Package ‘RRreg’

January 12, 2016

Type Package

Title Correlation and Regression Analyses for Randomized Response Data

Author Daniel W. Heck [aut, cre], Morten Moshagen [aut]

Maintainer Daniel W. Heck <dheck@mail.uni-mannheim.de>

Depends R (>= 3.0.0)

Imports parallel, doParallel, foreach, stats, grDevices, graphics, lme4

Suggests knitr

Description Univariate and multivariate methods to analyze randomized response (RR) survey designs (e.g., Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60, 63–69). Besides univariate estimates of true proportions, RR variables can be used for correlations, as dependent variable in a logistic regression (with or without random effects), as predictors in a linear regression, or as dependent variable in a beta-binomial ANOVA. For simulation and bootstrap purposes, RR data can be generated according to several models.

License GPL-2

Encoding UTF-8

LazyLoad yes

URL http://psycho3.uni-mannheim.de/Home/Research/Software/RRreg/

VignetteBuilder knitr

Version 0.6.1

Date 2016-01-12

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-01-12 14:18:56
Description

Univariate and multivariate methods for randomized response (RR) survey designs (e.g., Warner, 1965). Univariate estimates of true proportions can be obtained using `RRuni`. RR variables can be used in multivariate analyses for correlations (`RRcor`), as dependent variable in a logistic regression (`RRlog`), or as predictors in a linear regression (`RRlin`). The function `RRgen` generates single RR data sets, whereas `RRsimu` generates and analyzes RR data repeatedly for simulation and bootstrap purposes. An overview of the available RR designs and examples can be found in the package vignette by `vignette('RRreg')`.

Details

Package: RRreg
Type: Package
Version: 0.6.0
Date: 2015-12-14
Depends: R (>= 3.0.0)
Imports: parallel, doParallel, foreach, stats, grDevices, graphics, lme4
Suggests: knitr
License: GPL-2
URL: http://psycho3.uni-mannheim.de/Home/Research/Software/RRreg
getPW

Author(s)
Daniel W. Heck <dheck@mail.uni-mannheim.de> and Morten Moshagen <moshagen@uni-kassel.de>

References

getPW

Get Misclassification Matrices for RR Models

Description
Given some randomization probabilities \(p \), each RR design corresponds to a misclassification matrix \(PW \). This square matrix has entries defined as: \(PW[i, j] = P(\text{respond } i \mid \text{ true state } j) \).

Usage
getPW(model, p, group = 1, par2 = NULL, Kukrep = 1)

Arguments
- **model**: one of the available models in the package RRreg;
- **p**: randomization probability
- **group**: group index (1 or 2) for two-group designs such as "UQtunknown" or "SLD"
- **par2**: the second, estimated parameter in two-group designs (e.g., the unknown prevalence of the irrelevant question in "UQtunknown", the t-parameter for truth in the "SLD")
- **Kukrep**: number of replications in Kuk's RR design (how many cards are drawn)

Details
The method is used internally for estimation. Moreover, the method might be useful to check the exact definition of the RR designs.

Note that for two-group designs, the matrix dependends on a second parameter that is estimated from the data (e.g., the unknown prevalence of the unknown question in the unrelated question technique). Hence, the matrix itself is not constant, but an estimate of a random variable itself.

References
Examples

```r
gexPW(model = "Warner", p = 2/12)
gexPW(model = "UQTknown", p = c(2/12, .3))
gexPW(model = "UQTunknown", p = c(2/12, .10/12), group=2, par2=.4)
```

minarets

Minaret Data

Description

Data by Radukic and Musch (2014)

Usage

```r
data(minarets)
```

Details

The following variables are included:

