Package ‘RRTCS’

November 3, 2015

Type Package
Title Randomized Response Techniques for Complex Surveys
Version 0.0.3
Date 2015-04-22
Author Beatriz Cobo Rodríguez, María del Mar Rueda García, Antonio Arcos Cebrián
Maintainer Beatriz Cobo Rodríguez <beacr@ugr.es>
Description Point and interval estimation of linear parameters with data obtained from complex surveys (including stratified and clustered samples) when randomization techniques are used. The randomized response technique was developed to obtain estimates that are more valid when studying sensitive topics. Estimators and variances for 14 randomized response methods for qualitative variables and 7 randomized response methods for quantitative variables are also implemented. In addition, some data sets from surveys with these randomization methods are included in the package.
License GPL (>= 2)
Encoding UTF-8
Imports sampling, samplingVarEst, stats
Suggests knitr
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2015-11-03 13:36:04

R topics documented:

RRTCS-package .. 3
BarLev ... 5
BarLevData .. 7
ChaudhuriChristofides .. 8
ChaudhuriChristofidesData .. 9
R topics documented:

ChaudhuriChristofidesDatapij 10
Christofides ... 10
ChristofidesData .. 12
Devore ... 12
DevoreData ... 14
DianaPerri1 ... 15
DianaPerri1Data ... 16
DianaPerri2 .. 17
DianaPerri2Data .. 18
EichhornHayre .. 19
EichhornHayreData ... 20
Eriksson ... 21
ErikssonData .. 22
ForcedResponse ... 23
ForcedResponseData .. 25
ForcedResponseDataSt ... 25
Horvitz .. 26
HorvitzData .. 28
HorvitzDataRealSurvey .. 29
HorvitzDataStCl ... 30
HorvitzUB .. 31
HorvitzUBData ... 32
Kuk ... 33
KukData ... 35
Mangat .. 35
MangatSingh ... 37
MangatSinghData .. 38
MangatSinghSingh ... 39
MangatSinghSinghData ... 40
MangatSinghSinghUB ... 41
MangatSinghSinghUBData 42
MangatUB .. 43
ResamplingVariance .. 45
Saha ... 47
SahaData .. 49
SinghJoarder ... 49
SinghJoarderData .. 51
SoberanisCruz ... 52
SoberanisCruzData ... 53
Warner ... 54
WarnerData .. 55

Index 56
Description

The aim of this package is to calculate point and interval estimation for linear parameters with data obtained from randomized response surveys. Twenty one RR methods are implemented for complex surveys:

Using the usual notation in survey sampling, we consider a finite population \(U = \{1, \ldots, i, \ldots, N\} \), consisting of \(N \) different elements. Let \(y_i \) be the value of the sensitive aspect under study for the \(i \)th population element. Our aim is to estimate the finite population total \(Y = \sum_{i=1}^{N} y_i \) of the variable of interest \(y \) or the population mean \(\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} y_i \). If we can estimate the proportion of the population presenting a certain stigmatized behaviour \(A \), the variable \(y_i \) takes the value 1 if \(i \in G_A \) (the group with the stigmatized behaviour) and the value zero otherwise. Some qualitative models use an innocuous or related attribute \(B \) whose population proportion can be known or unknown.

Assume that a sample \(s \) is chosen according to a general design \(p \) with inclusion probabilities \(\pi_i = \sum_{s : i \in s} p(s), i \in U \).

In order to include a wide variety of RR procedures, we consider the unified approach given by Arnab (1994). The interviews of individuals in the sample \(s \) are conducted in accordance with the RR model. For each \(i \in s \) the RR induces a random response \(z_i \) (denoted scrambled response) so that the revised randomized response \(r_i \) (Chaudhuri and Christofides, 2013) is an unbiased estimation of \(y_i \). Then, an unbiased estimator for the population total of the sensitive characteristic \(y \) is given by

\[
\hat{Y}_R = \sum_{i \in s} \frac{r_i}{\pi_i}
\]

The variance of this estimator is given by:

\[
V(\hat{Y}_R) = \sum_{i \in U} \frac{V_R(r_i)}{\pi_i} + V_{HT}(r)
\]

where \(V_R(r_i) \) is the variance of \(r_i \) under the randomized device and \(V_{HT}(r) \) is the design-variance of the Horvitz Thompson estimator of \(r_i \) values.

This variance is estimated by:

\[
\hat{V}(\hat{Y}_R) = \sum_{i \in s} \frac{\hat{V}_R(r_i)}{\pi_i} + \hat{V}(r)
\]
where $\hat{V}_R(r_i)$ varies with the RR device and the estimation of the design-variance, $\hat{V}(r)$, is obtained using Deville’s method (Deville, 1993).

The confidence interval at $(1 - \alpha)\%$ level is given by

$$ci = \left(\hat{Y}_R - z_{1-\alpha/2} \sqrt{\hat{V}(\hat{Y}_R)}, \hat{Y}_R + z_{1-\alpha/2} \sqrt{\hat{V}(\hat{Y}_R)} \right)$$

where $z_{1-\alpha/2}$ denotes the $(1 - \alpha)\%$ quantile of a standard normal distribution.

Similarly, an unbiased estimator for the population mean \bar{Y} is given by

$$\hat{\bar{Y}}_R = \frac{1}{N} \sum_{i \in s} \frac{r_i}{\pi_i}$$

and an unbiased estimator for its variance is calculated as:

$$\hat{V}(\hat{\bar{Y}}_R) = \frac{1}{N^2} \left(\sum_{i \in s} \frac{\hat{V}_R(r_i)}{\pi_i} + \hat{V}(r) \right)$$

In cases where the population size N is unknown, we consider Hájek-type estimators for the mean:

$$\hat{Y}_{RH} = \frac{\sum_{i \in s} r_i}{\sum_{i \in s} \frac{1}{\pi_i}}$$

and Taylor-series linearization variance estimation of the ratio (Wolter, 2007) is used.

In qualitative models, the values r_i and $\hat{V}_R(r_i)$ for $i \in s$ are described in each model.

In some quantitative models, the values r_i and $\hat{V}_R(r_i)$ for $i \in s$ are calculated in a general form (Arcos et al, 2015) as follows:

The randomized response given by the person i is

$$z_i = \begin{cases}
 y_i & \text{with probability } p_1 \\
 y_iS_1 + S_2 & \text{with probability } p_2 \\
 S_3 & \text{with probability } p_3
\end{cases}$$

with $p_1 + p_2 + p_3 = 1$ and where S_1, S_2 and S_3 are scramble variables whose distributions are assumed to be known. We denote by μ_i and σ_i respectively the mean and standard deviation of the variable S_i, $(i = 1, 2, 3)$.

The transformed variable is

$$r_i = \frac{z_i - p_2\mu_2 - p_3\mu_3}{p_1 + p_2\mu_1}$$

its variance is

$$V_R(r_i) = \frac{1}{(p_1 + p_2\mu_1)^2} (y_i^2A + y_iB + C)$$

where

$$A = p_1(1 - p_1) + \sigma_1^2 p_2 + \mu_1^2 p_2 - \mu_1^2 p_2^2 - 2p_1p_2\mu_1$$

$$B = 2p_2\mu_1\mu_2 - 2\mu_1\mu_2 p_2^2 - 2p_1p_2\mu_2 - 2\mu_3\mu_1 p_3 - 2\mu_1\mu_3 p_2 p_3$$

$$C = (\sigma_2^2 + \mu_2^2) p_2 + (\sigma_3^2 + \mu_3^2) p_3 - (\mu_2^2 + \mu_3^2 p_3)^2$$
and the estimated variance is

\[\hat{V}_R(r_i) = \frac{1}{(p_1 \cdot p_2 + \mu_1)^2} (r_i^2 A + r_i B + C). \]

Some of the quantitative techniques considered can be viewed as particular cases of the above described procedure. Other models are described in the respective function.

Alternatively, the variance can be estimated using certain resampling methods.

Author(s)

Beatriz Cobo Rodríguez, Department of Statistics and Operations Research. University of Granada <beacr@ugr.es>

María del Mar Rueda García, Department of Statistics and Operations Research. University of Granada <mrueda@ugr.es>

Antonio Arcos Cebrián, Department of Statistics and Operations Research. University of Granada <arcos@ugr.es>

Maintainer: Beatriz Cobo Rodríguez <beacr@ugr.es>

References

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the BarLev model. The function can also return the transformed variable. The BarLev model was proposed by Bar-Lev et al. in 2004.

Usage

BarLev(z,p,mu,sigma,pi,type=c("total","mean"),cl=NULL,pij=NULL)
Arguments

- **z**: vector of the observed variable; its length is equal to \(n \) (the sample size)
- **p**: probability of direct response
- **mu**: mean of the scramble variable \(S \)
- **sigma**: standard deviation of the scramble variable \(S \)
- **pi**: vector of the first-order inclusion probabilities
- **type**: the estimator type: total or mean
- **cl**: confidence level
- **N**: size of the population. By default it is NULL
- **pij**: matrix of the second-order inclusion probabilities. By default it is NULL

Details

The randomized response given by the person \(i \) is

\[
 z_i = \begin{cases}
 y_i & \text{with probability } p \\
 y_i S & \text{with probability } 1 - p
 \end{cases}
\]

where \(S \) is a scramble variable, whose mean \(\mu \) and standard deviation \(\sigma \) are known.

Value

Point and confidence estimates of the sensitive characteristics using the BarLev model. The transformed variable is also reported, if required.

