Package ‘RRMLRfMC’

October 12, 2022

Type Package
Title Reduced-Rank Multinomial Logistic Regression for Markov Chains
Version 0.4.0
Description Fit the reduced-rank multinomial logistic regression model for Markov chains developed by Wang, Abner, Fardo, Schmitt, Jicha, Eldik and Kryscio (2021)<doi:10.1002/sim.8923> in R. It combines the ideas of multinomial logistic regression in Markov chains and reduced-rank. It is very useful in a study where multi-states model is assumed and each transition among the states is controlled by a series of covariates. The key advantage is to reduce the number of parameters to be estimated. The final coefficients for all the covariates and the p-values for the interested covariates will be reported. The p-values for the whole coefficient matrix can be calculated by two bootstrap methods.

License GPL-2
Encoding UTF-8
LazyData true
Imports nnet
Depends R (>= 3.5.0)
RoxygenNote 7.1.1
Suggests rmarkdown, knitr
NeedsCompilation no
Author Pei Wang [aut, cre],
Richard Kryscio [aut]
Maintainer Pei Wang <wangp33@miamioh.edu>
Repository CRAN
Date/Publication 2021-06-07 07:20:07 UTC

R topics documented:

 Aupdate .. 2
cogdat .. 3
Description

This function is used to update A matrix.

Usage

Aupdate(Dfix, Gamma, Adata, R, p, q, I, iniA, eps, refA)

Arguments

- **Dfix** the coefficient matrix for study covariates
- **Gamma** the G matrix value
- **Adata** the dataset
- **R** the rank of reduced rank model
- **p** the number of covariates in the dimension reduction
- **q** the number of study covariates
- **I** a U by U incidence matrix with elements: I(i,j)=1 if state j can be accessed from state i in one step and 0 otherwise
- **iniA** initial value for the iteration
- **eps** the tolerance for convergence, default is 10^-5
- **refA** a vector of reference categories

Value

A list of outputs:

- **NewA**: the updated A matrix
- **loglikeA**: the loglikelihood when updating A
Description

A dataset containing the states and covariates of 649 participants enrolled in the BRAiNS cohort at the University of Kentucky’s Alzheimer’s Disease Research Center.

Usage

cogdat

Format

A data frame with 6240 rows and 14 columns:

- **ID** used to denote the participants; from 1 to 649
- **visitno** used to denote the visit number for each participant
- **prstate** denote the previous state
- **custate** denote the current state
- **bagec** baseline age (centered at age 72)
- **famhx** family history of dementia
- **HBP** self reported high blood pressure
- **apoel** at least one Apolipoprotein-E (APOE) gene e4 allele
- **smk1** cigarette smoking level (none versus < 10)
- **smk2** cigarette smoking level (11-19)
- **smk3** cigarette smoking level (>= 20 pack years)
- **lowed** low education
- **headinj** self reported head injury

derivativeB

Description

This function is used to calculate the loglikelihood with a given matrix B=AG

Usage

derivativeB(B, I, zy, refd)
Arguments

\(A \)	matrix with value from previous iteration
\(\Gamma \)	\(\Gamma \) matrix values
\(Dmat \)	the coefficient matrix for the fixed variables,
\(I \)	U by U incidence matrix with elements; \(I(i,j)=1 \) if state \(j \) can be accessed from state \(i \) in one step and 0 otherwise
\(zy \)	the variable values for a given observation
\(\text{refd} \)	a vector of reference categories

Value

a list of outputs:

- \(\text{fird} \): the first derivative value
- \(\text{secd} \): the second derivative value
- \(\text{loglike} \): the loglikelihood
expand

Description
This function is used to expand the Y(category) to a indicator vector

Usage
expand(pri, curr, I, refE)

Arguments
- pri: the prior state
- curr: the current state
- I: a U by U incidence matrix with elements; I(i,j)=1 if state j can be accessed from state i in one step and 0 otherwise
- refE: a vector with the reference categories

Value
- ry: a indicator vector

Gupdate

Description
This function is used to update G matrix

Usage
Gupdate(A, Gdata, p, q, I, refG)

Arguments
- A: numeric matrix
- Gdata: the dataset used to update G
- p: the number of covariates in the dimension reduction
- q: the number of study covariates
- I: a U by U incidence matrix with elements; I(i,j)=1 if state j can be accessed from state i in one step and 0 otherwise
- refG: a vector of reference categories
Value

a list of outputs:

- NewG: the updated G matrix
- loglikeK: the loglikelihood when updating G
- stderr: standard errors for the coefficient matrix

Description

This function is used to normalize a vector to have unit length

Usage

```
norm(x)
```

Arguments

- `x` a numeric vector

Value

a normalized vector with length 1

Description

This function is used to fit the reduced rank multinomial logistic regression for markov chain

Usage

```
rrmultinom(I, z1 = NULL, z2 = NULL, T, R, eps = 1e-05, ref = NULL)
```
Arguments

