Package ‘RRreg’
August 27, 2018

Type Package
Title Correlation and Regression Analyses for Randomized Response Data
Author Daniel W. Heck [aut, cre],
 Morten Moshagen [aut]
Maintainer Daniel W. Heck <heck@uni-mannheim.de>
Depends R (>= 3.5.0)
Imports parallel, doParallel, foreach, stats, grDevices, graphics,
 lme4
Suggests knitr, R.rsp
Description Univariate and multivariate methods to analyze randomized response
(RR) survey designs (e.g., Warner, S. L. (1965). Randomized response: A
survey technique for eliminating evasive answer bias. Journal of the
Besides univariate estimates of true proportions, RR variables can be used
for correlations, as dependent variable in a logistic regression (with or
without random effects), or as predictors in a linear regression
regression analyses of randomized response data. Journal of Statistical
Software, 85(2), 1–29, <doi:10.18637/jss.v085.i02>). For simulations and
the estimation of statistical power, RR data can be generated according to
several models. The implemented methods also allow to test the link between
continuous covariates and dishonesty in cheating paradigms such as the
The statistical analysis of cheating paradigms. Behavior Research Methods,
License GPL-3
Encoding UTF-8
LazyLoad yes
URL http://psycho3.uni-mannheim.de/Home/Research/Software/RRreg/
VignetteBuilder knitr, R.rsp
Version 0.7.0
Date 2018-08-27
Description

Univariate and multivariate methods for randomized response (RR) survey designs (e.g., Warner, 1965). Univariate estimates of true proportions can be obtained using `RRuni`. RR variables can be used in multivariate analyses for correlations (`RRcor`), as dependent variable in a logistic regression (`RRlog`), or as predictors in a linear regression (`RRlin`). The function `RRgen` generates single RR data sets, whereas `RRsimu` generates and analyzes RR data repeatedly for simulation and bootstrap purposes. An overview of the available RR designs and examples can be found in the package vignette by `vignette('RRreg')`.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>RRreg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Depends:</td>
<td>R (>= 3.0.0)</td>
</tr>
<tr>
<td>Imports:</td>
<td>parallel, doParallel, foreach, stats, grDevices, graphics, lme4</td>
</tr>
<tr>
<td>Suggests:</td>
<td>knitr</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>
getPW

URL: http://psycho3.uni-mannheim.de/Home/Research/Software/RRreg

Citation

If you use RRreg in publications, please cite the package as follows:

Author(s)

Daniel W. Heck <heck@uni-mannheim.de> and Morten Moshagen <morten.moshagen@uni-ulm.de>

References

See Also

Useful links:

- http://psycho3.uni-mannheim.de/Home/Research/Software/RRreg/

getPW

Get Misclassification Matrices for RR Models

Description

Given some randomization probabilities p, each RR design corresponds to a misclassification matrix PW. This square matrix has entries defined as: PW[i,j] = P(respond i | true state j).

Usage

getPW(model, p, group = 1, par2 = NULL, Kukrep = 1)

Arguments

- `model`: one of the available models in the package RRreg.
- `p`: randomization probability.
- `group`: group index (1 or 2) for two-group designs such as "UQUnknown" or "SLD".
- `par2`: the second, estimated parameter in two-group designs (e.g., the unknown prevalence of the irrelevant question in "UQUnknown", the t-parameter for truth in the "SLD").
- `Kukrep`: number of replications in Kuk's RR design (how many cards are drawn).
Details

The method is used internally for estimation. Moreover, the method might be useful to check the exact definition of the RR designs.

Note that for two-group designs, the matrix depends on a second parameter that is estimated from the data (e.g., the unknown prevalence of the unknown question in the unrelated question technique). Hence, the matrix itself is not constant, but an estimate of a random variable itself.

References

Examples

getPW(model = "Warner", p = 2/12)
getPW(model = "UQTknown", p = c(2/12, .3))
getPW(model = "UQTunknown", p = c(2/12, .10/12), group=2, par2=.4)

minarets Minaret Data

Description

Data by Radukic and Musch (2014)

Usage

data(minarets)

Format

An object of class data.frame with 1621 rows and 7 columns.