References

See Also

- `BarLevData`
- `ResamplingVariance`

Examples

```r
data(BarLevData)
dat=with(BarLevData,data.frame(z,Pi))
p=0.6
mu=1
sigma=1
cl=0.95
BarLev(dat$z,p,mu,sigma,dat$Pi,"total",cl)
```
Description

This data set contains observations from a randomized response survey conducted in a population of 2396 industrial companies in a city to investigate their income. The sample is drawn by stratified sampling with probabilities proportional to the size of the company. The randomized response technique used is the BarLev model (Bar-Lev et al, 2004) with parameter $p = 0.6$ and scramble variable $S = exp(1)$.

Usage

BarLevData

Format

A data frame containing 370 observations of a sample of companies divided into three strata. The variables are:

- ID: Survey ID
- ST: Strata ID
- z: The randomized response to the question: What was the company’s income in the previous fiscal year?
- Pi: first-order inclusion probabilities

References

See Also

BarLev

Examples

data(BarLevData)
ChaudhuriChristofides Chaudhuri-Christofides model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Chaudhuri-Christofides model. The function can also return the transformed variable. The Chaudhuri-Christofides model can be seen in Chaudhuri and Christofides (2013, page 97).

Usage

ChaudhuriChristofides(z,mu,sigma,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)

Arguments

- z vector of the observed variable; its length is equal to n (the sample size)
- mu vector with the means of the scramble variables
- sigma vector with the standard deviations of the scramble variables
- pi vector of the first-order inclusion probabilities
- type the estimator type: total or mean
- cl confidence level
- N size of the population. By default it is NULL
- pij matrix of the second-order inclusion probabilities. By default it is NULL

Details

The randomized response given by the person i is $z_i = y_i S_1 + S_2$ where S_1, S_2 are scramble variables, whose mean μ and standard deviation σ are known.

Value

Point and confidence estimates of the sensitive characteristics using the Chaudhuri-Christofides model. The transformed variable is also reported, if required.

References

See Also

ChaudhuriChristofidesData
ChaudhuriChristofidesDatapij
ResamplingVariance
Examples

N=417
data(ChaudhuriChristofidesData)
dat=with(ChaudhuriChristofidesData.data.frame(z,Pi))
mu=c(6,6)
sigma=sqrt(c(10,10))
c1=0.95
data(ChaudhuriChristofidesDatapij)
ChaudhuriChristofides(dat$z,mu,sigma,dat$Pi,"mean",c1,pij=ChaudhuriChristofidesDatapij)

ChaudhuriChristofidesData

Randomized Response Survey on agricultural subsidies

Description

This data set contains observations from a randomized response survey conducted in a population of 417 individuals in a municipality to investigate the agricultural subsidies. The sample is drawn by sampling with unequal probabilities (probability proportional to agricultural subsidies in the previous year). The randomized response technique used is the Chaudhuri-Christofides model (Chaudhuri and Christofides, 2013) with scramble variables $S_1 = U(1, ..., 11)$ and $S_2 = U(1, ..., 11)$.

Usage

ChaudhuriChristofidesData

Format

A data frame containing 100 observations. The variables are:

- **ID**: Survey ID
- **z**: The randomized response to the question: What are your annual agricultural subsidies?
- **Pi**: first-order inclusion probabilities

References

See Also

ChaudhuriChristofides
ChaudhuriChristofidesDatapij

Examples

data(ChaudhuriChristofidesData)
ChaudhuriChristofidesDatapij

Matrix of the second-order inclusion probabilities

Description

This dataset consists of a square matrix of dimension 100 with the first and second order inclusion probabilities for the units included in sample s, drawn from a population of size $N = 417$ according to a sampling with unequal probabilities (probability proportional to agricultural subsidies in the previous year).

Usage

ChaudhuriChristofidesDatapij

See Also

ChaudhuriChristofides
ChaudhuriChristofidesData

Examples

data(ChaudhuriChristofidesDatapij)
Now, let select only the first-order inclusion probabilities
diag(ChaudhuriChristofidesDatapij)

Christofides

Christofides model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Christofides model. The function can also return the transformed variable. The Christofides model was proposed by Christofides in 2003.

Usage

Christofides(z, mm, pm, pi, type=c("total","mean"), cl=NULL, pij=NULL)
Arguments

- `z` vector of the observed variable; its length is equal to `n` (the sample size)
- `mm` vector with the marks of the cards
- `pm` vector with the probabilities of previous marks
- `pi` vector of the first-order inclusion probabilities
- `type` the estimator type: total or mean
- `cl` confidence level
- `N` size of the population. By default it is NULL
- `pij` matrix of the second-order inclusion probabilities. By default it is NULL

Details

In the Christofides randomized response technique, a sampled person `i` is given a box with identical cards, each bearing a separate mark as `1, ..., k, ..., m` with `m ≥ 2` but in known proportions `p_1, ..., p_k, ..., p_m` with `0 < p_k < 1` for `k = 1, ..., m` and `\sum_{k=1}^{m} p_k = 1`. The person sampled is requested to draw one of the cards and respond

\[z_i = \begin{cases}
k & \text{if a card marked } k \text{ is drawn and the person bears } A_c \\
 m - k + 1 & \text{if a card marked } k \text{ is drawn but the person bears } A
\end{cases} \]

The transformed variable is \[r_i = \frac{z_i - \mu}{m + 1 - 2\mu - \mu^2} \] where \(\mu = \sum_{k=1}^{m} k p_k \) and the estimated variance is \(\hat{V}_R(r_i) = \frac{V_R(k)}{(m + 1 - 2\mu - \mu^2)^2} \), where \(V_R(k) = \sum_{k=1}^{m} k^2 p_k - \mu^2 \).

Value

Point and confidence estimates of the sensitive characteristics using the Christofides model. The transformed variable is also reported, if required.

References

See Also

- `ChristofidesData`
- `ResamplingVariance`

Examples

```r
N=802
data(ChristofidesData)
dat=with(ChristofidesData,data.frame(z,pi))
mm=c(1,2,3,4,5)
pm=c(0.1,0.2,0.3,0.2,0.2)
cl=0.95
Christofides(dat$z,mm,dat$pi,"mean",cl,N)
```
ChristofidesData Data Description

This data set contains observations from a randomized response survey conducted in a university to investigate eating disorders. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Christofides model (Christofides, 2003) with parameters, $mm = (1, 2, 3, 4, 5)$ and $pm = (0.1, 0.2, 0.3, 0.2, 0.2)$.

Usage

ChristofidesData

Format

A data frame containing 150 observations from a population of $N = 802$ students. The variables are:

- ID: Survey ID of student respondent
- z: The randomized response to the question: Do you have problems of anorexia or bulimia?
- Pi: first-order inclusion probabilities

References

See Also

Christofides

Examples

data(ChristofidesData)

Devore Data Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Devore model. The function can also return the transformed variable. The Devore model was proposed by Devore in 1977.
Usage

Devore(z,p,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)

Arguments

- **z**: vector of the observed variable; its length is equal to \(n \) (the sample size)
- **p**: proportion of cards bearing the mark \(A \)
- **pi**: vector of the first-order inclusion probabilities
- **type**: the estimator type: total or mean
- **cl**: confidence level
- **N**: size of the population. By default it is NULL
- **pij**: matrix of the second-order inclusion probabilities. By default it is NULL

Details

In the Devore model, the randomized response device presents to the sampled person labelled \(i \) a box containing a large number of identical cards with a proportion \(p \), \((0 < p < 1)\) bearing the mark \(A \) and the rest marked \(B \) (an innocuous attribute). The response solicited denoted by \(z_i \) takes the value \(y_i \) if \(i \) bears \(A \) and the card drawn is marked \(A \). Otherwise \(z_i \) takes the value 1.

The transformed variable is \(r_i = \frac{z_i - (1-p)}{p} \) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1) \).

Value

Point and confidence estimates of the sensitive characteristics using the Devore model. The transformed variable is also reported, if required.

References

See Also

- DevoreData
- ResamplingVariance

Examples

data(DevoreData)
dat=with(DevoreData,data.frame(z,pi))
p=0.7
cl=0.95
Devore(datz,p,datpi,"total",cl)
Description

This data set contains observations from a randomized response survey conducted in a university to investigate the use of instant messaging. The sample is drawn by stratified sampling by academic year. The randomized response technique used is the Devore model (Devore, 1977) with parameter \(p = 0.7 \). The unrelated question is: Are you alive?

Usage

DevoreData

Format

A data frame containing 240 observations divided into four strata. The sample is selected from a population of \(N = 802 \) students. The variables are:

- ID: Survey ID of student respondent
- ST: Strata ID
- \(z \): The randomized response to the question: Do you use whatsapp / line or similar instant messaging while you study?
- \(Pi \): first-order inclusion probabilities

References

See Also

Devore

Examples

data(DevoreData)
Diana-Perrí 1 model

Description
Computes the randomized response estimation, its variance estimation and its confidence interval through the Diana-Perrí-1 model. The function can also return the transformed variable. The Diana-Perrí-1 model was proposed by Diana and Perri (2010, page 1877).

Usage
DianaPerrí1(z, p, mu, pi, type=c("total", "mean"), cl=NULL, method="srswr")

Arguments
- `z`: vector of the observed variable; its length is equal to `n` (the sample size)
- `p`: probability of direct response
- `mu`: vector with the means of the scramble variables \(W\) and \(U\)
- `pi`: vector of the first-order inclusion probabilities
- `type`: the estimator type: total or mean
- `cl`: confidence level
- `N`: size of the population. By default it is NULL
- `method`: method used to draw the sample: srswr or srswor. By default it is srswr

Details
In the Diana-Perrí-1 model let \(p \in [0, 1]\) be a design parameter, controlled by the experimenter, which is used to randomize the response as follows: with probability \(p\) the interviewer responds with the true value of the sensitive variable, whereas with probability \(1 - p\) the respondent gives a coded value, \(z_i = W(y_i + U)\) where \(W, U\) are scramble variables whose distribution is assumed to be known.

