~
- **tipLabelsSimu**: Object of class "character" ~
- **comment**: Object of class "character" ~

**Extends**

Class "PhenotypicModel", directly.

**Methods**

- **getTipDistribution** signature(object = "PhenotypicPM"): ...

**Author(s)**

Marc Manceau
References


Examples

showClass("PhenotypicPM")

data(Phocoenidae)

print(Phocoenidae)

plot(Phocoenidae)

Description

Ultrametric phylogenetic tree of the 6 extant Phocoenidae (porpoise) species

Usage

data(Phocoenidae)

Details

This phylogeny was extracted from Steeman et al. Syst Bio 2009 cetacean phylogeny

References


Examples

data(Phocoenidae)

print(Phocoenidae)

plot(Phocoenidae)
Regularized Phylogenetic Principal Component Analysis (PCA).

Description

Performs a principal component analysis (PCA) on a regularized evolutionary variance-covariance matrix obtained using the fit_t_pl function.

Usage

phyl.pca_pl(object, plot=TRUE, ...)

Arguments

object A penalized likelihood model fit obtained by the fit_t_pl function.
plot Plot of the PC’s axes. Default is TRUE (see details).
... Options to be passed through. (e.g., axes=c(1,2), col, pch, cex, mode="cov" or "corr", etc.)

Details

phyl.pca_pl allows computing a phylogenetic principal component analysis (following Revell 2009) using a regularized evolutionary variance-covariance matrix from penalized likelihood models fit to high-dimensional datasets (where the number of variables p is potentially larger than n; see details for the models options in fit_t_pl). Models estimates are more accurate than maximum likelihood methods, particularly in the high-dimensional case. Plotting options, the number of axes to display (axes=c(1,2) is the default), and whether the covariance (mode="cov") or correlation (mode="corr") should be used can be specified through the ellipsis "..." argument.

Value

a list with the following components

values the eigenvalues of the evolutionary variance-covariance matrix
scores the PC scores
loadings the component loadings
nodes_scores the scores for the ancestral states at the nodes (projected on the space of the tips)
mean the mean/ancestral value used to center the data
vectors the eigenvectors of the evolutionary variance-covariance matrix

Note

Contrary to conventional PCA, the principal axes of the phylogenetic PCA are not orthogonal, they represent the main axes of (independent) evolutionary changes.
Author(s)
J. Clavel

References


See Also
fit_t_pl, ancestral, GIC.fit_pl.rpanda, gic_criterion

Examples

```r
require(mvMORPH)
sset.seed(1)
n <- 32 # number of species
p <- 31 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)

simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))

fit a multivariate Pagel lambda model with Penalized likelihood
fit <- fit_t_pl(Y, tree, model="lambda", method="RidgeAlt")

Perform a phylogenetic PCA using the model fit (Pagel lambda model)
 pca_results <- phyl.pca_pl(fit, plot=T)

retrieve the scores
head(pca_results$scores)
```

---

**Phyllostomidae** *Phyllostomidae phylogeny*

**Description**

Ultrametric phylogenetic tree of 150 of the 165 extant known Phyllostomidae species

**Usage**

data(Phyllostomidae)
Details

This phylogeny is the maximum clade credibility tree used in Rolland et al. (2014), which originally comes from the Bininda-Emonds tree (Bininda-Emonds et al. 2007)

References


See Also

Phyllostomidae_genera

Examples

data(Phyllostomidae)
print(Phyllostomidae)
#plot(Phyllostomidae)
### plot.fit_t.env

**Plot the phenotypic evolutionary rate through time estimated by the fit_t_env function**

#### Description

Plot estimated evolutionary rate as a function of the environmental data and time.

#### Usage

```r
S3 method for class 'fit_t.env'
plot(x, steps = 100, ...)
```

#### Arguments

- `x`: an object of class `fit_t.env` obtained from a `fit_t_env` fit.
- `steps`: the number of steps from the root to the present used to compute the evolutionary rate \( \sigma^2 \) through time.
- `...`: further arguments to be passed to `plot`. See `?plot`.

#### Value

`plot.fit_t.env` returns invisibly a list with the following components used in the current plot:

- `time_steps`: the times steps where the climatic function was evaluated to compute the rate. The number of steps is controlled through the argument `steps`.
- `rates`: the estimated evolutionary rate through time estimated at each `time_steps`.

#### Note

All the graphical parameters (see `par`) can be passed through (e.g. line type: `lty`, line width: `lwd`, color: `col`, ...)

#### Author(s)

J. Clavel

#### References


#### See Also

- `lines.fit_t.env`
- `likelihood_t_env`
Examples

data(Cetacea)
data(InfTemp)

# Simulate a trait with temperature dependence on the Cetacean tree
set.seed(123)

trait <- sim_t_env(Cetacea, param=c(0.1,0.2), env_data=InfTemp, model="EnvExp", root.value=0, step=0.01, plot=TRUE)

## Fit the Environmental-exponential model

result1 = fit_t_env(Cetacea, trait, env_data=InfTemp, scale=TRUE)
plot(result1)

# further options
plot(result1, lty=2, lwd=2, col="red")

plot_BICompare  
Display modalities on a phylogeny.

Description
Plot a phylogeny with branches colored according to modalities

Usage
plot_BICompare(phylo,BICompare)

Arguments

phylo  an object of type 'phylo' (see ape documentation)
BICompare  an object of class 'BICompare', output of the 'BICompare' function

Value
a plot of the phylogeny with branches colored according to which modalities they belong to.

Author(s)
E Lewitus
plot_ClaDS0_chains

References

Lewitus, E., Morlon, H., Characterizing and comparing phylogenies from their Laplacian spectrum, bioRxiv doi: http://dx.doi.org/10.1101/026476

See Also

BICompare

Examples

data(Cetacea)
#result <- BICompare(Cetacea,5)
#plot_BICompare(Cetacea,result)

plot_ClaDS0_chains

Plot the MCMC chains obtained when inferring ClaDS0 parameters

Description

Plot the MCMC chains obtained with run_ClaDS0.

Usage

plot_ClaDS0_chains(sampler, burn = 1/2, thin = 1,
param = c("sigma", "alpha", "l_0", "LP"))

Arguments

sampler The output of a run_ClaDS0 run.
burn Number of iterations to drop in the beginning of the chains.
thin Thinning parameter, one iteration out of "thin" is plotted.
param Either a vector of "character" elements with the name of the parameter to plot, or a vector of integers indicating what parameters to plot.