- **age** in years
- **leftRight** political left-right orientation on a scale from -5 to 5
- **rrt** response to RR question (SLD with randomization probabilities $p = c(2/12, 10/12)$)
- **condition** group membership in SLD (either randomization probability $p[1]$ or $p[2]$)
- **RRdesign** whether the respondent answered to the RR question (RRdesign=1) or to the direct question (RRdesign=-1)
- **leftRight.c** zero-centered political left-right orientation
- **age.c** zero-centered age

plot.powerplot

Plot power of multivariate RR methods

Description

Plot estimated power from Monte Carlo simulation as a function of the sample size, separately for different effect sizes and multivariate RR methods

Usage

```r
## S3 method for class 'powerplot'
plot(x, ...)
```

Arguments

- `x` a `powerplot` object
- `...` ignored
plot.RRlog

Plot Logistic RR Regression

Description

Plot the predictions of a fitted logistic RR regression model. Data are not included directly, as these
are not directly interpretable due to the RR design.

Usage

S3 method for class 'RRlog'
plot(x, predictor = NULL, center.preds = T, plot.mean = T,
 ci = 0.95, xlim = NULL, steps = 50, ...)

Arguments

- **x**: a fitted **RRlog** object
- **predictor**: character name of a predictor of the model to be fitted
- **center.preds**: whether to compute predictions by assuming that all other predictors are at their
 respective mean values (if FALSE: all other predictors set to zero)
- **plot.mean**: whether to plot mean of predictor as vertical line
- **ci**: level for confidence intervals. Set to 0 to omit.
- **xlim**: if provided, these boundaries are used for the predictor on the x-axis
- **steps**: number of steps for plotting
- **...**: other arguments passed to the function **plot**

Examples

```r
# generate data
n <- 500
x <- data.frame(x1=rnorm(n))
pi.true <- 1/(1+exp(.3+1.5*x1))
dat <- RRGen(n, pi.true=pi.true, model="Warner", p=.1)
x$response <- dat$response
# fit and plot model
mod <- RRlog(response ~ x1, data=x, model="Warner", p=.1)
plot(mod, "x1", ci=.95)
```
powerplot

Power plots for multivariate RR methods

Description

Uses the function `RRsimu` to estimate the power of the multivariate RR methods (correlation `RRcor`, logistic regression `RRlog`, and/or linear regression `RRlin`).

Usage

```r
powerplot(numRep, n = c(100, 500, 1000), pi, cor = c(0, 0.1, 0.3),
          b.log = NULL, model, p, method = c("RRcor", "RRlog", "RRlin"),
          complyRates = c(1, 1), sysBias = c(0, 0), groupRatio = 0.5,
          alpha = 0.05, nCPU = 1, show.messages = TRUE)
```

Arguments

- `numRep`: number of bootstrap replications
- `n`: vector of samples sizes
- `pi`: true prevalence
- `cor`: vector of true correlations
- `b.log`: vector of true logistic regression coefficients
- `model`: randomized response model
- `p`: randomization probability
- `method`: multivariate RR method
- `complyRates`: probability of compliance within carriers/noncarriers of sensitive attribute
- `sysBias`: probability of responding 'yes' in case of noncompliance
- `groupRatio`: ratio of subgroups in two-group RR designs
- `alpha`: type-I error used to estimate power
- `nCPU`: number of CPUs to be used
- `show.messages`: toggle printing of progress messages

Value

A list of the class `powerplot` containing an array `res` with the power estimates and details of the simulation (e.g., model, p, pi, etc.)

See Also

`RRsimu` for Monte-Carlo simulation / parametric bootstrap
predict.RRlog

Examples

Not run
pplot <- powerplot(100, n=c(150,250), cor=c(0,.3,.5),
method="RRlog", pi=.6, model="Warner", p=.3)
plot(pplot)

predict.RRlog Predict Individual Prevalences of the RR Attribute

Description

Predictions of the loglinear RR model for the individual probabilities of having the sensitive RR attribute.

Usage

S3 method for class 'RRlog'
predict(object, newdata = NULL, se.fit = FALSE, ci = 0.95,
...)