To estimate \(\bar{Y}\) a sample of respondents is selected according to simple random sampling with replacement. The transformed variable is

\[
r_i = \frac{z_i - (1 - p)\mu_W\mu_U}{p + (1 - p)\mu_W}
\]

where \(\mu_W, \mu_U\) are the means of \(W, U\) scramble variables, respectively.

The estimated variance in this model is

\[
\hat{V}(\hat{\bar{Y}}_R) = \frac{s_z^2}{n(p + (1 - p)\mu_W)^2}
\]

where \(s_z^2 = \sum_{i=1}^{\bar{n}} \frac{(z_i - \bar{z})^2}{n-1}\).

If the sample is selected by simple random sampling without replacement, the estimated variance is

\[
\hat{V}(\hat{\bar{Y}}_R) = \frac{s_z^2}{n(p + (1 - p)\mu_W)^2} \left(1 - \frac{n}{N}\right)
\]
Value

Point and confidence estimates of the sensitive characteristics using the Diana-Perri-1 model. The transformed variable is also reported, if required.

References

See Also

DianaPerri1Data
DianaPerri2
ResamplingVariance

Examples

```r
N=417
data(DianaPerri1Data)
dat=with(DianaPerri1Data, data.frame(z, Pi))
p=0.6
mu=c(5/3, 5/3)
c1=0.95
DianaPerri1(dat$z, p, dat$Pi, "mean", c1, N, "srswor")
```

DianaPerri1Data Randomized Response Survey on defrauded taxes

Description

This data set contains observations from a randomized response survey conducted in a population of 417 individuals in a municipality to investigate defrauded taxes. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Diana and Perri 1 model (Diana and Perri, 2010) with parameters $p = 0.6$, $W = F(10, 5)$ and $U = F(5, 5)$.

Usage

DianaPerri1Data

Format

A data frame containing 150 observations from a population of $N = 417$. The variables are:

- **ID**: Survey ID
- **z**: The randomized response to the question: What quantity of your agricultural subsidy do you declare in your income tax return?
- **Pi**: first-order inclusion probabilities
References

See Also

DianaPerri

Examples

data(DianaPerri1Data)

DianaPerri2 Diana-Perri-2 model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Diana-Perri-2 model. The function can also return the transformed variable. The Diana-Perri-2 model was proposed by Diana and Perri (2010, page 1879).

Usage

DianaPerri2(z,mu,beta,pi,type=c("total","mean"),cl=NULL,method="srswr")

Arguments

z vector of the observed variable; its length is equal to n (the sample size)
mu vector with the means of the scramble variables W and U
beta the constant of weighting
pi vector of the first-order inclusion probabilities
type the estimator type: total or mean
cl confidence level
N size of the population. By default it is NULL
method method used to draw the sample: srswr or srswor. By default it is srswr

Details

In the Diana-Perri-2 model, each respondent is asked to report the scrambled response \(z_i = W(\beta U + (1-\beta)y_i) \) where \(\beta \in [0,1) \) is a suitable constant controlled by the researcher and \(W, U \) are scramble variables whose distribution is assumed to be known.

To estimate \(\bar{Y} \) a sample of respondents is selected according to simple random sampling with replacement. The transformed variable is

\[
r_i = \frac{z_i - \beta \mu_W \mu_U}{(1-\beta)\mu_W}
\]
where \(\mu_W, \mu_U \) are the means of \(W, U \) scramble variables, respectively.

The estimated variance in this model is

\[
\hat{V}(\hat{Y}_R) = \frac{s^2_z}{n(1-\beta)^2 \mu_W^2}
\]

where \(s^2_z = \sum_{i=1}^{n} \frac{(z_i - \bar{z})^2}{n-1} \).

If the sample is selected by simple random sampling without replacement, the estimated variance is

\[
\hat{V}(\hat{Y}_R) = \frac{s^2_z}{n(1-\beta)^2 \mu_W^2} \left(1 - \frac{n}{N} \right)
\]

Value

Point and confidence estimates of the sensitive characteristics using the Diana-Perri-2 model. The transformed variable is also reported, if required.

References

See Also

DianaPerri2Data
DianaPerri1
ResamplingVariance

Examples

```r
N=100000
data(DianaPerri2Data)
dat=with(DianaPerri2Data,data.frame(z,pi))
beta=0.8
mu=c(50/48,5/3)
cl=0.95
DianaPerri2(dat$z,mu,beta,dat$pi,"mean",cl,N,"srswor")
```

Description

This data set contains observations from a simulated randomized response survey. The interest variable is a normal distribution with mean 1500 and standard deviation 4. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Diana and Perri 2 model (Diana and Perri, 2010) with parameters \(W = F(10,50), U = F(1,5) \) and \(\beta = 0.8 \).
EichhornHayre

Usage

DianaPerri2Data

Format

A data frame containing 1000 observations from a population of $N = 100000$. The variables are:

- ID: Survey ID
- z: The randomized response
- Pi: first-order inclusion probabilities

References

See Also

DianaPerri2

Examples

data(DianaPerri2Data)

EichhornHayre Eichhorn-Hayre model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Eichhorn-Hayre model. The function can also return the transformed variable. The Eichhorn-Hayre model was proposed by Eichhorn and Hayre in 1983.

Usage

EichhornHayre(z,mu,sigma,pi,type=c("total","mean"),cl=N=NULL,pij=NULL)

Arguments

- z: vector of the observed variable; its length is equal to n (the sample size)
- mu: mean of the scramble variable S
- sigma: standard deviation of the scramble variable S
- pi: vector of the first-order inclusion probabilities
- type: the estimator type: total or mean
- cl: confidence level
- N: size of the population. By default it is NULL
- pij: matrix of the second-order inclusion probabilities. By default it is NULL
Details

The randomized response given by the person labelled i is $z_i = y_i S$ where S is a scramble variable whose distribution is assumed to be known.

Value

Point and confidence estimates of the sensitive characteristics using the Eichhorn-Hayre model. The transformed variable is also reported, if required.

References

See Also

EichhornHayreData
ResamplingVariance

Examples

data(EichhornHayreData)
dat=with(EichhornHayreData, data.frame(z, Pi))
mu=1.111111
sigma=0.5414886
cl=0.95
#This line returns a warning showing why the variance estimation is not possible.
#See ResamplingVariance for several alternatives.
EichhornHayre(dat$z, mu, sigma, dat$Pi, "mean", cl)

Description

This data set contains observations from a randomized response survey conducted in a population of families to investigate their income. The sample is drawn by stratified sampling by house ownership. The randomized response technique used is the Eichhorn and Hayre model (Eichhorn and Hayre, 1983) with scramble variable $S = F(20, 20)$.

Usage

EichhornHayreData
Format

A data frame containing 150 observations of a sample extracted from a population of families divided into two strata. The variables are:

- **ID**: Survey ID
- **ST**: Strata ID
- **z**: The randomized response to the question: What is the annual household income?
- **Pi**: first-order inclusion probabilities

References

See Also

`EichhornHayre`

Examples

```r
data(EichhornHayreData)
```

<table>
<thead>
<tr>
<th>Eriksson</th>
<th>Eriksson model</th>
</tr>
</thead>
</table>

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Eriksson model. The function can also return the transformed variable. The Eriksson model was proposed by Eriksson in 1973.

Usage

```r
Eriksson(z,p, mu, sigma, pi, type=c("total","mean"), cl, N=NULL, pij=NULL)
```

Arguments

- **z**: vector of the observed variable; its length is equal to \(n \) (the sample size)
- **p**: probability of direct response
- **mu**: mean of the scramble variable \(S \)
- **sigma**: standard deviation of the scramble variable \(S \)
- **pi**: vector of the first-order inclusion probabilities
- **type**: the estimator type: total or mean
- **cl**: confidence level
- **N**: size of the population. By default it is NULL
- **pij**: matrix of the second-order inclusion probabilities. By default it is NULL
Details

The randomized response given by the person labelled \(i \) is \(y_i \) with probability \(p \) and a discrete uniform variable \(S \) with probabilities \(q_1, q_2, \ldots, q_j \) verifying \(q_1 + q_2 + \ldots + q_j = 1 - p \).

Value

Point and confidence estimates of the sensitive characteristics using the Eriksson model. The transformed variable is also reported, if required.

References

See Also

ErikssonData

ResamplingVariance

Examples

```r
N=53376
data(ErikssonData)
dat=with(ErikssonData,data.frame(z,Pi))
p=0.5
mu=mean(c(0,1,3,5,8))
sigma=sqrt(4/5*var(c(0,1,3,5,8)))
cl=0.95
Eriksson(dat$z,p,mu,sigma,dat$Pi,"mean",cl,N)
```

Description

This data set contains observations from a randomized response survey conducted in a university to investigate cheating behaviour in exams. The sample is drawn by stratified sampling by university faculty with uniform allocation. The randomized response technique used is the Eriksson model (Eriksson, 1973) with parameter \(p = 0.5 \) and \(S \) a discrete uniform variable at the points \(0,1,3,5,8 \). The data were used by Arcos et al. (2015).

Usage

ErikssonData
Format

A data frame containing 102 students of a sample extracted from a population of $N = 53376$ divided into four strata. The variables are:

- ID: Survey ID of student respondent
- ST: Strata ID
- z: The randomized response to the question: How many times have you cheated in an exam in the past year?
- Pi: first-order inclusion probabilities

References

See Also

Eriksson

Examples

data(ErikssonData)

ForcedResponse Forced-Response model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Forced-Response model. The function can also return the transformed variable. The Forced-Response model was proposed by Boruch in 1972.