Author(s)

O. Maliet

References


See Also

fit_ClaDS0, getMAPS_ClaDS0, plot_ClaDS_chains
plot_ClaDS_chains

Examples

```r
data("ClaDS0_example")

plot_ClaDS0_chains(ClaDS0_example$Cl0_chains)
plot_ClaDS0_chains(ClaDS0_example$Cl0_chains, param = paste0("lambda", c(1,10,5)))
```

---

**plot_ClaDS_chains**  
*Plot the MCMC chains obtained when infering ClaDS parameters*

### Description

Plot the MCMC chains obtained with fit_ClaDS.

### Usage

```r
plot_ClaDS_chains(sampler, burn = 1/2, thin = 1,
param = c("sigma", "alpha", "mu", "LP"))
```

### Arguments

- **sampler**: The output of a fit_ClaDS run.
- **burn**: Number of iterations to drop in the beginning of the chains.
- **thin**: Thinning parameter, one iteration out of "thin" is plotted.
- **param**: Either a vector of "character" elements with the name of the parameter to plot, or a vector of integers indicating what parameters to plot.

### Author(s)

O. Maliet

### References


### See Also

`fit_ClaDS`, `getMAPS_ClaDS`, `plot_ClaDS0_chains`
Examples

data("Caprimulgidae_ClaDS2")

plot_ClaDS_chains(Caprimulgidae_ClaDS2$sampler)

plot_ClaDS_chains(Caprimulgidae_ClaDS2$sampler, burn = 1/4,
                   param = c("sigma", "alpha", "l_0", "LP"))

plot_ClaDS_chains(Caprimulgidae_ClaDS2$sampler, burn = 1/5, thin = 5, param = c(1,5,6,15))

plot_ClaDS_phylo  

Plot a phylogeny with branch-specific values

Description

Plot a phylogeny with branches colored according to branch-specific rate values

Usage

plot_ClaDS_phylo(phylo, rates, rates2 = NULL,
                  same.scale = T, main = NULL, lwd = 2, log = T, show.tip.label = F, ...)

Arguments

phylo An object of class 'phylo'.

rates A vector containing the branch-specific rates, in the same order as phylo$edges.

rates2 An optional second vector containing the branch-specific rates, in the same order as phylo$edges. If NULL (the default), the tree is only plotted once with the rate values from rates. If not, the tree is plotted twice, with the rate values from rates in the left panel and those from rates2 in the right panel.

same.scale A boolean specifying whether the values from rates and rates2 are plotted with the same colorscale. Default to TRUE.

main A title for the plot.

lwd Width of the tree branch lengths. Default to 2.

log A boolean specifying whether the rates values are plotted on a log scale. Default to TRUE.

show.tip.label A boolean specifying whether the labels of the phylogeny should be displayed. Default to FALSE.

... Optional arguments for plot.phylo.

Author(s)

O. Maliet
plot_dtt

References

See Also
sim_ClaDS

Examples
set.seed(1)

obj = sim_ClaDS( lambda_0=0.1,
mu_0=0.5,
sigma_lamb=0.7,
alpha_lamb=0.90,
condition="taxa",
taxa_stop = 20,
prune_extinct = TRUE)

tree = obj$tree
speciation_rates = obj$lamb[obj$rates]
extinction_rates = obj$mu[obj$rates]

plot_ClaDS_phylo(tree, speciation_rates)

plot_ClaDS_phylo(tree, speciation_rates, lwd = 4, log = FALSE)

---

### plot_dtt

*Plot diversity through time*

#### Description
Plot the estimated number of species through time

#### Usage

```r
plot_dtt(fit bd, tot_time, N0)
```

#### Arguments

- `fit bd`: an object of class 'fit bd', output of the 'fit bd' function
- `tot_time`: the age of the underlying phylogeny (crown age, or stem age if known). If working with crown ages, `tot_time` is given by `max(node.age(phylo$sages))`.
- `N0`: number of extant species. If all extant species are represented in the phylogeny, `N0` is given by `length(phylo$tip.label)`
Value
Plot representing how the estimated number of species vary through time

Author(s)
H Morlon

References

See Also
fit_bd

Examples

data(Balaenopteridae)
tot_time<-max(node.age(Balaenopteridae)$ages)

# Fit the pure birth model (no extinction) with exponential variation of the speciation rate
# with time
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){0}
lamb_par<-c(0.08, 0.01)
mu_par<-c()
result <- fit_bd(Balaenopteridae,tot_time,f.lamb,f.mu,lamb_par,mu_par,f=1,
expo.lamb = TRUE, fix.mu=TRUE)

# plot estimated number of species through time
# plot_dtt(result, tot_time, N0=9)

plot_fit_bd

Description
Plot speciation, extinction & net diversification rate functions of a fitted model

Usage
plot_fit_bd(fit.bd, tot_time)
**plot_fit_env**

**Arguments**

- `fitNbd`: an object of class 'fit.bd', output of the 'fit_bd' function
- `tot_time`: the age of the phylogeny (crown age, or stem age if known). If working with crown ages, `tot_time` is given by `max(node.age(phylo)$ages)`.

**Value**

Plots representing how the estimated speciation, extinction & net diversification rate functions vary through time

**Author(s)**

H Morlon

**See Also**

`fit_bd`

**Examples**

```r
data(Balaenopteridae)
tot_time<-max(node.age(Balaenopteridae)$ages)

Fit the pure birth model (no extinction) with exponential variation of the speciation rate
with time
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){0}
lamb_par<-c(0.08, 0.01)
mu_par<-c()
result <- fit_bd(Balaenopteridae,tot_time,f.lamb,f.mu,lamb_par,)

plot fitted rates
#plot_fit_bd(result, tot_time)
```

---

**plot_fit_env**

*Plot speciation, extinction & net diversification rate functions of a fitted environmental model*

**Description**

Plot estimated speciation, extinction & net diversification rates as a function of the environmental data and time

**Usage**

```r
plot_fit_env(fit.env, env_data, tot_time)
```
Arguments

fit.env  
an object of class ‘fit.env’, output of the ‘fit_env’ function
env_data  
environmental data, given as a data frame with two columns. The first column is time, the second column is the environmental data (temperature for instance).
tot_time  
the age of the phylogeny (crown age, or stem age if known). If working with crown ages, tot_time is given by max(node.age(phylo)$ages).