Arguments

object A fitted RRlog model
newdata An optional vector, matrix, or data.frame with values on the predictor variables. Note that for matrices, the order of predictors should match the order of predictors in the formula. Uses the fitted values of the model if omitted.
se.fit Get standard errors for the fitted/predicted values (using the error variance and df of the original RR model).
ci Confidence level for confidence interval. If 0, no boundaries are returned.
... ignored

RRcor Bivariate correlations including randomized response variables

Description

RRcor calculates bivariate Pearson correlations of variables measured with or without RR.

Usage

RRcor(x, y = NULL, models, p.list, group = NULL, bs.n = 0,
bs.type = c("se.n", "se.p", "pval"), nCPU = 1)
Arguments

x
a numeric vector, matrix or data frame.

y
NULL (default) or a vector, matrix or data frame with compatible dimensions to x.

models
a vector defining which RR design is used for each variable. Must be in the same order as variables appear in x and y (by columns). Available discrete models: Warner, Kuk, FR, Mangat, UQTknown, UQTunknown, Crosswise, SLD and direct (i.e., no randomized response design). Available continuous models: mix.norm, mix.exp.

p.list
a list containing the randomization probabilities of the RR models defined in models. Either, all direct-variables (i.e., no randomized response) in models can be excluded in p.list; or, if specified, randomization probabilities p are ignored for direct-variables. See RRrun for a detailed specification of p.

group
a matrix defining the group membership of each participant (values 1 and 2) for all multiple group models (SLD, UQTunknown). If only one of these models is included in models, a vector can be used. For more than one model, each column should contain one grouping variable

bs.n
number of samples used to get bootstrapped standard errors

bs.type
to get bootstrapped standard errors, use "se.p" for the parametric and/or "se.n" for the nonparametric bootstrap. Use "pval" to get p-values from the parametric bootstrap (assuming a true correlation of zero). Note that bs.n has to be larger than 0. The parametric bootstrap is based on the assumption, that the continuous variable is normally distributed within groups defined by the true state of the RR variable. For polytomous forced response (FR) designs, the RR variable is assumed to have equally spaced distances between categories (i.e., that it is interval scaled)

cmpu
number of CPUs used for the bootstrap

Details

Correlations of RR variables are calculated by the method of Fox & Tracy (1984) by interpreting the variance induced by the RR procedure as uncorrelated measurement error. Since the error is independent, the correlation can be corrected to obtain an unbiased estimator.

Note that the continuous RR model mix.norm with the randomization parameter p=c(p.truth, mean, SD) assumes that participants respond either to the sensitive question with probability p.truth or otherwise to a known masking distribution with known mean and SD. The estimated correlation only depends on the mean and SD and does not require normality. However, the assumption of normality is used in the parametric bootstrap to obtain standard errors.

Value

RRcor returns a list with the following components::

r
estimated correlation matrix

rSE.p, rSE.n
standard errors from parametric/nonparametric bootstrap

p
two-sided p-values from parametric bootstrap
samples.p, samples.n sampled correlations from parametric/nonparametric bootstrap (for the standard errors)

References

See Also
vignette('RRreg') or https://dl.dropboxusercontent.com/u/21456540/RRreg/index.html for a detailed description of the RR models and the appropriate definition of p

Examples

```r
# generate first RR variable
def n = 1000
pi = c(.3, .7)
gData <- RRgen(n, pi = .3, model = "Kuk", p1)

# generate second RR variable
p2 = c(.8, .5)
t2 = rbinom(n, size = 1, prob = (gData$true + 1)/2)
temp <- RRgen(model = "UQTknown", p = p2, trueState = t2)
gData$UQTrresp <- temp$response

gData$UQTtrue <- temp$true

# generate continuous covariate
gData$cv <- rnorm(n, 0, 4) + gData$UQTtrue + gData$true

# estimate correlations using directly measured / RR variables
cor(gData[, c("true", "cv", "UQTtrue")])
RRcor(x = gData[, c("response", "cv", "UQTresp")],
models = c("Kuk", "d", "UQTknown"), p.list = list(p1, p2))
```

RRgen

Generate randomized response data

Description

The method RRgen generates data according to a specified RR model, e.g., "Warner". True states are either provided by a vector trueState or drawn randomly from a Bernoulli distribution. Useful for simulation and testing purposes, e.g., power analysis.