Usage

ForcedResponse(z,p1,p2,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)

Arguments

z vector of the observed variable; its length is equal to n (the sample size)
p1 proportion of cards marked "Yes"
p2 proportion of cards marked "No"
pi vector of the first-order inclusion probabilities
type the estimator type: total or mean
ForcedResponse

cl confidence level
N size of the population. By default it is NULL
pij matrix of the second-order inclusion probabilities. By default it is NULL

Details
In the Forced-Response scheme, the sampled person \(i\) is offered a box with cards: some are marked "Yes" with a proportion \(p_1\), some are marked "No" with a proportion \(p_2\) and the rest are marked "Genuine", in the remaining proportion \(p_3 = 1 - p_1 - p_2\), where \(0 < p_1, p_2 < 1, p_1 \neq p_2, p_1 + p_2 < 1\). The person is requested to randomly draw one of them, to observe the mark on the card, and to respond

\[
z_i = \begin{cases}
1 & \text{if the card is type "Yes"} \\
0 & \text{if the card is type "No"} \\
y_i & \text{if the card is type "Genuine"}
\end{cases}
\]

The transformed variable is \(r_i = \frac{z_i - p_1}{1 - p_1 - p_2}\) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1)\).

Value
Point and confidence estimates of the sensitive characteristics using the Forced-Response model. The transformed variable is also reported, if required.

References

See Also
ForcedResponseData
ForcedResponseDataSt
ResamplingVariance

Examples
```r
data(ForcedResponseData)
dat=with(ForcedResponseData,data.frame(z,Pi))
p1=0.2
p2=0.2
c1=0.95
ForcedResponse(dat$z,p1,p2,dat$Pi,"total",c1)
```

```r
#Forced Response with strata
data(ForcedResponseDataSt)
dat=with(ForcedResponseDataSt,data.frame(ST,z,Pi))
p1=0.2
p2=0.2
c1=0.95
ForcedResponse(dat$z,p1,p2,dat$Pi,"total",c1)
```
ForcedResponseData

Randomized Response Survey of a simulated population

Description

This data set contains observations from a randomized response survey obtained from a simulated population. The main variable is a binomial distribution with a probability 0.5. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Forced Response model (Boruch, 1972) with parameters $p_1 = 0.2$ and $p_2 = 0.2$.

Usage

ForcedResponseData

Format

A data frame containing 1000 observations from a population of $N = 10000$. The variables are:

- ID: Survey ID
- z: The randomized response
- Pi: first-order inclusion probabilities

References

See Also

ForcedResponse

Examples

data(ForcedResponseData)

ForcedResponseDataSt

Randomized Response Survey on infertility

Description

This data set contains observations from a randomized response survey to determine the prevalence of infertility among women of childbearing age in a population-base study. The sample is drawn by stratified sampling. The randomized response technique used is the Forced Response model (Boruch, 1972) with parameters $p_1 = 0.2$ and $p_2 = 0.2$.
Usage

ForcedResponseDataSt

Format

A data frame containing 442 observations. The variables are:

- ID: Survey ID
- ST: Strata ID
- z: The randomized response to the question: Did you ever have some medical treatment for the infertility?
- Pi: first-order inclusion probabilities

References

See Also

ForcedResponse

Examples

data(ForcedResponseDataSt)

<table>
<thead>
<tr>
<th>Horvitz</th>
<th>Horvitz model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Horvitz model. The function can also return the transformed variable. The Horvitz model was proposed by Horvitz et al. (1967) and by Greenberg et al. (1969).

Usage

Horvitz(z,p,alpha,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)

Arguments

- z: vector of the observed variable; its length is equal to n (the sample size)
- p: proportion of marked cards with the sensitive question
- alpha: proportion of people with the innocuous attribute
- pi: vector of the first-order inclusion probabilities
- type: the estimator type: total or mean
Horvitz

cl confidence level
N size of the population. By default it is NULL
pij matrix of the second-order inclusion probabilities. By default it is NULL

Details

In the Horvitz model, the randomized response device presents to the sampled person labelled \(i \) a box containing a large number of identical cards, with a proportion \(p, (0 < p < 1) \) bearing the mark \(A \) and the rest marked \(B \) (an innocuous attribute whose population proportion \(\alpha \) is known). The response solicited denoted by \(z_i \) takes the value \(y_i \) if \(i \) bears \(A \) and the card drawn is marked \(A \) or if \(i \) bears \(B \) and the card drawn is marked \(B \). Otherwise \(z_i \) takes the value 0.

The transformed variable is \(r_i = \frac{z_i - (1 - p)\alpha}{p} \) and the estimated variance is \(\tilde{V}_H(r_i) = r_i(r_i - 1) \).

Value

Point and confidence estimates of the sensitive characteristics using the Horvitz model. The transformed variable is also reported, if required.

References

See Also

HorvitzData
HorvitzDataStCl
HorvitzDataRealSurvey
HorvitzUB
SoberanisCruz
ResamplingVariance

Examples

n=10777
data(HorvitzData)
dat=with(HorvitzData, data.frame(z, Pi))
p=0.5
alpha=0.6666667
cl=0.95
Horvitz(dat$z, p, alpha, dat$Pi, "mean", cl, N)

#Horvitz real survey
N=10777
n=710
This data set contains observations from a randomized response survey conducted in a university to investigate bullying. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Horvitz model (Horvitz et al., 1967 and Greenberg et al., 1969) with parameter \(p = 0.5 \). The unrelated question is: Were you born between the 1st and 20th of the month? with \(\alpha = 0.6666667 \).

Usage

HorvitzData

Format

A data frame containing a sample of 411 observations from a population of \(N = 10777 \) students. The variables are:

- ID: Survey ID of student respondent
- z: The randomized response to the question: Have you been bullied?
- Pi: first-order inclusion probabilities

References

See Also

Horvitz

Examples

data(HorvitzData)
Description

This data set contains observations from a randomized response survey conducted in a university to sensitive questions described below. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Horvitz model (Horvitz et al., 1967 and Greenberg et al., 1969) with parameter \(p = 0.5 \). Each sensitive question is associated with a unrelated question.

1. Were you born in July? with \(\alpha = 1/12 \)
2. Does your ID number end in 2? with \(\alpha = 1/10 \)
3. Were you born of 1 to 20 of the month? with \(\alpha = 20/30 \)
4. Does your ID number end in 5? with \(\alpha = 1/10 \)
5. Were you born of 15 to 25 of the month? with \(\alpha = 10/30 \)
6. Were you born in April? with \(\alpha = 1/12 \)

Usage

HorvitzData

Format

A data frame containing a sample of 710 observations from a population of \(N = 10777 \) students. The variables are:

- copied: The randomized response to the question: Have you ever copied in an exam?
- fought: The randomized response to the question: Have you ever fought with a teacher?
- bullied: The randomized response to the question: Have you been bullied?
- bullying: The randomized response to the question: Have you ever bullied someone?
- drug: The randomized response to the question: Have you ever taken drugs on the campus?
- sex: The randomized response to the question: Have you had sex on the premises of the university?

References

See Also

Horvitz
Examples
data(HorvitzDataRealSurvey)

HorvitzDataStCl
Randomized Response Survey on infidelity

Description

This data set contains observations from a randomized response survey conducted in a university to investigate the infidelity. The sample is drawn by stratified (by faculty) cluster (by group) sampling. The randomized response technique used is the Horvitz model (Horvitz et al., 1967 and Greenberg et al., 1969) with parameter \(p = 0.6 \). The unrelated question is: Does your identity card end in an odd number? with a probability \(\alpha = 0.5 \).

Usage

`HorvitzDataStCl`

Format

A data frame containing 365 observations from a population of \(N = 1500 \) students divided into two strata. The first strata has 14 cluster and the second has 11 cluster. The variables are:

- **ID**: Survey ID of student respondent
- **ST**: Strata ID
- **CL**: Cluster ID
- **z**: The randomized response to the question: Have you ever been unfaithful?
- **Pi**: first-order inclusion probabilities

References

See Also

`Horvitz`

Examples

data(HorvitzDataStCl)
Horvitz-UB model

Description
Computes the randomized response estimation, its variance estimation and its confidence interval through the Horvitz model (Horvitz et al., 1967, and Greenberg et al., 1969) when the proportion of people bearing the innocuous attribute is unknown. The function can also return the transformed variable. The Horvitz-UB model can be seen in Chaudhuri (2011, page 42).

Usage

```r
HorvitzUB(I, J, p1, p2, pi, type = c("total", "mean"), cl, N = NULL, pij = NULL)
```

Arguments

- `I`: first vector of the observed variable; its length is equal to `n` (the sample size)
- `J`: second vector of the observed variable; its length is equal to `n` (the sample size)
- `p1`: proportion of marked cards with the sensitive attribute in the first box
- `p2`: proportion of marked cards with the sensitive attribute in the second box
- `pi`: vector of the first-order inclusion probabilities
- `type`: the estimator type: total or mean
- `cl`: confidence level
- `N`: size of the population. By default it is NULL
- `pij`: matrix of the second-order inclusion probabilities. By default it is NULL

Details

In the Horvitz model, when the population proportion \(\alpha \) is not known, two independent samples are taken. Two boxes are filled with a large number of similar cards except that in the first box a proportion \(p_1 (0 < p_1 < 1) \) of them is marked \(A \) and the complementary proportion \((1 - p_1) \) each bearing the mark \(B \), while in the second box these proportions are \(p_2 \) and \(1 - p_2 \), maintaining \(p_2 \) different from \(p_1 \). A sample is chosen and every person sampled is requested to draw one card randomly from the first box and to repeat this independently with the second box. In the first case, a randomized response should be given, as

\[
I_{i} = \begin{cases}
1 & \text{if card type draws "matches" the sensitive trait } A \text{ or the innocuous trait } B \\
0 & \text{if there is "no match" with the first box}
\end{cases}
\]

and the second case given a randomized response as

\[
J_{i} = \begin{cases}
1 & \text{if there is "match" for the second box} \\
0 & \text{if there is "no match" for the second box}
\end{cases}
\]

The transformed variable is \(r_i = \frac{(1-p_2)I_i - (1-p_1)J_i}{p_1-p_2} \) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1) \).
Value

Point and confidence estimates of the sensitive characteristics using the Horvitz-UB model. The transformed variable is also reported, if required.