Value

Plots representing how the estimated speciation, extinction & net diversification rate functions vary as a function of the environmental data & time

Author(s)

H Morlon and FL Condamine

See Also

fit_env

Examples

data(Balaenopteridae)
tot_time<max(node.age(Balaenopteridae)$ages)
data(InTemp)
dof<smooth.spline(InTemp[,1], InTemp[,2])$df

# Fit the pure birth model (no extinction) with exponential variation of the speciation rate # with time
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.10, 0.01)
mu_par<-c()
#result <- fit_env(Balaenopteridae,InTemp,tot_time,f.lamb,f.mu,
# lamb_par,mu_par,f=1, fix.mu=TRUE, df=dof, dt=1e-3)

# plot fitted rates
#plot_fit_env(result, InTemp, tot_time)

plot_prob_dtt  
Plot diversity through time with confidence intervals.

Description

Plots confidence intervals of the estimated number of species through time using a matrix of probabilities given by the function ‘prob_dtt’.
Usage

plot_prob_dtt(mat, grain = 0.1, plot.prob = TRUE, 
plot.mean = TRUE, int = TRUE, plot.bound = FALSE, 
conf = 0.95, add = FALSE, col.mean = "red", col.bound = "blue", 
lty = "solid", lwd = 1)

Arguments

mat matrix of probabilities, with species numbers as rows and times as columns with 
rownames and colnames set to the values of each.
grain the upper limit of a range of probabilities plotted in a gray scale (lower limit is 
zero). Higher probabilities are plotted in black. Default value is 0.1.
plot.prob logical: set to TRUE (default value) to plot the probabilities.
plot.mean logical: set to TRUE (default value) to plot a line for the mean.
plot.bound logical: set to TRUE to plot the bounds of the confidence interval, int must be 
set to TRUE.
int logical: set to TRUE (default value) to plot a confidence interval.
conf confidence level. The default value is 0.95.
add logical: set to TRUE to add the plot on an existing graph.
col.mean color of the line for the mean.
col.bound color of the confidence interval bounds
lty style of the line for the mean (if added on a current plot)
lwd the line width, a positive number (default to 1)

Details

The function assumes that the matrix of probabilities 'mat' has species numbers as rows and times 
as columns with rownames and colnames set to the values of each.

'Grain’ must be between 0 and 1. If the plot is too pale ’grain’ should be diminished (and inversely 
if the plot is too dark)

Value

Plot representing how the estimated number of species vary through time with confidence intervals. 
The darker is the plot, the higher is the probability.

Author(s)

O.Billaud, T.L.Parsons, D.S.Moen, H.Morlon

References

Morlon, H., Parsons, T.L. and Plotkin, J.B. (2011) Reconciling molecular phylogenies with the 

Billaud, O., Moen, D. S., Parsons, T. L., Morlon, H. (under review) Estimating Diversity Through 
Time using Molecular Phylogenies: Old and Species-Poor Frog Families are the Remnants of a 
Diverse Past.
plot_spectR

Spectral density plot of a phylogeny.

Description
Plot the spectral density of a phylogeny and all eigenvalues ranked in descending order.

Usage
plot_spectR(spectR)

Arguments
spectR an object of class 'spectR', output of the 'spectR' function

Value
A 2-panel plot with the spectral density profile on the first panel and the eigenvalues ranked in descending order on the second panel

Author(s)
E Lewitus
References

Lewitus, E., Morlon, H., Characterizing and comparing phylogenies from their Laplacian spectrum, bioRxiv doi: http://dx.doi.org/10.1101/026476

See Also

spectR

Examples

data(Cetacea)
result <- spectR(Cetacea)
#plot_spectR(result)

<table>
<thead>
<tr>
<th>Posdef</th>
<th>Positive definite symmetric matrices</th>
</tr>
</thead>
</table>

Description

Generates a positive definite and symmetric matrix with specified eigen-values

Usage

Posdef(p, ev = rexp(p, 1/100))

Arguments

p
The dimension of the matrix

ev
The eigenvalues. If not specified, eigenvalues are taken from an exponential distribution.

Details

Posdef generates random positive definite covariance matrices with specified eigen-values that can be used to simulate multivariate datasets (see Uyeda et al. 2015 - and supplied R codes).

Value

Returns a symmetric positive-definite matrix with eigen-values = ev.

Author(s)

J. Clavel
References


See Also

GIC.fit_pl.rpanda, fit_t_pl phyl.pca_pl

Examples

```r
require(mvMORPH)
set.seed(123)
n <- 32 # number of species
p <- 40 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- Posdef(p) # a random symmetric matrix (covariance)
simulate a dataset
Y <- mvSIM(tree, model="BM", nsim=1, param=list(sigma=R))

test <- fit_t_pl(Y, tree, model="BM", method="RidgeAlt")
GIC(test)
```
Arguments

- **fit_bd**: an object of class 'fit.bd', output of the 'fit_bd' function.
- **tot_time**: the age of the underlying phylogeny (crown age, or stem age if known). If working with crown ages, tot_time is given by max(node.age(phylo)$ages).
- **time**: vector of times on which the function calculates the probabilities of 'm' species. The function goes forward in time, so that \( t = 0 \) is the time of the most recent common ancestor.
- **N0**: number of extant species. If all extant species are represented in the phylogeny, N0 is given by length(phylo$tip.label).
- **l**: number of extant species sampled. Default value is N0 (complete sampling).
- **f**: the fraction of extant species included in the phylogeny, given by l/N0.
- **m**: a vector of integers for which we want to know the probability of each value.
- **method**: reflects which way of computing is chosen. A 'simple' one (quicker) is used when the number of extant species (N0) is known exactly or when the whole phylogeny is sampled (f==1). A 'hard one', much longer, is used when N0 is not known without doubt and f<1. The default value is "simple" (the other possibility is "hard")
- **lin**: logical: set to TRUE if \( \lambda \) & \( \mu \) are fitted with a linear model.
- **prec**: precision (number of bits used) of the computation. The default value is 1000.
- **type**: reflects whether the clade has a stem or not. Options are the default "stem" and the alternative "crown", which means the tree starts with two species at time 0.
- **logged**: logical: set to TRUE to log probabilities and factorials as much as possible (required, except perhaps for very small, young clades).

Details

If the sampling fraction is not equal to 1, the function computes with very high numbers. To be sufficiently accurate, the package 'Rmpfr' is used and "prec" is the precision of the computation. Hence, the calculation may take a lot of time. In case of wrong probabilities (negatives or higher than 1 for instance) you should increase the precision.