Usage

```r
RRgen(n, pi.true, model, p, complyRates = c(1, 1), sysBias = c(0, 0),
groupRatio = 0.5, Kukrep = 1, trueState = NULL)
```
Arguments

n sample size of generated data
pi.true true proportion in population (a vector for m-categorical "FR" or "custom" model)
p randomization probability (depending on model, see RRuni for details)
complyRates vector with two values giving the proportions of carriers and non-carriers who adhere to the instructions, respectively
sysBias probability of responding 'yes' (coded as 1) in case of non-compliance for carriers and non-carriers of the sensitive attribute, respectively. If sysBias=c(0,0), carriers and non-carriers systematically give the nonsensitive response 'no' (also known as self-protective(SP)-'no' responses). If sysBias=c(0,0.5), carriers always respond 'no' whereas non-carriers randomly select a response category. Note that sysBias = c(0.5,0.5) might be the best choice for Kuk and Crosswise. For the m-categorical "FR" or "custom" model, sysBias can be given as a probability vector for categories 0 to (m-1).
groupRatio proportion of participants in group 1. Only required for two-group models, e.g., SLD and CDM
Kukrep Number of repetitions of Kuk's procedure (how often red and black cards are drawn)
trueState optional vector containing true states of participants (i.e., 1 for carriers and 0 for non-carriers of sensitive attribute; for FR: values from 0,1,...,M-1 (M = number of response categories) which will be randomized according to the defined procedure (if specified, n and pi.true are ignored)

Details

If trueState is specified, the randomized response procedure will be simulated for this vector, otherwise a random vector of length n with true proportion pi.true is drawn. Respondents answer biases can be simulated by adjusting the compliance rates: if complyRates is set to c(1,1), all respondents adhere to the randomization procedure. If one or both rates are smaller than 1, sysBias determines whether noncompliant respondents systematically choose the nonsensitive category or whether they answer randomly.

SLD - to generate data according to the stochastic lie detector with the proportion t of honest carriers, parameters are set to complyRates=c(t,1) and sysBias=c(0,0)
CDM - to generate data according to the cheating detection model with the proportion gamma of cheaters, parameters are set to complyRates=c(1-gamma,1-gamma) and sysBias=c(0,0)

Value

data.frame including the variables true and response (and for SLD and CDM a third variable group)
RRlin

See Also

see vignette('RRreg') for a detailed description of the models and RRlog, RRlin and RRcor for the multivariate analysis of RR data

Examples

Generate responses of 1000 people according to Warner's model,
every participant complies to the RR procedure
genData <- RRgen(n=1000, pi.true=.3, model="Warner", p=.7)
colMeans(genData)

use Kuk's model with two decks of cards,
p gives the proportions of red cards for carriers/noncarriers
genData <- RRgen(n=1000, pi.true=.4, model="Kuk", p=c(.4,.7))
colMeans(genData)

Stochastic Lie Detector (SLD):
Only 80% of carriers answer according to the RR procedure
genData <- RRgen(n=1000, pi.true=.2, model="SLD", p=c(.2,.8),
complyRates=c(.8,1),sysBias=c(0,0))
colMeans(genData)

RRlin

Linear randomized response regression

Description

Linear regression for a continuous criterion, using randomized-response (RR) variables as predictors.