References

See Also

HorvitzUBData
Horvitz
ResamplingVariance

Examples

N=802
data(HorvitzUBData)
dat=with(HorvitzUBData,data.frame(I,J,Pi))
p1=0.6
p2=0.7
c1=0.95
HorvitzUB(datI,datJ,p1,p2,dat$Pi,"mean",c1,N)

HorvitzUBData Randomized Response Survey on drugs use

Description

This data set contains observations from a randomized response survey conducted in a university to investigate drugs use. The sample is drawn by cluster sampling with the probabilities proportional to the size. The randomized response technique used is the Horvitz-UB model (Chaudhuri, 2011) with parameters \(p_1 = 0.6 \) and \(p_2 = 0.7 \).

Usage

HorvitzUBData
Format

A data frame containing a sample of 188 observations from a population of $N = 802$ students divided into four cluster. The variables are:

- **ID**: Survey ID of student respondent
- **CL**: Cluster ID
- **I**: The first randomized response to the question: Have you ever used drugs?
- **J**: The second randomized response to the question: Have you ever used drugs?
- **Pi**: first-order inclusion probabilities

References

See Also

HorvitzUB

Examples

```r
data(HorvitzUBData)
```

Kuk

<table>
<thead>
<tr>
<th>Kuk model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuk</td>
</tr>
</tbody>
</table>

Description

Computes the randomized response estimation, its variance estimation and its confidence through the Kuk model. The function can also return the transformed variable. The Kuk model was proposed by Kuk in 1990.

Usage

```r
Kuk(z,p1,p2,k,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)
```
Arguments

- z: vector of the observed variable; its length is equal to \(n \) (the sample size)
- p1: proportion of red cards in the first box
- p2: proportion of red cards in the second box
- k: total number of cards drawn
- pi: vector of the first-order inclusion probabilities
- type: the estimator type: total or mean
- cl: confidence level
- N: size of the population. By default it is NULL
- pij: matrix of the second-order inclusion probabilities. By default it is NULL

Details

In the Kuk randomized response technique, the sampled person \(i \) is offered two boxes. Each box contains cards that are identical except in color, either red or white, in sufficiently large numbers with proportions \(p_1 \) and \(1 - p_1 \) in the first and \(p_2 \) and \(1 - p_2 \) in the second (\(p_1 \neq p_2 \)). The person sampled is requested to use the first box, if his/her trait is \(A \) and the second box if his/her trait is \(A^c \) and to make \(k \) independent draws of cards, with replacement each time. The person is asked to report \(z_i = f_i \), the number of times a red card is drawn.

The transformed variable is \(r_i = \frac{f_i}{k} \frac{p_2(p_2 - p_1)}{p_1 - p_2} \) and the estimated variance is \(\hat{V}_R(r_i) = br_i + c \), where \(b = \frac{1 - p_1 - p_2}{k(p_1 - p_2)} \) and \(c = \frac{p_2(p_2 - p_1)}{k(p_1 - p_2)^2} \).

Value

Point and confidence estimates of the sensitive characteristics using the Kuk model. The transformed variable is also reported, if required.

References

See Also

- KukData
- ResamplingVariance

Examples

```r
N=802
data(KukData)
dat=with(KukData,data.frame(z,Pi))
p1=0.6
p2=0.2
k=25
c1=0.95
Kuk(dat$z,p1,p2,k,dat$Pi,"mean",c1,N)
```
KukData

Randomized Response Survey on excessive sexual activity

Description

This data set contains the data from a randomized response survey conducted in a university to investigate excessive sexual activity. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Kuk model (Kuk, 1990) with parameters $p_1 = 0.6$, $p_2 = 0.2$ and $k = 25$.

Usage

KukData

Format

A data frame containing 200 observations from a population of $N = 802$ students. The variables are:

- **ID**: Survey ID of student respondent
- **z**: The randomized response to the question: Do you practice excessive sexual activity?
- **Pi**: first-order inclusion probabilities

References

See Also

Kuk

Examples

```r
data(KukData)
```

Mangat

Mangat model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Mangat model. The function can also return the transformed variable. The Mangat model was proposed by Mangat in 1992.
Usage

Mangat(z,p,alpha,t,pi,type=c("total","mean"),c1,N=NULL,pij=NULL)

Arguments

z vector of the observed variable; its length is equal to \(n \) (the sample size)
p proportion of marked cards with the sensitive attribute in the second box
alpha proportion of people with the innocuous attribute
t proportion of marked cards with "True" in the first box
pi vector of the first-order inclusion probabilities
type the estimator type: total or mean
c1 confidence level
N size of the population. By default it is NULL
pij matrix of the second-order inclusion probabilities. By default it is NULL

Details

In Mangat’s method, there are two boxes, the first containing cards marked "True" and "RR" in proportions \(t \) and \((1-t) \), \((0 < t < 1) \). A person drawing a "True" marked card is asked to tell the truth about bearing \(A \) or \(A^c \). A person drawing and “RR” marked card is then asked to apply Horvitz’s device by drawing a card from a second box with cards marked \(A \) and \(B \) in proportions \(p \) and \((1-p) \). If an \(A \) marked card is now drawn the truthful response will be about bearing the sensitive attribute \(A \) and otherwise about \(B \). The true proportion of people bearing \(A \) is to be estimated but \(\alpha \), the proportion of people bearing the innocuous trait \(B \) unrelated to \(A \), is assumed to be known. The observed variable is

\[
z_i = \begin{cases}
y_i & \text{if a card marked "True" is drawn from the first box}
I_i & \text{if a card marked "RR" is drawn}
\end{cases}
\]

where

\[
I_i = \begin{cases}
1 & \text{if the type of card drawn from the second box matches trait } A \text{ or } B
0 & \text{if the type of card drawn from the second box does not match trait } A \text{ or } B.
\end{cases}
\]

The transformed variable is \(r_i = \frac{z_i - (1-t)(1-p)\alpha}{t+(1-t)p} \) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1) \).

Value

Point and confidence estimates of the sensitive characteristics using the Mangat model. The transformed variable is also reported, if required.

References

MangatSingh

See Also

- MangatUB
- ResamplingVariance

MangatSingh

Mangat-Singh model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Mangat-Singh model. The function can also return the transformed variable. The Mangat-Singh model was proposed by Mangat and Singh in 1990.

Usage

```r
MangatSingh(z, p, t, pi, type=c("total","mean"), cl, N=NULL, pij=NULL)
```

Arguments

- `z`: vector of the observed variable; its length is equal to `n` (the sample size)
- `p`: proportion of marked cards with the sensitive attribute in the second box
- `t`: proportion of marked cards with "True" in the first box
- `pi`: vector of the first-order inclusion probabilities
- `type`: the estimator type: total or mean
- `cl`: confidence level
- `N`: size of the population. By default it is NULL
- `pij`: matrix of the second-order inclusion probabilities. By default it is NULL

Details

In the Mangat-Singh model, the sampled person is offered two boxes of cards. In the first box a known proportion `t`, `(0 < t < 1)` of cards is marked "True" and the remaining ones are marked "RR". One card is to be drawn, observed and returned to the box. If the card drawn is marked "True", then the respondent should respond "Yes" if he/she belongs to the sensitive category, otherwise "No". If the card drawn is marked "RR", then the respondent must use the second box and draw a card from it. This second box contains a proportion `p`, `(0 < p < 1, p \neq 0.5)` of cards marked `A` and the remaining ones are marked `A^c`. If the card drawn from the second box matches his/her status as related to the stigmatizing characteristic, he/she must respond "Yes", otherwise "No". The randomized response from a person labelled `i` is assumed to be:

\[z_i = \begin{cases}
 y_i & \text{if a card marked "True" is drawn from the first box} \\
 I_i & \text{if a card marked "RR" is drawn}
\end{cases} \]

\[I_i = \begin{cases}
 1 & \text{if the "card type" } A \text{ or } A^c \text{ "matches" the genuine trait } A \text{ or } A^c \\
 0 & \text{if a "mismatch" is observed}
\end{cases} \]

The transformed variable is \(r_i = \frac{z_i - (1-t)(1-p)}{t+(1-t)(2p-1)} \) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1) \).
Value

Point and confidence estimates of the sensitive characteristics using the Mangat-Singh model. The transformed variable is also reported, if required.

References

See Also

MangatSinghData
ResamplingVariance

Examples

```r
N=802
data(MangatSinghData)
dat=with(MangatSinghData,data.frame(z,Pi))
p=0.7
t=0.55
c1=0.95
MangatSingh(dat$z,p,t,dat$Pi,"mean",c1,N)
```

Description

This data set contains observations from a randomized response survey conducted in a university to investigate cannabis use. The sample is drawn by stratified sampling by academic year. The randomized response technique used is the Mangat-Singh model (Mangat and Singh, 1990) with parameters \(p = 0.7 \) and \(t = 0.55 \).

Usage

MangatSinghData

Format

A data frame containing 240 observations from a population of \(N = 802 \) students divided into four strata. The variables are:

- ID: Survey ID of student respondent
- ST: Strata ID
- \(z \): The randomized response to the question: Have you ever used cannabis?
- Pi: first-order inclusion probabilities
References

See Also
MangatSingh

Examples
data(MangatSinghData)

Mangat-Singh-Singh model

Description
Computes the randomized response estimation, its variance estimation and its confidence interval through the Mangat-Singh-Singh model. The function can also return the transformed variable. The Mangat-Singh-Singh model was proposed by Mangat, Singh and Singh in 1992.