If the sampling fraction is equal to 1, the function doesn’t need the package 'Rmpfr' and simply uses the log of probabilities and factorials (argument "logged"). Thus, computation is faster.

The matrix columns names go backward in time.

Value

Matrix of probabilities to have 'm' species at a given time 't' with 'n' observed extant species (complete sampling or not).

Author(s)

O.Billaud, T.L.Parsons, D.S.Moen, H.Morlon
References
Billaud, O., Moen, D. S., Parsons, T. L., Morlon, H. (under review) Estimating Diversity Through Time using Molecular Phylogenies: Old and Species-Poor Frog Families are the Remnants of a Diverse Past.

See Also
fit_bd, plot_dtt, plot_prob_dtt

Examples

data(Balaenopteridae)
tot_time<max(node.age(Balaenopteridae)$ages)

# Fit the pure birth model (no extinction) with exponential variation of the speciation rate
# with time
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){0}
lamb_par<-c(0.08, 0.01)
mu_par<-c()
result <- fit_bd(Balaenopteridae,tot_time,f.lamb,f.mu,lamb_par,mu_par,f=1,
                 expo.lamb = TRUE, fix.mu=TRUE)

# Compute the matrix of probabilities
prob <- prob_dtt(result, tot_time, 1:tot_time, N=9, type="crown")

# Check that the sums of probabilities are equal to 1
colSums(prob)

---

radiolaria

Radiolaria diversity since the Jurassic

Description
Radiolaria fossil diversity since the Jurassic

Usage
data(sealevel)

Details
Radiolaria fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the two following variables:
Red algae diversity since the Jurassic

Description

Red algae fossil diversity since the Jurassic

Usage

data(redalgae)

Details

Red algae fossil diversity since the Jurassic compiled from the Neptune Database (Lazarus, 1994) and Paleobiology Database (https://paleobiodb.org/). Diversity curves are estimated at the genus level using shareholder quorum subsampling (Alroy, 2010) at two-million-year bins. The format is a dataframe with the two following variables:

age a numeric vector corresponding to the geological age, in Myrs before the present
redalgae a numeric vector corresponding to the estimated Red algae change at that age

References


Examples

data(redalgae)
plot(redalgae)
**sealevel**  
*Sea level data since the Jurassic*

**Description**

Global sea level change since the Jurassic

**Usage**

```r
data(sealevel)
```

**Details**

Eustatic sea level change since the Jurassic calculated by Miller et al. (2005) from satellite measurements, tide gauges, shoreline markers, reefs, atolls, oxygen isotopes, the flooding history of continental margins, cratons. The format is a dataframe with the two following variables:

- `age` a numeric vector corresponding to the geological age, in Myrs before the present
- `sea level` a numeric vector corresponding to the estimated sea level change at that age

**References**


**Examples**

```r
data(sealevel)
plot(sealevel)
```

---

**silica**  
*Silica data across the Cenozoic*

**Description**

Silica weathering ratio across the Cenozoic

**Usage**

```r
data(silica)
```
Details

Silica weathering ratio across the Cenozoic calculated by Cermeno et al. (2015) using the lithium isotope record of seawater from Misra and Froelich (2012). The format is a dataframe with the two following variables:

- **age**: a numeric vector corresponding to the geological age, in Myrs before the present
- **silica weathering ratio**: a numeric vector corresponding to the estimated CO2 at that age

References


Examples

```r
data(silica)
plot(silica)
```

---

**sim.convergence.geo**  
*Simulation of trait data under the model of convergent character displacement described in Drury et al. 2017*

Description

Simulates the evolution of a continuous character that evolves depending on pairwise similarity in another, OU-evolving trait (e.g., a trait that covaries with resource use). sig2 and z0 are shared between two traits, max and alpha are for focal trait, OU parameters for non-focal trait.

Usage

```r
sim.convergence.geo(phylo, pars, Nsegments=2500, plot=FALSE, geo.object)
```

Arguments

- **phylo**: an object of type `phylo` (see ape documentation)
- **pars**: A matrix with a number of rows corresponding to the desired number of simulations, columns containing values for sig2 in [,1], m in [,2], alpha in [,3], root.value in [,4], psi of the OU model for the non-focal, resource use trait in [,5], and theta in the OU model for the non-focal resource use trait in [,6]
- **Nsegments**: the minimum number of time steps to simulate
- **plot**: if TRUE, returns two plots: the top plot is focal trait undergoing convergence, the bottom plot is non-focal trait evolving under BM or OU
- **geo.object**: geography object created using `CreateGeoObject`
Details
Adjusting `nsegments` will impact the length of time the simulations take. The length of each segment (`\(\max(\text{nodeHeights(phyl0)})/\text{nsegments}\)`) should be much smaller than the smallest branch (`\(\min(\text{phylo}\$\text{edge.length})\)`).

Value
A list of two matrices with the simulated values for each lineage (one simulation per row; columns correspond to species) for `trait1` (focal trait undergoing convergence) and `non.focal` (resource-use trait that determines strength of convergence in `trait1`).

Author(s)
J.P. Drury jonathan.p.drury@gmail.com

References

See Also
CreateGeoObject

Examples

```r
data(Anolis.data)
phylo<-Anolis.data$phylo
geo.object<-Anolis.data$geography.object

#simulate with the OU process present and absent
pars<-expand.grid(0.05,-0.1,1,0,c(2,0),0)
sim.convergence.geo(phylo,pars,Nsegments=2500, plot=FALSE, geo.object)
```

---

**sim.divergence.geo** 
*Simulation of trait data under the model of divergent character displacement described in Drury et al. 2017*

Description
Simulates the evolution of a continuous character under a model of evolution where trait values are repelled according to between-species similarity in trait values, taking into account biogeography using a biogeo.object formatted from RPANDA (see CreateGeoObject function in RPANDA package)
Usage

sim.divergence.geo(phylo, pars, Nsegments=2500, plot=FALSE, geo.object)

Arguments

- **phylo**: a phylogenetic tree
- **pars**: A matrix with a number of rows corresponding to the desired number of simulations, columns containing values for \( \text{sig}^2 \) in \([1,]\), \( m \) in \([2,]\), \( \alpha \) in \([3,]\), root.value in \([4,]\), \( \psi \) of the OU model in \([5,]\), and \( \theta \) in the OU model in \([6,]\)
- **Nsegments**: the minimum number of time steps to simulate
- **plot**: logical indicating whether to plot the simulated trait values at each time step
- **geo.object**: geography object created using `CreateGeoObject`

Details

Adjusting \( \text{Nsegments} \) will impact the length of time the simulations take. The length of each segment (\( \text{max(nodeHeights(phylo))/Nsegments} \)) should be much smaller than the smallest branch (\( \text{min(phylo$edge.length)} \)).