Usage

RRlin(formula, data, models, p.list, group = NULL, Kukrep = 1, bs.n = 0,
nCPU = 1, maxit = 1000, fit.n = 3, pibeta = 0.05)

Arguments

formula a continuous criterion is predicted by one or more categorical RR variables defined by models. If the number of predictors exceeds the number defined by the vector models, the remaining predictors are treated as non-randomized variables (e.g., direct questions). Interactions including any of the RR variables cannot be included.

data an optional data frame, list or environment, containing the variables in the model.

models character vector specifying RR model(s) in order of appearance in formula. Available models: "Warner", "UQTknown", "UQTunknown", "Mangat", "Kuk", "FR", "Crosswise", "CDM", "CDMsym", "SLD", "custom" (custom: a randomization matrix must be specified in the corresponding element of p.list, where the entry p[i,j] defines the probability of responding i (i-th row) given a true state of j (j-th column)).
p.list list of randomization probabilities for RR models in the same order as specified in models. Note, that the randomization probabilities p must be provided in a list, e.g., list(p=c(.2, .3)). See RRuni for details.

group vector or matrix specifying group membership by the indices 1 and 2. Only for multigroup RR models, e.g., UQTunknown, CDM or SLD

Kukrep defines the number of repetitions in Kuk's card playing method

bs.n Number of samples used for the non-parametric bootstrap

nCPU Number of cores used for the bootstrap

maxit maximum number of iterations in optimization routine

fit.n number of fitting runs with random starting values

pibeta approximate ratio of probabilities pi to regression weights beta (to adjust scaling). Can be used for speeding-up and fine-tuning ML estimation (i.e., choosing a smaller value for larger beta values).

Value

Returns an object RRlin which can be analysed by the generic method summary

Author(s)

Daniel W. Heck

References

See Also

vignette('RRreg') or https://dl.dropboxusercontent.com/u/21456540/RRreg/index.html for a detailed description of the RR models and the appropriate definition of p

Examples

generate two RR predictors
dat <- RRgen(n=500, pi=.4, model="Warner", p=.3)
dat2 <- RRgen(n=500, pi=c(.4,.6), model="FR", p=c(.1,.15))
dat$FR <- dat2$response
dat$trueFR <- dat2$true

generate a third predictor and continuous dependent variables
dat$nonRR <- rnorm(500, 5, 1)
dat$depvar <- 2*dat$true - 3*dat2$true + .5*dat$nonRR + rnorm(500, 1, 7)

use RRlin and compare to regression on non-RR variables
linreg <- RRlin(depvar~response+FR+nonRR, data=dat, models=c("Warner","FR"),
Description

A dichotomous variable, measured once or more per person by a randomized response method, serves as dependent variable using one or more continuous and/or categorical predictors.

Usage

RRlog(formula, data, model, p, group, n.response = 1, LR.test = TRUE,
 fit.n = 3, EM.max = 1000, optim.max = 500, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>specifying the regression model, see formula</td>
</tr>
<tr>
<td>data</td>
<td>data.frame, in which variables can be found (optional)</td>
</tr>
<tr>
<td>p</td>
<td>randomization probability/probabilities (depending on model, see RRuni for details)</td>
</tr>
<tr>
<td>group</td>
<td>vector specifying group membership. Can be omitted for single-group RR designs (e.g., Warner). For two-group RR designs (e.g., CDM or SLD), use 1 and 2 to indicate the group membership, matching the respective randomization probabilities p[1], p[2]. If an RR design and a direct question (DQ) were both used in the study, the group indices are set to 0 (DQ) and 1 (RR; 1 or 2 for two-group RR designs). This can be used to test, whether the RR design leads to a different prevalence estimate by including a dummy variable for the question format (RR vs. DQ) as predictor. If the corresponding regression coefficient is significant, the prevalence estimates differ between RR and DQ. Similarly, interaction hypotheses can be tested (e.g., the correlation between a sensitive attribute and a predictor is only found using the RR but not the DQ design). Hypotheses like this can be tested by including the interaction of the DQ-RR-dummy variable and the predictor in formula (e.g., RR ~ dummy*predictor).</td>
</tr>
<tr>
<td>n.response</td>
<td>number of responses per participant, e.g., if a participant responds to 5 RR questions with the same randomization probability p (either a single number if all participants give the same number of responses or a vector)</td>
</tr>
<tr>
<td>LR.test</td>
<td>test regression coefficients by a likelihood ratio test, i.e., fitting the model repeatedly while excluding one parameter at a time</td>
</tr>
</tbody>
</table>
Number of fitting replications using random starting values to avoid local maxima. The model is fitted repeatedly either until the absolute parameter estimates are below fitBound or the maximum number of fitting replications is reached. Thereby, stability of the estimates is increased. fitBound should be increased if extreme parameter estimates are to be expected.