I a U by U incidence matrix with elements; U is number of states; I(i,j)=1 if state j can be accessed from state i in one step and 0 otherwise

z1 a n by p matrix with covariates involved in the dimension reduction(DR), n is the number of subjects, p is the number of covariates involved in DR

z2 a n by q matrix with study covariates (not in dimension reduction), q is the number of study covariates

T a M by 3 state matrix,
 • the first column is a subject number between 1,...,n;
 • the second column is time;
 • the third column is the state occupied by subject in column 1 at time indicated in column 2

R the rank

eps the tolerance for convergence; the default is 10^{-5}

ref a vector of reference categories; the default is NULL and if NULL is used, the function will use the first category as the reference category for each row

Value

a list of outputs:

• Alpha: the final A matrix
• Gamma: the final G matrix
• Beta: the coefficient matrix for variables involved in reduced rank
• Dcoe: the coefficient matrix for the fixed variables
• Dsderr: the standard error matrix for the fixed variables
• Dpval: the p-value matrix for the fixed variables
• coemat: the overall coefficient matrix
• niter: the iteration number to get converged
• df: the degrees of freedom
• loglik: the final loglikelihood
• converge: three possible values with 0 means fail to converge, 1 means converges, and 2 means the maximum iteration is achieved

Examples

generate the Markov chain
U=7
I1=I2=I3=rep(1,7)
I4=c(0,0,0,1,1,1,1)
I5=I6=I7=rep(0,7)
I=cbind(I1,I2,I3,I4,I5,I6,I7)
prepare the data
data=cogdat
n=length(unique(data[,1]))
M=nrow(data)+n
Mc=0
z=matrix(0,n,9)
colnames(z)=colnames(data)[5:13]
T=matrix(0,M,3)
for(i in 1:n){
 subdat=data[which(data[,1]==i),,drop=FALSE]
 z[i,]=subdat[1,5:13]
 mc=nrow(subdat)
 T[(Mc+1):(Mc+mc+1),1]=i
 T[(Mc+1):(Mc+mc+1),2]=0:mc
 T[(Mc+1):(Mc+mc+1),3]=c(subdat[1,3],subdat[,4])
 Mc=Mc+mc+1
}
#z1=z[,c(1:3),drop=FALSE]
#z2=z[,4,drop=FALSE]
fit the model with rank 1
rrmultinom(I,z1=NULL,z2,T,1,eps=9,ref=c(1,1,1,4))

sdfunc

Description
This function is used get the standard error matrix from bootstrap method It returns the matrices of
standard error and p-value for the coefficient matrix

Usage
sdfunc(I, z1 = NULL, z2 = NULL, T, R, eps = 1e-05, B, tpoint = NULL, ref)

Arguments
I a U by U incidence matrix with elements; U is the number of states; I(i,j)=1 if
state j can be accessed from state i in one step and 0 otherwise
z1 a n by p matrix with covariates involved in the dimension reduction(DR), n is
the number of subjects, p is the number of covariates involved in DR
z2 a n by q matrix with study covariates (not in dimension reduction), q is the
number of study covariates
T a M by 3 state matrix,
 • the first column is a subject number between 1,...,n;
 • the second column is time;
 • the third column is the state occupied by subject in column 1 at time indicated in column 2
R the rank
eps the tolerance for convergence; the default is 10^{-5}
B the bootstrap number
tpoint a matrix has two columns with the participants' visit information about timeline
ref a vector of reference categories

Value

a list of outputs:

- coe: the coefficient matrix of the original data
- sd: the standard error matrix
- pvalue: the p-value matrix

Examples

```r
# generate the Markov chain
U=7
I1=I2=I3=rep(1,7)
I4=c(0,0,0,1,1,1,1)
I5=I6=I7=rep(0,7)
I=rbind(I1,I2,I3,I4,I5,I6,I7)
# prepare the data
data=cogdat
n=length(unique(data[,1]))
M=nrow(data)+n
Mc=0
z=matrix(0,n,9)
colnames(z)=colnames(data)[5:13]
T=matrix(0,M,3)
for(i in 1:n){
  subdat=data[which(data[,1]==i),,drop=FALSE]
  z[i,]=subdat[1,5:13]
  mc=nrow(subdat)
  T[(Mc+1):(Mc+mc+1),1]=i
  T[(Mc+1):(Mc+mc+1),2]=0:mc
  T[(Mc+1):(Mc+mc+1),3]=c(subdat[1,3],subdat[,4])
  Mc=Mc+mc+1
}
#z1=z[,1:3,drop=FALSE]
z2=z[,4,drop=FALSE]
# find the standard deviation matrix for the model with rank 1
sdfun(I,z1=NULL,z2,T,1,eps = 9,2,ref=c(1,1,1,4))
```
Index

* datasets
 cogdat, 3

Aupdate, 2

cogdat, 3

derivativeB, 3
derivatives, 4

expand, 5

Gupdate, 5

norm, 6

rrmultinom, 6

sdfun, 8