Value

A matrix with the simulated values for each lineage (one simulation per row; columns correspond to species)

Author(s)

J.P. Drury jonathan.p.drury@gmail.com F. Hartig

References


See Also

`CreateGeoObject`

Examples

data(Anolis.data)
phylo<-Anolis.data$phylo
geo.object<-Anolis.data$geography.object

#simulate with the OU process present and absent
simulateTipData

Tip trait simulation under a model of phenotypic evolution.

Description
Simulates tip trait data under a specified model of phenotypic evolution, with three distinct behaviours specified with the ‘method’ argument.

Usage
simulateTipData(object, params, method, v)

Arguments
- object: an object of class ‘PhenotypicModel’.
- params: vector of parameters, given in the same order as in the ‘model’ object.
- method: an integer specifying the behaviour of the function. If method = 1 (default value), the tip distribution is first computed, before returning a simulated dataset drawn in this distribution. If method = 2, the whole trajectory is simulated step by step, plotted, and returned. Otherwise, the whole trajectory is simulated step by step, and then returned without being plotted.
- v: boolean specifying the verbose mode. Default value : FALSE.

Value
a vector of trait values at the tips of the tree.

Author(s)
M Manceau

References
Examples

# Loading an example tree
tree <- read.tree(text=newick)

# Creating the models
modelBM <- createModel(tree, 'BM')
modelOU <- createModel(tree, 'OU')

# Simulating tip traits under both models with distinct behaviours of the functions:
databm <- simulateTipData(modelBM, c(0,0,0,1))
dataOU <- simulateTipData(modelOU, c(0,0,1,5,1), method=1)
dataBM2 <- simulateTipData(modelBM, c(0,0,0,1), method=2)
Arguments

- \( \lambda_0 \) Initial speciation rate.
- \( \mu_0 \) Initial extinction rate, or turnover rate if \( \text{new}_\mu \text{law} == \text{"turnover"} \).
- \( \text{new}_\lambda \text{law} \) Distribution in which the new speciation rates are drawn at a speciation event. See details.
- \( \text{new}_\mu \text{law} \) Distribution in which the new extinction rates are drawn at a speciation event. See details.
- \( \text{condition} \) Stopping condition. Can be \( \text{"time"} \) (the default) or \( \text{"taxa"} \).
- \( \text{time}_\text{stop} \) Stopping time if \( \text{condition} == \text{"time"} \).
- \( \text{taxa}_\text{stop} \) Final number of species if \( \text{condition} == \text{"taxa"} \).
  If \( \text{condition} == \text{"time"} \), the process is stopped if the number of species exceeds \( \text{taxa}_\text{stop} \). This can be useful for some parametrizations of the model for which the number of species can reach very large numbers very quickly, leading to computation time and memory issues. To disable this option, use \( \text{taxa}_\text{stop} = \infty \) (the default).
- \( \sigma_\lambda \) Parameter of the new speciation rates distribution, see details.
- \( \alpha_\lambda \) Parameter of the new speciation rates distribution, see details.
- \( \lambda_\max \) Parameter of the new speciation rates distribution, see details.
- \( \lambda_\min \) Parameter of the new speciation rates distribution, see details.
- \( \sigma_\mu \) Parameter of the new extinction rates distribution, see details.
- \( \alpha_\mu \) Parameter of the new extinction rates distribution, see details.
- \( \mu_\min \) Parameter of the new extinction rates distribution, see details.
- \( \mu_\max \) Parameter of the new extinction rates distribution, see details.
- \( \theta \) Probability to have a rate shift at speciation. Default to 1.
- \( n\text{ShiftMax} \) Maximum number of rate shifts. If \( n\text{ShiftMax} < \infty \), \( \theta \) is set to 0 as soon as there has been \( n\text{ShiftMax} \) rate shifts. Set \( n\text{ShiftMax} = \infty \) (the default) to disable this option.
- \( \text{return}_\text{all}_\text{extinct} \) Boolean specifying whether the function should return extinct phylogenies. Default to FALSE.
- \( \text{prune}_\text{extinct} \) Boolean specifying whether extinct species should be removed from the resulting phylogeny. Default to TRUE.
- \( \text{maxRate} \) The process is stopped if one of the lineage has a speciation rate that exceeds \( \text{maxRate} \). This can be useful for some parametrizations of the model for which the rates can reach very large values, leading to numerical overflows. To disable this option, use \( \text{maxRate} = \infty \) (the default).

Details

Available options for \( \text{new}_\lambda \text{law} \) are:

- \( \text{"uniform"} \), the new speciation rates are drawn uniformly in \([\lambda_\min, \lambda_\max]\).
• "normal", the new speciation rates are drawn in a normal distribution with parameters \((\sigma_{\text{lamb}}^2, \text{parent}_\text{lamb})\), truncated in 0.
• "lognormal", the new speciation rates are drawn in a lognormal distribution with parameters \((\sigma_{\text{lamb}}^2, \text{parent}_\text{lamb})\).
• "lognormal*shift", the new speciation rates are drawn in a lognormal distribution with parameters \((\sigma_{\text{lamb}}^2, \text{parent}_\text{lamb} * \alpha_{\text{lamb}})\). This is the default option as it corresponds to the ClaDS model.
• "lognormal*t", the new speciation rates are drawn in a lognormal distribution with parameters \((\sigma_{\text{lamb}}^2 * t^2, \text{parent}_\text{lamb})\), where \(t\) is the age of the mother species.
• "logbrownian", the new speciation rates are drawn in a lognormal distribution with parameters \((\sigma_{\text{lamb}}^2 * t, \text{parent}_\text{lamb})\), where \(t\) is the age of the mother species. This is used to approximate the case where speciation rates are evolving as the log of a brownian motion, as is done in Beaulieu, J. M. and B. C. O’Meara. (2015).
• "normal+shift", the new speciation rates are drawn in a normal distribution with parameters \((\sigma_{\text{lamb}}^2, \text{parent}_\text{lamb} + \alpha_{\text{lamb}})\), truncated in 0.
• "normal*shift", the new speciation rates are drawn in a normal distribution with parameters \((\sigma_{\text{lamb}}^2, \text{parent}_\text{lamb} * \alpha_{\text{lamb}})\), truncated in 0.