Maximum number of iterations of the EM algorithm. If EM_max = 0, the EM algorithm is skipped.

Maximum number of iterations within each run of optim.

Details

The logistic regression model is fitted first by an EM algorithm, in which the dependent RR variable is treated as a misclassified binary variable (Magder & Hughes, 1997). The results are used as starting values for a Newton-Raphson based optimization by optim.

Value

Returns an object RRlog which can be analysed by the generic method summary.

Author(s)

Daniel W. Heck

References

See Also

vignette('RRreg') or https://dl.dropboxusercontent.com/u/21456540/RRreg/index.html for a detailed description of the RR models and the appropriate definition of p

Examples

generate data set without biases
dat <- RRgen(1000,pi=.3, "Warner", p=.9)
dat$covariate <- rnorm(1000)
dat$covariate[dat$true==1] <- rnorm(sum(dat$true==1),.4,1)
analyse
ana <- RRlog(response~covariate,dat,"Warner", p=.9, fit.n = 1)
summary(ana)
check with true, latent states:
glm(true~covariate, dat, family=binomial(link="logit"))
Description

Uses the package \texttt{lme4} to fit a generalized linear mixed model (GLMM) with an adjusted link function.

Usage

\texttt{RRmixed(formula, data, model, p, \ldots)}

Arguments

- \texttt{formula}: two-sided formula including random and fixed effects (see below or \texttt{glmer} for details)
- \texttt{data}: an optional data frame with variables named in formula
- \texttt{model}: type of RR design. Only 1-group RR designs are supported at the moment (i.e., "Warner", "FR", "UQTknown", "Crosswise", "Kuk", "Mangat", "custom"). See \texttt{RRuni} or vignette(\texttt{RRreg}) for details.
- \texttt{p}: randomization probability
- \texttt{\ldots}: further arguments passed to \texttt{glmer}

Details

Some examples for formula:

- random intercept: \texttt{response} \sim \texttt{covariate + (1 | group)}
- random slope: \texttt{response} \sim \texttt{covariate + (0 + covariate | group)}
- both random slope and intercept: \texttt{response} \sim \texttt{covariate + (covariate | group)}
- level-2 predictor (must have constant values within groups!): \texttt{response} \sim \texttt{lev2 + (1|group)}

Value

an object of class \texttt{glmerMod}

References

Examples

```r
# generate data with a level-1 predictor
d <- data.frame(group=factor(rep(LETTERS[1:20],each=50)),
                 cov=rnorm(20*50))
# generate dependent data based on logistic model (random intercept):
d$true <- simulate(~ cov + (1|group), newdata=d,
                 family=binomial(link="logit"),
                 newparams=list(beta=c("(Intercept)"=-.5, cov=1),
                                theta=c("group.(Intercept)"=.8)))[[1]]
# scramble responses using rr:
model <- "FR"
p <- c(true0=.1, true1=.2)
d.resp <- RRgen(model="FR", p=p, trueState=d.true$response
# fit model:
mod <- RRunixed(resp ~ cov +(1|group), data=d, model="FR", p=p)
summary(mod)
```

RRsimu

Monte Carlo simulation for one or two RR variables

Description

Simulate and analyse bivariate data including either one RR variable (either correlation, logistic, or linear regression model) or two RR variables (only correlations). Useful for power analysis, parametric bootstraps or for testing the effects of noncompliance on the stability of estimates.