Usage
MangatSinghSingh(z, p, alpha, pi, type=c("total", "mean"), cl, N=NULL, pij=NULL)

Arguments
- z: vector of the observed variable; its length is equal to n (the sample size)
- p: proportion of marked cards with the sensitive attribute in the box
- alpha: proportion of people with the innocuous attribute
- pi: vector of the first-order inclusion probabilities
- type: the estimator type: total or mean
- cl: confidence level
- N: size of the population. By default it is NULL
- pij: matrix of the second-order inclusion probabilities. By default it is NULL

Details
In the Mangat-Singh-Singh scheme, a person labelled i, if sampled, is offered a box and told to answer "yes" if the person bears A. But if the person bears A then the person is to draw a card from the box with a proportion p(0 < p < 1) of cards marked A and the rest marked B; if the person draws a card marked B he/she is told to say "yes" again if he/she actually bears B; in any other case, "no" is to be answered.

The transformed variable is \(r_i = \frac{z_i - (1-p)\alpha}{1-(1-p)\alpha} \) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1) \).
Value

Point and confidence estimates of the sensitive characteristics using the Mangat-Singh-Singh model. The transformed variable is also reported, if required.

References

See Also

MangatSinghSinghData
MangatSinghSinghUB
ResamplingVariance

Examples

```r
data(MangatSinghSinghData)
dat=with(MangatSinghSinghData,data.frame(z,pi))
p=0.6
alpha=0.5
cl=0.95
MangatSinghSingh(dat$z,p,dat$pi,"total",cl)
```

Description

This data set contains observations from a randomized response survey conducted in a university to investigate internet betting. The sample is drawn by stratified (by faculty) cluster (by group) sampling. The randomized response technique used is the Mangat-Singh-Singh model (Mangat, Singh and Singh, 1992) with parameter $p = 0.6$. The unrelated question is: Does your identity card end in an even number? with a probability $\alpha = 0.5$.

Usage

MangatSinghSinghData

Format

A data frame containing 802 observations from a population of students divided into eight strata. Each strata has a certain number of clusters, totalling 23. The variables are:

- **ID**: Survey ID of student respondent
- **ST**: Strata ID
- **CL**: Cluster ID
• z: The randomized response to the question: In the last year, did you bet on internet?
• Pi: first-order inclusion probabilities

References

See Also
MangatSinghSingh

Examples

data(MangatSinghSinghData)

MangatSinghSinghUB Mangat-Singh-Singh-UB model

Description
Computes the randomized response estimation, its variance estimation and its confidence interval through the Mangat-Singh-Singh model (Mangat et al., 1992) when the proportion of people bearing the innocuous attribute is unknown. The function can also return the transformed variable. The Mangat-Singh-Singh-UB model can be seen in Chauduri (2011, page 54).

Usage
MangatSinghSinghUB(I,J,p1,p2,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>first vector of the observed variable; its length is equal to n (the sample size)</td>
</tr>
<tr>
<td>J</td>
<td>second vector of the observed variable; its length is equal to n (the sample size)</td>
</tr>
<tr>
<td>p1</td>
<td>proportion of marked cards with the sensitive attribute in the first box</td>
</tr>
<tr>
<td>p2</td>
<td>proportion of marked cards with the sensitive attribute in the second box</td>
</tr>
<tr>
<td>pi</td>
<td>vector of the first-order inclusion probabilities</td>
</tr>
<tr>
<td>type</td>
<td>the estimator type: total or mean</td>
</tr>
<tr>
<td>cl</td>
<td>confidence level</td>
</tr>
<tr>
<td>N</td>
<td>size of the population. By default it is NULL</td>
</tr>
<tr>
<td>pij</td>
<td>matrix of the second-order inclusion probabilities. By default it is NULL</td>
</tr>
</tbody>
</table>
Details

A person labelled i who is chosen, is instructed to say "yes" if he/she bears A, and if not, to randomly take a card from a box containing cards marked A, B in proportions p_1 and $(1 - p_1), (0 < p_1 < 1)$; they are then told to report the value x_i if a B-type card is chosen and he/she bears B; otherwise he/she is told to report "No". This entire exercise is to be repeated independently with the second box with A and B-marked cards in proportions p_2 and $(1 - p_2), (0 < p_2 < 1, p_2 \neq p_1)$. Let I_i the first response and J_i the second response for the respondent i.

The transformed variable is $r_i = \frac{(1 - p_2)I_i - (1 - p_1)J_i}{p_1 - p_2}$ and the estimated variance is $\hat{V}_R(r_i) = r_i (r_i - 1)$.

Value

Point and confidence estimates of the sensitive characteristics using the Mangat-Singh-Singh-UB model. The transformed variable is also reported, if required.

References

See Also

MangatSinghSinghUBData
MangatSinghSingh
ResamplingVariance

Examples

N=802
data(MangatSinghSinghUBData)
dat=with(MangatSinghSinghUBData,data.frame(I,J,Pi))
p1=0.6
p2=0.8
c1=0.95
MangatSinghSinghUB(datI,datJ,p1,p2,dat$Pi,"mean",c1,N)
Description

This data set contains observations from a randomized response survey conducted in a university to investigate overuse of the internet. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Mangat-Singh-Singh-UB model (Chaudhuri, 2011) with parameters $p_1 = 0.6$ and $p_2 = 0.8$.

Usage

MangatSinghSinghUBData

Format

A data frame containing 500 observations. The variables are:

- ID: Survey ID of student respondent
- z: The randomized response to the question: Do you spend a lot of time surfing the internet?
- Pi: first-order inclusion probabilities

References

See Also

MangatSinghSinghUB

Examples

data(MangatSinghSinghUBData)

MangatUB Mangat-UB model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Mangat model (Mangat, 1992) when the proportion of people bearing the innocuous attribute is unknown. The function can also return the transformed variable. The Mangat-UB model can be seen in Chaudhuri (2011, page 53).

Usage

MangatUB(I,J,p1,p2,t,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)
Arguments

- I: first vector of the observed variable; its length is equal to \(n \) (the sample size)
- J: second vector of the observed variable; its length is equal to \(n \) (the sample size)
- p1: proportion of marked cards with the sensitive attribute in the second box
- p2: proportion of marked cards with the sensitive attribute in the third box
- t: probability of response to the sensitive questions without using random response in the first box
- pi: vector of the first-order inclusion probabilities
- type: the estimator type: total or mean
- cl: confidence level
- N: size of the population. By default it is NULL
- pij: matrix of the second-order inclusion probabilities. By default it is NULL

Details

In Mangat’s extended scheme, three boxes containing cards are presented to the sampled person, labelled \(i \). The first box contains cards marked "True" and "RR" in proportions \(t \) and \(1 - t \), the second one contains \(A \) and \(B \)-marked cards in proportions \(p_1 \) and \(1 - p_1 \), \(0 < p_1 < 1 \) and the third box contains \(A \) and \(B \)-marked cards in proportions \(p_2 \) and \(1 - p_2 \), \(0 < p_2 < 1 \), \(p_1 \neq p_2 \). The subject is requested to draw a card from the first box. The sample respondent \(i \) is then instructed to tell the truth, using "the first box and if necessary also the second box" and next, independently, to give a second truthful response also using "the first box and if necessary, the third box." Let \(I_i \) represent the first response and \(J_i \) the second response for respondent \(i \).

The transformed variable is

\[
 r_i = \frac{(1-p_2)I_i - (1-p_1)J_i}{p_1 - p_2}
\]

and the estimated variance is

\[
 \hat{V}_R(r_i) = r_i(r_i - 1)
\]

Value

Point and confidence estimates of the sensitive characteristics using the Mangat-UB model. The transformed variable is also reported, if required.

References

See Also

Mangat
ResamplingVariance
ResamplingVariance

Resampling variance of randomized response models

Description
To estimate the variance of the randomized response estimators using resampling methods.

Usage
ResamplingVariance(output, pi, type=c("total", "mean"), option=1, N=NULL, pij=NULL, str=NULL, clu=NULL, srswr=FALSE)

Arguments
- output: output of the qualitative or quantitative method depending on the variable of interest
- pi: vector of the first-order inclusion probabilities. By default it is NULL
- type: the estimator type: total or mean
- option: method used to calculate the variance (1: Jackknife, 2: Escobar-Berger, 3: Campbell-Berger-Skinner). By default it is 1
- N: size of the population
- pij: matrix of the second-order inclusion probabilities. This matrix is necessary for the Escobar-Berger and Campbell-Berger-Skinner options. By default it is NULL
- str: strata ID. This vector is necessary for the Jackknife option. By default it is NULL
- clu: cluster ID. This vector is necessary for the Jackknife option. By default it is NULL
- srswr: variable indicating whether sampling is with replacement. By default it is NULL

Details
Functions to estimate the variance under stratified, cluster and unequal probability sampling by resampling methods (Wolter, 2007). The function ResamplingVariance allows us to choose from three models:
- The Jackknife method (Quenouille, 1949)
- The Escobar-Berger method (Escobar and Berger, 2013)
The Escobar-Berger and Campbell-Berger-Skinner methods are implemented using the functions defined in samplingVarEst package:
VE.EB.SYG.Total.Hajek, VE.EB.SYG.Mean.Hajek;
VE.Jk.CBS.SYG.Total.Hajek, VE.Jk.CBS.SYG.Mean.Hajek
Resampling Variance

(see López, E., Barrios, E., 2014, for a detailed description of its use).

Note: Both methods require the matrix of the second-order inclusion probabilities. When this matrix is not an input, the program will give a warning and, by default, a jackknife method is used.