Available options for new_mu_law are:

• "uniform", the new extinction rates are drawn uniformly in \([\mu_{\text{min}}, \mu_{\text{max}}]\).
• "normal", the new extinction rates are drawn in a normal distribution with parameters \((\sigma_{\text{mu}}^2, \text{parent}_\text{mu})\), truncated in 0.
• "lognormal", the new extinction rates are drawn in a lognormal distribution with parameters \((\sigma_{\text{mu}}^2, \text{parent}_\text{mu})\).
• "lognormal*shift", the new extinction rates are drawn in a lognormal distribution with parameters \((\sigma_{\text{mu}}^2, \text{parent}_\text{mu} * \alpha_{\text{mu}})\).
• "normal*t", the new speciation rates are drawn in a normal distribution with parameters \((\sigma_{\text{lamb}}^2 * t^2, \text{parent}_\text{lamb})\), where \(t\) is the age of the mother species.
• "turnover", the turnover rate is constant (in that case \(\mu_0\) is the turnover rate), so the new extinction rates are \(\mu_0\) times the new speciation rates. This is the default option, corresponding to ClaDS2.

Value

A list with:

- **tree**: The resulting phylogeny.
- **times**: A vector with the times of all speciation and extinction events.
- **nblineages**: A vector in which \(\text{nblineages}[i]\) is the number of species in the clade after the event happening at time \(\text{times}[i]\).
- **lamb**: A vector with all the different speciation rates resulting from the simulation.
- **mu**: A vector with all the different extinction rates resulting from the simulation.
- **rates**: A vector of integer mapping the elements of .$\text{lamb}$ and .$\text{mu}$ to the branches of .$\text{tree}$. 
maxRate  A boolean indicating whether the process was ended before reaching the specified stopping criterion because one of the speciation rates exceeded maxRate (see the "arguments" section).

root_length  The time before the first speciation event.

Author(s)

O. Maliet

References


See Also

plot_ClaDS_phylo

Examples

```r
Simulation of a ClaDS2 phylogeny
set.seed(1)

obj= sim_ClaDS(lambda_0=0.1,
 mu_0=0.5,
 sigma_lamb=0.7,
 alpha_lamb=0.90,
 condition="taxa",
 taxa_stop = 20,
 prune_extinct = TRUE)

tree = obj$tree
speciation_rates = obj$lamb[obj$rates]
extinction_rates = obj$mu[obj$rates]

plot_ClaDS_phylo(tree,speciation_rates)

Simulation of a phylogeny with constant extinction rate and speciation
rates evolving as a logbrownian
set.seed(4321)

obj= sim_ClaDS(lambda_0=0.1,
 mu_0=0.2,
 new_mu_law = "uniform",
 new_lamb_law = "logbrownian",
 sigma_lamb=0.4,
 condition="taxa",
 taxa_stop = 20,
```
**sim_env_bd**

Simulate birth-death tree dependent on an environmental curve

---

**Description**

Simulates a birth-death tree (starting with one lineage) with speciation and/or extinction rate that varies as a function of an input environmental curve. Notations follow Morlon et al. PNAS 2011 and Condamine et al. ELE 2013.

**Usage**

```r
sim_env_bd(env_data, f.lamb, f.mu, lamb_par, mu_par, df=NULL, time.stop=0, return.all.extinct=TRUE, prune.extinct=TRUE)
```

**Arguments**

- `env_data` environmental data, given as a data frame with two columns. The first column is time, the second column is the environmental data (temperature for instance).
- `time.stop` the age of the phylogeny.
**f.lamb**
a function specifying the hypothesized functional form of the variation of the speciation rate $\lambda$ with time and the environmental variable. Any functional form may be used. This function has three arguments: the first argument is time; the second argument is the environmental variable; the third argument is a numeric vector of the parameters controlling the time and environmental variation (to be estimated).

**f.mu**
a function specifying the hypothesized functional form of the variation of the extinction rate $\mu$ with time and the environmental variable. Any functional form may be used. This function has three arguments: the first argument is time; the second argument is the environmental variable; the second argument is a numeric vector of the parameters controlling the time and environmental variation (to be estimated).

**lamb_par**
a numeric vector of initial values for the parameters of f.lamb to be estimated (these values are used by the optimization algorithm). The length of this vector is used to compute the total number of parameters in the model, so to fit a model with constant speciation rate (for example), lamb_par should be a vector of length 1. Otherwise aic values will be wrong.

**mu_par**
a numeric vector of initial values for the parameters of f.mu to be estimated (these values are used by the optimization algorithm). The length of this vector is used to compute the total number of parameters in the model, so to fit a model without extinction (for example), mu_par should be empty (vector of length 0). Otherwise aic values will be wrong.

**df**
the degree of freedom to use to define the spline. As a default, smooth.spline(env_data[,1], env_data[,2])$df is used. See `sm.spline` for details.

**return.all.extinct**
return all extinction lineages in simulated tree.

**prune.extinct**
prune extinct lineages in simulated tree.

**Details**
In the f.lamb and f.mu functions, time runs from the present to the past.

**Value**
a list with the following components

- **tree** the simulated tree with number tips
- **times** the times of speciation events starting from the past
- **nblineages** the labels of surviving lineages and total number of surviving lineages

**Note**
The speed of convergence of the fit might depend on the degree of freedom chosen to define the spline.

**Author(s)**
E Lewitus and H Morlon
**References**


**See Also**

`fit_env, fit_bd`

**Examples**

```r
data(InfTemp)
dof<smooth.spline(InfTemp[,1], InfTemp[,2])$df
Simulates a tree with lambda varying as an exponential function of temperature
and mu fixed to 0 (no extinction). Here t stands for time and x for temperature.
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.10, 0.01)
mu_par<-c()
#result_exp <- sim_env_bd(InfTemp,f.lamb,f.mu,lamb_par,mu_par,time=stop)
```

---

**sim_sgd**

*Algorithm for simulating a phylogenetic tree under the SGD model*

**Description**

Simulates a phylogeny arising from the SGD model with exponentially increasing metapopulation size. Notations follow Manceau et al. (2015).