Usage

```r
RRsimu(numRep, n, pi, model, p, cor = 0, b.log = 0, complyRates = c(1, 1),
        sysBias = c(0, 0), method = c("RRuni", "RRcor", "RRlog", "RRlin"),
        alpha = 0.05, groupRatio = 0.5, MList = FALSE, getPower = TRUE,
        nCPU = 1)
```

Arguments

- **numRep**: number of replications
- **n**: sample size
- **pi**: true proportion of carriers of sensitive attribute (for 2 RR variables: vector)
- **model**: either one or two RR model (as vector), see **RRuni**
- **p**: randomization probability (for 2 RR variables: a list). See **RRuni** for details.
- **cor**: true Pearson-correlation used for data generation (for **RRcor**). Can also be used to generate data with two dichotomous RR variables.
- **b.log**: true regression coefficient in logistic regression (for **RRlog**)
- **complyRates**: vector with two values giving the proportions of participants who adhere to the instructions in the subset with or without the sensitive attribute, respectively (for 2 RR variables: a list)
sysBias: probability of responding 'yes' (coded as 1 in the RR variable) in case of non-compliance for carriers and non-carriers, respectively. See RRgen

method: vector specifying which RR methods to be used in each replication. For a single RR variable, the methods RRuni, RRcor, RRlog, and RRlin are available. For 2 RR variables, only RRcor is available.

alpha: significance threshold for testing the logistic regression parameter beta

groupRatio: proportion of participants in group 1. Only for two-group models (e.g., "SLD")
(for 2 RR variables: vector)

MLEst: concerns RRuni: whether to use optim to get ML instead of moment estimates
(only relevant if pi is outside of [0,1])

getPower: whether to compute power for method="RRcor" (performs an additional bootstrap assuming independence)

nCPU: integer: how many processors to use? (use 'max' for automatic detection on Windows)

Details

For a single RR variable:

The parameter b.log is the slope-coefficient for the true, latent values in a logistic regression model that is used for data generation.

The argument cor is used for data generation for linear models. The directly measured covariate is sampled from a normal distribution with shifted means, depending on the true state on the sensitive attribute (i.e., the true, underlying values on the RR variable). For dichotomous RR variables, this corresponds to the assumption of an ordinary t-test, where the dependent variable is normally distributed within groups with equal variance. The difference in means is chosen in a way, to obtain the point-biserial correlation defined by cor.

For two RR variables:

cor has to be used. In case of two dichotomous RR variables, the true group membership of individuals is sampled from a 2x2 cross table. Within this table, probabilities are chosen in a way, to obtain the point-tetrachoric correlation defined by cor

Note, that for the FR model with multiple response categories (e.g., from 0 to 4), the specified cor is not the exact target of the sampling procedure. It assumes a normal distribution for each true state, with constant differences between the groups (i.e., it assumes an interval scaled variable).

Value

A list containing:

parEsts: matrix containing the estimated parameters
results: matrix with mean parameters, standard errors, and number of samples to which the respective method could not be fitted
power: vector with the estimated power of the selected randomized response procedures
Examples

```r
# Not run: Simulate data according to the Warner model
# mcsim <- RRsimu(numRep=100, n=300, pi=.4,
#                  model="Warner", p=.2, cor=.3)
# print(mcsim)
```

RRuni

Univariate analysis of randomized response data

Description

Analyse a data vector `response` with a specified RR model (e.g., Warner) with known randomization probability `p`.

Usage

```r
RRuni(response, data, model, p, group = NULL, Mlest = TRUE)
```

Arguments

- **response**: either vector of responses containing 0='no' and 1='yes' or name of response variable in `data`. In Kuk's card playing method (`kuk`), the observed response variable gives the number of red cards. For the Forced Response (FR) model, response values are integers from 0 to `(m-1)`, where `m` is the number of response categories.
- **data**: optional `data.frame` containing the response variable.
- **p**: randomization probability (see details or `vignette("RRreg")`).
- **group**: a group vector of the same length as `response` containing values 1 or 2, only required for two-group models, which specify different randomization probabilities for two groups, e.g., CDM or SLD. If a `data.frame` `data` is provided, the variable `group` is searched within it.
- **Mlest**: whether to use `optim` to get ML instead of moment estimates (only relevant if `pi` is outside of [0,1]).