Value

The resampling variance of the randomized response technique

References

See Also

Warner

ChaudhuriChristofides

EichhornHayre

SoberanisCruz

Horvitz

Examples

```r
N=417
data(ChaudhuriChristofidesData)
dat=with(ChaudhuriChristofidesData,data.frame(z,Pi))
mu=c(6,6)
sigma=sqrt(c(10,10))
cl=0.95
data(ChaudhuriChristofidesDatapij)
out=ChaudhuriChristofides(dat$z,mu,sigma,dat$Pi,"mean",cl,pij=ChaudhuriChristofidesDatapij)
out
ResamplingVariance(out,dat$Pi,"mean",2,N,ChaudhuriChristofidesDatapij)

#Resampling with strata
data(EichhornHayreData)
dat=with(EichhornHayreData,data.frame(ST,z,Pi))
mu=1.111111
```
Saha model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Saha model. The function can also return the transformed variable. The Saha model was proposed by Saha in 2007.

Usage

Saha(z, mu, sigma, pi, type=c("total", "mean"), cl=NULL, method="srswr")

Arguments

- **z**: vector of the observed variable; its length is equal to n (the sample size)
- **mu**: vector with the means of the scramble variables W and U
- **sigma**: vector with the standard deviations of the scramble variables W and U
- **pi**: vector of the first-order inclusion probabilities
- **type**: the estimator type: total or mean
Details

In the Saha model, each respondent selected is asked to report the randomized response \(z_i = W(y_i + U) \) where \(W, U \) are scramble variables whose distribution is assumed to be known.

To estimate \(\bar{Y} \) a sample of respondents is selected according to simple random sampling with replacement. The transformed variable is

\[
r_i = \frac{z_i - \mu_W \mu_U}{\mu_W}
\]

where \(\mu_W, \mu_U \) are the means of \(W, U \) scramble variables respectively.

The estimated variance in this model is

\[
\hat{V}(\hat{\bar{Y}}_R) = \frac{s_z^2}{n\mu_W}
\]

where \(s_z^2 = \sum_{i=1}^{n} \frac{(z_i - \bar{z})^2}{n-1} \).

If the sample is selected by simple random sampling without replacement, the estimated variance is

\[
\hat{V}(\hat{\bar{Y}}_R) = \frac{s_z^2}{n\mu_W} \left(1 - \frac{n}{N}\right)
\]

Value

Point and confidence estimates of the sensitive characteristics using the Saha model. The transformed variable is also reported, if required.

References

See Also

[SahaData](#)

[ResamplingVariance](#)

Examples

```r
N=228
data(SahaData)
dat=with(SahaData,data.frame(z,PI))
mu=c(1.5,5.5)
sigma=sqrt(c(1/12,81/12))
c1=0.95
Saha(dat$z,mu,sigma,dat$PI,"mean",c1,N)
```
SahaData

Randomized Response Survey on spending on alcohol

Description

This data set contains observations from a randomized response survey conducted in a population of students to investigate spending on alcohol. The sample is drawn by simple random sampling with replacement. The randomized response technique used is the Saha model (Saha, 2007) with scramble variables $W = U(1, 2)$ and $U = U(1, 10)$.

Usage

SahaData

Format

A data frame containing 100 observations. The variables are:

- ID: Survey ID
- z: The randomized response to the question: How much money did you spend on alcohol, last weekend?
- Pi: first-order inclusion probabilities

References

See Also

Saha

Examples

data(SahaData)

SinghJoarder

Singh-Joarder model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Singh-Joarder model. The function can also return the transformed variable. The Singh-Joarder model was proposed by Singh and Joarder in 1997.
Usage

SinghJoarder(z,p,pi,type=c("total","mean"),cl=NULL,pij=NULL)

Arguments

z vector of the observed variable; its length is equal to n (the sample size)
p proportion of marked cards with the sensitive question
pi vector of the first-order inclusion probabilities
type the estimator type: total or mean
cl confidence level
N size of the population. By default it is NULL
pij matrix of the second-order inclusion probabilities. By default it is NULL

Details

The basics of the Singh-Joarder scheme are similar to Warner's randomized response device, with the following difference. If a person labelled i bears A he/she is told to say so if so guided by a card drawn from a box of A and A^c marked cards in proportions p and $(1-p)$, $(0 < p < 1)$. However, if he/she bears A and is directed by the card to admit it, he/she is told to postpone the reporting based on the first draw of the card from the box but to report on the basis of a second draw. Therefore,

$$z_i = \begin{cases}
1 & \text{if person } i \text{ responds "Yes"} \\
0 & \text{if person } i \text{ responds "No"}
\end{cases}$$

The transformed variable is $r_i = \frac{z_i - (1-p)}{(2p-1)+p(1-p)}$ and the estimated variance is $\hat{V}_R(r_i) = r_i(r_i - 1)$.

Value

Point and confidence estimates of the sensitive characteristics using the Singh-Joarder model. The transformed variable is also reported, if required.

References

See Also

SinghJoarderData
ResamplingVariance

Examples

N=802
data(SinghJoarderData)
dat=with(SinghJoarderData,data.frame(z,Pi))
p=0.6
cl=0.95
SinghJoarder(datz,datPi,"mean",cl,N)
Randomized Response Survey on compulsive spending

Description

This data set contains observations from a randomized response survey conducted in a university to investigate compulsive spending. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Singh-Joarder model (Singh and Joarder, 1997) with parameter $p = 0.6$.

Usage

SinghJoarderData

Format

A data frame containing 170 observations from a population of $N = 802$ students. The variables are:

- ID: Survey ID of student respondent
- z: The randomized response to the question: Do you have spend compulsively?
- Pi: first-order inclusion probabilities

References

See Also

SinghJoarder

Examples

data(SinghJoarderData)
SoberanisCruz

SoberanisCruz model

Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the SoberanisCruz model. The function can also return the transformed variable. The SoberanisCruz model was proposed by Soberanis Cruz et al. in 2008.

Usage

SoberanisCruz(z, p, alpha, pi, type=c("total", "mean"), cl, N=NULL, pij=NULL)

Arguments

- `z`: vector of the observed variable; its length is equal to \(n \) (the sample size)
- `p`: proportion of marked cards with the sensitive question
- `alpha`: proportion of people with the innocuous attribute
- `pi`: vector of the first-order inclusion probabilities
- `type`: the estimator type: total or mean
- `cl`: confidence level
- `N`: size of the population. By default it is NULL
- `pij`: matrix of the second-order inclusion probabilities. By default it is NULL

Details

The SoberanisCruz model considers the introduction of an innocuous variable correlated with the sensitive variable. This variable does not affect individual sensitivity, and maintains reliability. The sampling procedure is the same as in the Horvitz model.

Value

Point and confidence estimates of the sensitive characteristics using the SoberanisCruz model. The transformed variable is also reported, if required.

References

See Also

SoberanisCruzData
Horvitz
ResamplingVariance
SoberanisCruzData

Examples

```r
data(SoberanisCruzData)
dat=with(SoberanisCruzData,data.frame(z,pi))
p=0.7
alpha=0.5
cl=0.90
SoberanisCruz(dat$z,p,dat$pi,"total",cl)
```

Description

This data set contains observations from a randomized response survey conducted in a population of 1500 families in a Spanish town to investigate speeding. The sample is drawn by cluster sampling by district. The randomized response technique used is the SoberanisCruz model (Soberanis Cruz et al., 2008) with parameter $p = 0.7$. The innocuous question is: Is your car medium/high quality? with $\alpha = 0.5$.

Usage

SoberanisCruzData

Format

A data frame containing 290 observations from a population of $N = 1500$ families divided into twenty cluster. The variables are:

- ID: Survey ID
- CL: Cluster ID
- z: The randomized response to the question: Do you often break the speed limit?
- pi: first-order inclusion probabilities

References

See Also

SoberanisCruz

Examples

```r
data(SoberanisCruzData)
```
Description

Computes the randomized response estimation, its variance estimation and its confidence interval through the Warner model. The function can also return the transformed variable. The Warner model was proposed by Warner in 1965.

Usage

\texttt{warner(z,p,pi,type=c("total","mean"),cl,N=NULL,pij=NULL)}

Arguments

- \texttt{z}: vector of the observed variable; its length is equal to \texttt{n} (the sample size)
- \texttt{p}: proportion of marked cards with the sensitive attribute
- \texttt{pi}: vector of the first-order inclusion probabilities
- \texttt{type}: the estimator type: total or mean
- \texttt{cl}: confidence level
- \texttt{N}: size of the population. By default it is NULL
- \texttt{pij}: matrix of the second-order inclusion probabilities. By default it is NULL

Details

Warner's randomized response device works as follows. A sampled person labelled \texttt{i} is offered a box of a considerable number of identical cards with a proportion \texttt{p}, (0 < \texttt{p} < 1, \texttt{p} \neq 0.5) of them marked \texttt{A} and the rest marked \texttt{A}^c. The person is requested, randomly, to draw one of them, to observe the mark on the card, and to give the response

\[z_i = \begin{cases} 1 & \text{if card type "matches" the trait } A \text{ or } A^c \\ 0 & \text{if a "no match" results} \end{cases} \]

The randomized response is given by \(r_i = \frac{z_i - (1-p)}{2p-1} \) and the estimated variance is \(\hat{V}_R(r_i) = r_i(r_i - 1) \).

Value

Point and confidence estimates of the sensitive characteristics using the Warner model. The transformed variable is also reported, if required.

References

Description

This data set contains observations from a randomized response survey related to alcohol abuse. The sample is drawn by simple random sampling without replacement. The randomized response technique used is the Warner model (Warner, 1965) with parameter \(p = 0.7 \).