**Usage**

`sim_sgd(tau, b, d, nu)`

**Arguments**

- `tau` the simulation time, which corresponds to the length of the phylogeny
- `b` the (constant) per-individual birth rate
- `d` the (constant) per-individual death rate
- `nu` the (constant) per-individual mutation rate

**Value**

a phylogenetic tree of class "phylo" (see ape documentation)

**Author(s)**

M Manceau
References

Examples
```r
tau <- 10
b <- 1e6
d <- b-0.5
nu <- 0.6
tree <- sim_sgd(tau,b,d,nu)
plot(tree)
```

**sim_t_comp**

**Recursive simulation (root-to-tip) of competition models**

**Description**
Simulates datasets for a given phylogeny under matching competition (MC), diversity dependent linear (DDlin), or diversity dependent exponential (DDexp) models of trait evolution. Simulations are carried out from the root to the tip of the tree.

**Usage**
```
sim_t_comp(phylo,pars,root.value,Nsegments=1000,model="MC,DDexp,DDlin")
```

**Arguments**
- **phylo**
  - an object of type 'phylo' (see ape documentation)
- **pars**
  - a vector containing the two parameters for the chosen model; all models require sig2, and additionally, the MC model requires S, specifying the level of competition (larger negative values correspond to higher levels of competition), the DDlin model requires b and DDexp require r, the slope parameters (negative in cases of decline in evolutionary rates with increasing diversity). sig2 must be listed first.
- **root.value**
  - a number specifying the trait value for the ancestor
- **Nsegments**
  - a value specifying the total number of time segments to simulate across for the phylogeny (see Details)
- **model**
  - model chosen to fit trait data, "MC" is the matching competition model of Nuismer & Harmon 2014, "DDlin" is the diversity-dependent linear model, and "DDexp" is the diversity-dependent exponential model of Weir & Mursleen 2013.
Details

Adjusting Nsegments will impact the length of time the simulations take. The length of each segment (max(nodeHeights(phylo))/Nsegments) should be much smaller than the smallest branch (min(phylo$edge.length)).

Value

a named vector with simulated trait values for n species in the phylogeny

Author(s)

J Drury jonathan.p.drury@gmail.com

References


See Also

fit_t_comp

Examples

data(Cetacea)

# Simulate data under the matching competition model
MC.data<-sim_t_comp(Cetacea,pars=c(sig2=0.01,S=-0.1),root.value=0,Nsegments=1000,model="MC")

# Simulate data under the diversity dependent linear model
DDlin.data<-sim_t_comp(Cetacea,pars=c(sig2=0.01,b=-0.0001),root.value=0,Nsegments=1000, model="DDlin")

# Simulate data under the diversity dependent linear model
DDexp.data<-sim_t_comp(Cetacea,pars=c(sig2=0.01,r=-0.01),root.value=0,Nsegments=1000,model="DDexp")
sim_t_env

Recursive simulation (root-to-tip) of the environmental model

Description

Simulates datasets for a given phylogeny under the environmental model (see ?fit_t_env)

Usage

```
sim_t_env(phylo, param, env_data, model, root.value=0, step=0.001, plot=FALSE, ...)
```

Arguments

- **phylo**: An object of class 'phylo' (see ape documentation)
- **param**: A numeric vector of parameters for the user-defined climatic model. For the `EnvExp` and `EnvLin`, there is only two parameters. The first is sigma and the second beta.
- **env_data**: Environmental data, given as a time continuous function (see, e.g. splinefun) or a data frame with two columns. The first column is time, the second column is the environmental data (temperature for instance).
- **model**: The model describing the functional form of variation of the evolutionary rate $\sigma^2$ with time and the environmental variable. Default models are "EnvExp" and "EnvLin" (see details). An user defined function of any functional form can be used (forward in time). This function has three arguments: the first argument is time; the second argument is the environmental variable; the third argument is a numeric vector of the parameters controlling the time and environmental variation (to be estimated). See the example below.
- **root.value**: A number specifying the trait value for the ancestor
- **step**: This argument describe the length of the segments to simulate across for the phylogeny. The smaller is the segment, the greater is the accuracy of the simulation at the expense of the computation time.
- **plot**: If TRUE, the simulated process is plotted.
- **...**: Arguments to be passed through. For instance, "col" for plot=TRUE.

Details

The users defined function is simulated forward in time i.e.: from the root to the tips. The speed of the simulations might depend on the value used for the "step" argument. It's possible to estimate the traits with the MLE from another fitted object (see the example below).

Value

A named vector with simulated trait values for $n$ species in the phylogeny
**References**


**Examples**

data(Cetacea)
data(InfTemp)

set.seed(123)
# define the parameters
param <- c(0.1, -0.5)
# define the environmental function
my_fun <- function(t, env, param){ param[1]*exp(param[2]*env(t))}

# simulate the trait
trait <- sim_t_env(Cetacea, param=param, env_data=InfTemp, model=my_fun, root.value=0, step=0.001, plot=TRUE)

# fit the model to the simulated trait.
fit <- fit_t_env(Cetacea, trait, env_data=InfTemp, model=my_fun, param=c(0.1,0))

# Then use the results from the previous fit to simulate a new dataset
trait2 <- sim_t_env(Cetacea, param=fit, step=0.001, plot=TRUE)
fit2 <- fit_t_env(Cetacea, trait2, env_data=InfTemp, model=my_fun, param=c(0.1,0))

# When providing the environmental function:
require(pspline)
spline_result <- sm.spline(x=InfTemp[,1],y=InfTemp[,2], df=50)
env_func <- function(t){predict(spline_result,t)}
t<-unique(InfTemp[,1])

# We build the interpolated smoothing spline function
env_data<-splinefun(t,env_func(t))

# provide the environmental function to simulate the traits
trait3 <- sim_t_env(Cetacea, param=param, env_data=env_data, model=my_fun, root.value=0, step=0.001, plot=TRUE)
fit3 <- fit_t_env(Cetacea, trait3, env_data=InfTemp, model=my_fun, param=c(0.1,0))
Description
Computes the spectra of eigenvalues for the modified graph Laplacian of a phylogenetic tree, identifies the spectral gap, then convolves the eigenvalues with a Gaussian kernel, and plots them alongside all eigenvalues ranked in descending order.