Details

Each RR design model differs in the definition of the randomization probability `p`, which is defined as a single probability for:

- "Warner": Probability to get sensitive Question
- "Mangat": Prob. for noncarriers to respond truthfully (i.e., with No=0)
• "Crosswise": Prevalence of 'yes' responses for unrelated question (response category is coded as 1=['no-no' or 'yes-yes']; 0=['yes-no' or 'no-yes'])

and as a two-valued vector of probabilities for

• "Kuk": Probability of red cards in first and second set, respectively (red=1, black=0);
• Unrelated Question ("UQTknown"): Prob. to respond to sensitive question and known prevalence of 'yes' responses to unrelated question
• Unrelated Question ("UQTunknown"): Prob. to respond to sensitive question in group 1 and 2, respectively
• Cheating Detection ("CDM"): Prob. to be prompted to say yes in group 1 and 2, respectively
• Symmetric CDM ("CDM_sym"): 4-valued vector: Prob. to be prompted to say 'yes'/no' in group 1 and 'yes'/no' in group 2
• Stochastic Lie Detector ("SLD"): Prob. for noncarriers to reply with 0='no' in group 1 and 2, respectively
• Forced Response model ("FR"): m-valued vector (m=number of response categories) with the probabilities of being prompted to select response categories 0,1,...,m-1, respectively (requires sum(p)<1)
• RR as misclassification ("custom"): a quadratic misclassification matrix is specified, where the entry p[i,j] defines the probability of responding i (i-th row) given a true state of j (j-th column)) (see getPW)

For the continuous RR models:

• "mix.norm": 3-valued vector - Prob. to respond to sensitive question and mean and SD of the masking normal distribution of the unrelated question
• "mix.exp": 2-valued vector - Prob. to respond to sensitive question and mean of the masking exponential distribution of the unrelated question
• "mix.unknown": 2-valued vector - Prob. of responding to sensitive question in group 1 and 2, respectively

Value

an RRuni object, can by analyzed by using summary

See Also

devtools('RRreg') or https://dl.dropboxusercontent.com/u/21456540/RRreg/index.html for a detailed description of the RR models and the appropriate definition of p

Examples

Generate responses of 1000 people according to Warner's model
with an underlying true proportion of .3
genData <- RRuni(n=1000, pi=.3, model="Warner", p=.7)
Analyse univariate data to estimate 'pi'
analyse <- RRuni(response=genData$response, model="Warner", p=.7)
summary(analyse)
Generate data in line with the Stochastic Lie Detector
assuming that 90% of the respondents answer truthfully

```r
genData2 <- RRgen(n=1000, pi=.3, model="SLD", p=c(.2,.8), complyRates=c(.8,1), groupRatio=.4)
analyse2 <- RRuni(response=genData2$response, model="SLD", p=c(.2,.8), group=genData2$group)
summary(analyse2)
```
Index

∗Topic datasets
 minarets, 4

∗Topic package
 RRreg-package, 2

formula, 13

getPW, 3, 19

glmer, 15

list, 12

lme4, 15

minarets, 4

optim, 14

plot, 5

plot.powerplot, 4

plot.RRlog, 5

powerplot, 4, 6

predict.RRlog, 7

RRcor, 2, 6, 7, 11, 16, 17

RRgen, 2, 9, 17

RRlin, 2, 6, 11, 17

RRlog, 2, 5–7, 11, 13, 16, 17

RRmixed, 15

RRreg (RRreg-package), 2

RRreg-package, 2

RRsimu, 2, 6, 16

RRuni, 2, 8, 10, 12, 13, 15–17, 18

summary, 12, 14, 19