Usage

`WarnerData`

Format

A data frame containing 125 observations from a population of \(N = 802 \) students. The variables are:

- **ID**: Survey ID of student respondent
- **z**: The randomized response to the question: During the last month, did you ever have more than five drinks (beer/wine) in succession?
- **Pi**: first-order inclusion probabilities

References

See Also

`Warner`

Examples

```r
data(WarnerData)
```
Index

*Topic BarLev
BarLev, 5

*Topic Boruch
ForcedResponse, 23

*Topic Campbell_Berger_Skinner
ResamplingVariance, 45

*Topic ChaudhuriChristofides
ChaudhuriChristofides, 8

*Topic Christofides
Christofides, 10

*Topic Confidence_interval
BarLev, 5
ChaudhuriChristofides, 8
Christofides, 10
Devore, 12
DianaPerri1, 15
DianaPerri2, 17
EichhornHayre, 19
Eriksson, 21
ForcedResponse, 23
Horvitz, 26
HorvitzUB, 31
Kuk, 33
Mangat, 35
MangatSingh, 37
MangatSinghSingh, 39
MangatSinghSinghUB, 41
MangatUB, 43
Saha, 47
SinghJoarder, 49
SoberanisCruz, 52
Warner, 54

*Topic Devore
Devore, 12

*Topic DianaPerri
DianaPerri1, 15
DianaPerri2, 17

*Topic EichhornHayre
EichhornHayre, 19

*Topic Eriksson
Eriksson, 21

*Topic Escobar_Berger
ResamplingVariance, 45

*Topic Estimation
BarLev, 5
ChaudhuriChristofides, 8
Christofides, 10
Devore, 12
DianaPerri1, 15
DianaPerri2, 17
EichhornHayre, 19
Eriksson, 21
ForcedResponse, 23
Horvitz, 26
HorvitzUB, 31
Kuk, 33
Mangat, 35
MangatSingh, 37
MangatSinghSingh, 39
MangatSinghSinghUB, 41
MangatUB, 43
Saha, 47
SinghJoarder, 49
SoberanisCruz, 52
Warner, 54

*Topic ForcedResponse
ForcedResponse, 23

*Topic Greenberg
Horvitz, 26
HorvitzUB, 31

*Topic Horvitz
Horvitz, 26
HorvitzUB, 31

*Topic Jackknife
ResamplingVariance, 45

*Topic Kuk
Kuk, 33

*Topic MangatSinghSingh

56
<table>
<thead>
<tr>
<th>Index</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangat, 35</td>
<td>13, 14</td>
</tr>
<tr>
<td>MangatSingh, 37</td>
<td>15, 17, 18</td>
</tr>
<tr>
<td>MangatSinghSingh, 39</td>
<td>16, 16</td>
</tr>
<tr>
<td>MangatSinghSinghUB, 41</td>
<td>16, 19</td>
</tr>
<tr>
<td>MangatUB, 43</td>
<td>18, 18</td>
</tr>
<tr>
<td>ResamplingVariance, 45</td>
<td>19, 21, 46</td>
</tr>
<tr>
<td>Saha, 47</td>
<td>22, 22</td>
</tr>
<tr>
<td>SinghJoarder, 49</td>
<td>23, 25, 26</td>
</tr>
<tr>
<td>SoberanisCruz, 52</td>
<td>24, 25</td>
</tr>
<tr>
<td>Warner, 54</td>
<td>24, 25</td>
</tr>
<tr>
<td>*Topic Warner</td>
<td></td>
</tr>
<tr>
<td>Warner, 54</td>
<td></td>
</tr>
<tr>
<td>*Topic datasets</td>
<td></td>
</tr>
<tr>
<td>BarLevData, 7</td>
<td></td>
</tr>
<tr>
<td>ChaudhuriChristofidesData, 9</td>
<td></td>
</tr>
<tr>
<td>ChaudhuriChristofidesDatapij, 10</td>
<td></td>
</tr>
<tr>
<td>ChristofidesData, 12</td>
<td></td>
</tr>
<tr>
<td>DevoreData, 14</td>
<td></td>
</tr>
<tr>
<td>DianaPerri1Data, 16</td>
<td></td>
</tr>
<tr>
<td>DianaPerri2Data, 18</td>
<td></td>
</tr>
<tr>
<td>EichhornHayreData, 20</td>
<td></td>
</tr>
<tr>
<td>ErikssonData, 22</td>
<td></td>
</tr>
<tr>
<td>ForcedResponseData, 25</td>
<td></td>
</tr>
<tr>
<td>ForcedResponseDataSt, 25</td>
<td></td>
</tr>
<tr>
<td>HorvitzData, 28</td>
<td></td>
</tr>
<tr>
<td>HorvitzDataRealSurvey, 29</td>
<td></td>
</tr>
<tr>
<td>HorvitzDataStCl, 30</td>
<td></td>
</tr>
<tr>
<td>KukData, 35</td>
<td></td>
</tr>
<tr>
<td>MangatSinghData, 38</td>
<td></td>
</tr>
<tr>
<td>MangatSinghSinghData, 40</td>
<td></td>
</tr>
<tr>
<td>MangatSinghSinghUBData, 42</td>
<td></td>
</tr>
<tr>
<td>SahaData, 49</td>
<td></td>
</tr>
<tr>
<td>SinghJoarderData, 51</td>
<td></td>
</tr>
<tr>
<td>SoberanisCruzData, 53</td>
<td></td>
</tr>
<tr>
<td>WarnerData, 55</td>
<td></td>
</tr>
<tr>
<td>*Topic package</td>
<td></td>
</tr>
<tr>
<td>RRTCS-package, 3</td>
<td></td>
</tr>
<tr>
<td>BarLev, 5, 7</td>
<td></td>
</tr>
<tr>
<td>BarLevData, 6, 7</td>
<td></td>
</tr>
<tr>
<td>ChaudhuriChristofides, 8, 9, 10, 46</td>
<td></td>
</tr>
<tr>
<td>ChaudhuriChristofidesData, 8, 9, 10</td>
<td></td>
</tr>
<tr>
<td>ChaudhuriChristofidesDatapij, 8, 9, 10</td>
<td></td>
</tr>
<tr>
<td>Christofides, 10, 12</td>
<td></td>
</tr>
<tr>
<td>ChristofidesData, 11, 12</td>
<td></td>
</tr>
<tr>
<td>Devore, 12, 14</td>
<td></td>
</tr>
<tr>
<td>DevoreData, 13, 14</td>
<td></td>
</tr>
<tr>
<td>DianaPerri1, 15, 17, 18</td>
<td></td>
</tr>
<tr>
<td>DianaPerri1Data, 16, 16</td>
<td></td>
</tr>
<tr>
<td>DianaPerri2, 16, 17, 19</td>
<td></td>
</tr>
<tr>
<td>DianaPerri2Data, 18, 18</td>
<td></td>
</tr>
<tr>
<td>EichhornHayre, 19, 21, 46</td>
<td></td>
</tr>
<tr>
<td>EichhornHayreData, 22</td>
<td></td>
</tr>
<tr>
<td>Eriksson, 21, 23</td>
<td></td>
</tr>
<tr>
<td>ErikssonData, 22, 22</td>
<td></td>
</tr>
<tr>
<td>ForcedResponse, 23, 25, 26</td>
<td></td>
</tr>
<tr>
<td>ForcedResponseData, 24, 25</td>
<td></td>
</tr>
<tr>
<td>ForcedResponseDataSt, 24, 25</td>
<td></td>
</tr>
<tr>
<td>Horvitz, 26, 28, 30, 32, 46, 52</td>
<td></td>
</tr>
<tr>
<td>HorvitzData, 27, 28</td>
<td></td>
</tr>
<tr>
<td>HorvitzDataRealSurvey, 27, 29</td>
<td></td>
</tr>
<tr>
<td>HorvitzDataStCl, 27, 30</td>
<td></td>
</tr>
<tr>
<td>HorvitzUB, 27, 31, 33</td>
<td></td>
</tr>
<tr>
<td>HorvitzUBData, 32, 32</td>
<td></td>
</tr>
<tr>
<td>Kuk, 33, 35</td>
<td></td>
</tr>
<tr>
<td>KukData, 34, 35</td>
<td></td>
</tr>
<tr>
<td>Mangat, 35, 44</td>
<td></td>
</tr>
<tr>
<td>MangatSingh, 37, 39</td>
<td></td>
</tr>
<tr>
<td>MangatSinghData, 38, 39</td>
<td></td>
</tr>
<tr>
<td>MangatSinghSingh, 39, 41, 42</td>
<td></td>
</tr>
<tr>
<td>MangatSinghSinghUB, 40, 41, 43</td>
<td></td>
</tr>
<tr>
<td>MangatSinghSinghUBData, 42, 42</td>
<td></td>
</tr>
<tr>
<td>MangatUB, 37, 43</td>
<td></td>
</tr>
<tr>
<td>ResamplingVariance, 6, 8, 11, 13, 16, 18, 20, 22, 24, 27, 32, 34, 37, 38, 40, 42, 44, 45, 48, 50, 52, 55</td>
<td></td>
</tr>
<tr>
<td>RRTCS-package, 3</td>
<td></td>
</tr>
<tr>
<td>Saha, 47, 49</td>
<td></td>
</tr>
<tr>
<td>SahaData, 48, 49</td>
<td></td>
</tr>
<tr>
<td>SinghJoarder, 49, 51</td>
<td></td>
</tr>
<tr>
<td>SinghJoarderData, 50, 51</td>
<td></td>
</tr>
<tr>
<td>SoberanisCruz, 27, 46, 52, 53</td>
<td></td>
</tr>
<tr>
<td>SoberanisCruzData, 52, 53</td>
<td></td>
</tr>
<tr>
<td>Warner, 46, 54, 55</td>
<td></td>
</tr>
<tr>
<td>WarnerData, 55</td>
<td></td>
</tr>
</tbody>
</table>