Usage
spectR(phylo, meth=c("standard"), zero_bound=F)

Arguments
- phylo: an object of type 'phylo' (see ape documentation)
- meth: the method used to compute the spectral density, which can either be "standard" or "normal". If set to "standard", computes the unnormalized version of the spectral density. If set to "normal", computes the spectral density normalized to the degree matrix (see the associated paper for an explanation)
- zero_bound: if false, eigenvalues less than one are discarded

Details
Note that the eigengap should in principle be computed with the "standard" option

Value
a list with the following components:
- eigenvalues: the vector of eigenvalues
- principal_eigenvalue: the largest (or principal) eigenvalue of the spectral density profile
- asymmetry: the skewness of the spectral density profile
- peak_height: the largest y-axis value of the spectral density profile
- eigengap: the position of the largest difference between eigenvalues, giving the number of modalities in the tree

Author(s)
E Lewitus
References
Lewitus, E., Morlon, H., Characterizing and comparing phylogenies from their Laplacian spectrum, bioRxiv doi: http://dx.doi.org/10.1101/026476

See Also
plot_spectr, JSDtree, BICompare

Examples

```r
data(Cetacea)
spectR(Cetacea, meth="standard", zero_bound=FALSE)
```

---

**spectR_t**  
*Spectral density plot of phylogenetic trait data*

**Description**
Computes the spectra of eigenvalues for the modified graph Laplacian of a phylogenetic tree with associated tip data, convolves the eigenvalues with a Gaussian kernel and plots the density profile of eigenvalues, and estimates the summary statistics of the profile.

**Usage**
spectR_t(phylo, dat, draw=F)

**Arguments**
- **phylo**: an object of type ’phylo’ (see ape documentation)
- **dat**: a vector of trait data associated with the tips of the phylo object; tips and trait data should be aligned
- **draw**: if true, the spectral density profile of the phylogenetic trait data is plotted

**Value**
a list with the following components:
- **eigenvalues**: the vector of eigenvalues
- **splitter**: the largest (or principal) eigenvalue of the spectral density profile
- **fragmenter**: the skewness of the spectral density profile
- **tracer**: the largest y-axis value of the spectral density profile

**Author(s)**
E Lewitus
References


Examples

tr<-rtree(10)
dat<-runif(10,1,2)
spectR_t(tr,dat,draw=TRUE)
Index

*Topic classes
- PhenotypicACDC-class, 89
- PhenotypicADiag-class, 90
- PhenotypicBM-class, 91
- PhenotypicDD-class, 92
- PhenotypicGMM-class, 93
- PhenotypicModel-class, 94
- PhenotypicOU-class, 96
- PhenotypicPM-class, 97

*Topic datasets
- Balaenopteridae, 8
- Calomys, 10
- Cetacea, 13
- CoR, 15
- CoR_res, 15
- Coccolithophore, 16
- D1Sc, 26
- Foraminifera, 55
- Greenalgae, 65
- InFTemp, 66
- Landplant, 70
- Ostracoda, 88
- Phocoenidae, 98
- Phyllostomidae, 100
- Phyllostomidae_genera, 101
- Radiolaria, 116
- Redalgae, 117
- Sealevel, 118
- Silica, 118

*Topic methods
- fitTipData-methods, 28
- getDataLikelihood-methods, 57
- getTipDistribution-methods, 61
- modelSelection-methods, 87
- simulateTipData-methods, 123
- [,PhenotypicModel,ANY,ANY,ANY-method (PhenotypicModel-class), 94
- [<-PhenotypicModel,ANY,ANY,ANY-method (PhenotypicModel-class), 94
fitTipData-methods, 28
foraminifera, 55

getDataLikelihood, 56
getDataLikelihood, PhenotypicModel-method
(getDataLikelihood-methods), 57
getDataLikelihood-methods, 57
getMAPS_ClaDS, 57, 59, 105
getMAPS_ClaDS0, 12, 35, 58, 59, 104
getTipDistribution, 60
getTipDistribution, PhenotypicACDC-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicADiag-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicBM-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicDD-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicGMM-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicModel-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicOU-method
(getTipDistribution-methods), 61
getTipDistribution, PhenotypicPM-method
(getTipDistribution-methods), 61
getTipDistribution-methods, 61

GIC, 6
GIC.fit_pl.rpanda, 55, 62, 64, 100, 114
gic_criterion, 6, 55, 63, 63, 100
greenalgae, 65

InfTemp, 66

JS Dt_cluster, 69
JS Dtree, 10, 67, 69, 135
JS Dtree_cluster, 67, 68

landplant, 70
likelihood_bd, 30, 42, 71
likelihood_coal_cst, 38, 72

likelihood_coal_var, 40, 74
likelihood_sgd, 44, 75
likelihood_subgroup_model, 48, 76
likelihood_t DD, 46, 77, 78, 80
likelihood_t DD_geog, 46, 79, 79
likelihood_t_env, 51, 81, 86, 102, 133
likelihood_t MC, 46, 83, 85
likelihood_t MC_geog, 46, 84, 84
lines.fit_t_env, 85, 102

make.simmap, 17, 19, 21, 47
modelSelection, 87
modelSelection, PhenotypicModel-method
(modelSelection-methods), 87
modelSelection-methods, 87
MPhifFT, 88
mvglss, 55, 63

optim, 45, 47

ostracoda, 88

par, 86, 102
PhenotypicACDC-class, 89
PhenotypicADiag-class, 90
PhenotypicBM-class, 91
PhenotypicDD-class, 92
PhenotypicGMM-class, 93
PhenotypicModel, 89–91, 93, 94, 96, 97
PhenotypicModel-class, 94
PhenotypicOU-class, 96
PhenotypicPM-class, 97
Phocoenidae, 98
Phyl_pca_pl, 6, 55, 99, 114
Phyllostomidae, 100, 101
Phyllostomidae_genera, 101, 101
plot.fit_t_env, 51, 86, 102, 133
plot_BICompare, 10, 103
plot_ClaDS0_chains, 35, 59, 104, 105
plot_ClaDS_chains, 12, 33, 58, 104, 105
plot_ClaDS_phylo, 106, 126
plot_dtt, 30, 107, 112, 116
plot_fit_bd, 30, 108
plot_fit_env, 42, 109
plot_prob_dtt, 110, 116
plot_spectR, 112, 135
Posdef, 113
print, PhenotypicModel-method
(PhenotypicModel-class), 94
prob_dtt, 112, 114
radiolaria, 116
redalgae, 117
round, 17
RPANDA (RPANDA-package), 4
RPANDA-package, 4

sealevel, 118
show, PhenotypicModel-method
   (PhenotypicModel-class), 94
silica, 118
sim.convergence.geo, 119
sim.divergence.geo, 120
sim.ClaDS, 107, 123
sim_env_bd, 127
sim_sgd, 129
sim_t_comp, 46, 130
sim_t_env, 132
simulateTipData, 122
simulateTipData, PhenotypicModel-method
   (simulateTipData-methods), 123
simulateTipData-methods, 123
spectR, 10, 67, 113, 134
spectR_t, 70, 135