Package 'RQEntangle'

January 4, 2019

Type Package

Title Quantum Entanglement of Bipartite System

Version 0.1.3

Description It computes the Schmidt decomposition of bipartite quantum systems, discrete or continuous, and their respective entanglement metrics. See Artur Ekert, Peter L. Knight (1995) <doi:10.1119/1.17904> for more details.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R(>= 2.15.1), itertools(>= 0.1-3), iterators

Suggests knitr, rmarkdown, dplyr, ggplot2, roxygen2

RoxygenNote 6.1.0

URL https://github.com/stephenhky/RQEntangle

BugReports https://github.com/stephenhky/RQEntangle/issues

VignetteBuilder knitr

NeedsCompilation no

Author Kwan-Yuet Ho [aut, cre]

Maintainer Kwan-Yuet Ho <stephenhky@yahoo.com.hk>

Repository CRAN

Date/Publication 2019-01-04 10:40:08 UTC

R topics documented:

continuous.function.interpolate ... 2
continuous.schmidt.decompose ... 2
discretize.continuous.bipartitefunc 3
entanglement.entropy .. 4

1
continuous.schmidt.decompose

Interpolate values of functions.

Description
Interpolate values of functions.

Usage
continuous.function.interpolate(xarr, yarr, x)

Arguments
- xarr: a vector of x (sorted)
- yarr: a vector of y
- x: given value of x

Value
interpolated value of y

continuous.schmidt.decompose

Perform a continuous Schmidt decomposition

Description
Perform a continuous Schmidt decomposition

Usage
continuous.schmidt.decompose(bifunc, x1lo, x1hi, x2lo, x2hi, nbx1 = 100, nbx2 = 100, keep = min(10, nbx1, nbx2))
Making a discretized tensor for a continuous function

discretize.continuous.bipartitefunc

Description
Making a discretized tensor for a continuous function

Usage

discretize.continuous.bipartitefunc(bifunc, x1lo, x1hi, x2lo, x2hi, nbx1 = 100, nbx2 = 100)

Arguments
- **bifunc**: bipartite continuous wavefunction
- **x1lo**: lower limit of x1
- **x1hi**: upper limit of x1
- **x2lo**: lower limit of x2
- **x2hi**: upper limit of x2
- **nbx1**: number of discretized x1 (default: 100)
- **nbx2**: number of discretized x2 (default: 100)

Value
Schmidt modes, including the eigenvalues, and the lambda interpolated function of the Schmidt modes

Examples
coupled.harm.fcn<-- function(x1,x2) exp(-((0.5*(x1+x2))*2))*exp(-(x1-x2)**2)*sqrt(2./pi)
continuous.schmidt.decompose(coupled.harm.fcn, -10, 10, -10, 10)
Value
discretized tensor for Schmidt decomposition

entanglement.entropy Calculate the entanglement entropy given the calculate Schmidt modes.

Description
Calculate the entanglement entropy given the calculate Schmidt modes.

Usage
entanglement.entropy(modes)

Arguments
modes Schmidt modes

Value
entanglement entropy

Examples
singlet<- matrix(c(0, sqrt(0.7), sqrt(0.3), 0), byrow = TRUE, nrow = 2)
modes<- schmidt.decompose(singlet)
entanglement.entropy(modes)

interpolated.continuous.function Lambda function of the interpolated continous function.

Description
Lambda function of the interpolated continous function.

Usage
interpolated.continuous.function(xarr, yarr)

Arguments
xarr a vector of x (sorted)
yarr a vector of y
negativity

Value
interpolated lambda function

description
Calculate the negativity given the calculate Schmidt modes.

Usage
negativity(modes)

Arguments
modes Schmidt modes

Value
negativity

Examples
singlet<- matrix(c(0, sqrt(0.7), sqrt(0.3), 0), byrow = true, nrow = 2)
modes<- schmidt.decompose(singlet)
negativity(modes)

participation.ratio

Calculate the participation ratio given the calculate Schmidt modes.

description
Calculate the participation ratio given the calculate Schmidt modes.

Usage
participation.ratio(modes)

Arguments
modes Schmidt modes

Value
participation ratio
Examples

```r
singlet <- matrix(c(0, sqrt(0.7), sqrt(0.3), 0), byrow = TRUE, nrow = 2)
modes <- schmidt.decompose(singlet)
participation.ratio(modes)
```

```
reduced.denmat  Get reduced density matrix
```

Description

Get reduced density matrix

Usage

```r
reduced.denmat(bipartite.qubits, keep.dim = 1)
```

Arguments

- **bipartite.qubits**
 tensor of bipartite systems
- **keep.dim**
 dimension to keep (default: 1)

Value

reduced density matrix

Examples

```r
singlet <- matrix(c(0, sqrt(0.7), sqrt(0.3), 0), byrow = TRUE, nrow = 2)
reduced.denmat(singlet)
```

```
schmidt.decompose  Perform Schmidt decomposition
```

Description

Perform Schmidt decomposition

Usage

```r
schmidt.decompose(bipartite.qubits)
```
schmidt.decompose

Arguments

bipartite.qubits
tensor of bipartite systems

Value

Schmidt modes, including the eigenvalues, and eigenvectors of both subsystems of the modes

Examples

singlet<- matrix(c(0, sqrt(0.7), sqrt(0.3), 0), byrow = TRUE, nrow = 2)
schmidt.decompose(singlet)
Index

continuous.function.interpolate, 2
continuous.schmidt.decompose, 2

discretize.continuous.bipartitefunc, 3
entanglemententropy, 4
interpolated.continuous.function, 4
negativity, 5
participation.ratio, 5
reduced.denmat, 6
schmidt.decompose, 6