Details

The following variables are included:

- age in years
- leftRight political left-right orientation on a scale from -5 to 5
- rrt response to RR question (SLD with randomization probabilities p=c(2/12,10/12))
- condition group membership in SLD (either randomization probability p[1] or p[2])
- RRdesign whether the respondent answered to the RR question (RRdesign=1) or to the direct question (RRdesign=-1)
- leftRight.c zero-centered political left-right orientation
- age.c zero-centered age
plot.powerplot

Plot power of multivariate RR methods

Description

Plot estimated power from Monte Carlo simulation as a function of the sample size, separately for different effect sizes and multivariate RR methods.

Usage

```r
## S3 method for class 'powerplot'
plot(x, ...)  
```

Arguments

- `x`
 a `powerplot` object

- `...`
 ignored

plot.RRlog

Plot Logistic RR Regression

Description

Plot predicted logit values/probabilities of a randomized response logistic regression model.

Usage

```r
## S3 method for class 'RRlog'
plot(x, predictor = NULL, type = c("link", "response", "attribute"), center.preds = TRUE, plot.mean = TRUE, ci = 0.95, xlim = NULL, steps = 50, ...)
```

Arguments

- `x`
 a fitted `RRlog` object

- `predictor`
 character name of a predictor of the model to be fitted

- `type`
 "response" returns predicted probabilities for the (observable) RR responses, "link" returns predicted logit-values for the (latent) sensitive attribute, and "attribute" returns predicted probabilities of having the (latent) sensitive attribute.

- `center.preds`
 whether to compute predictions by assuming that all other predictors are at their respective mean values (if `FALSE`: all other predictors are set to zero)

- `plot.mean`
 whether to plot the mean of the predictor as a vertical line

- `ci`
 level for confidence intervals. Use `ci=0` to omit.
powerplot

xlim if provided, these boundaries are used for the predictor on the x-axis
steps number of steps for plotting
... other arguments passed to the function plot (e.g., ylim=c(0,1)).

See Also
predict.RRlog

Examples

generate data
n <- 500
x <- data.frame(x1=rnorm(n))
pi.true <- 1/(1+exp(0.3+1.5*x$X1))
true <- rbinom(n, 1, plogis(pi.true))
dat <- RRgen(n, trueState=true, model="Warner", p=.1)
x$response <- dat$response

fit and plot RR logistic regression
mod <- RRlog(response ~ x1, data=x, model="Warner", p=.1)
plot(mod, "x1", ci=.95, type = "attribute", ylim = 0:1)

powerplot

Power plots for multivariate RR methods

Description

Uses the function RRsimu to estimate the power of the multivariate RR methods (correlation RRcor, logistic regression RRlog, and/or linear regression RRlin).

Usage

powerplot(numRep, n = c(100, 500, 1000), pi, cor = c(0, 0.1, 0.3),
b.log = NULL, model, p, method = c("RRcor", "RRlog", "RRlin"),
complyRates = c(1, 1), sysBias = c(0, 0), groupRatio = 0.5,
alpha = 0.05, nCPU = 1, show.messages = TRUE)

Arguments

numRep number of bootstrap replications
n vector of samples sizes
pi true prevalence
cor vector of true correlations
b.log vector of true logistic regression coefficients
model randomized response model
predict.RRlog

Predict Individual Prevalences of the RR Attribute

Description

Predictions of the RR logistic regression model for the individual probabilities (or logits) of having the sensitive RR attribute, or of the probability of the RR responses.

Usage

```r
## S3 method for class 'RRlog'
predict(object, newdata = NULL, type = c("link", "response", "attribute"), se.fit = FALSE, ci = 0.95, ...)
```
Arguments

object
A fitted \texttt{RRlog} model

newdata
An optional vector, matrix, or data.frame with values on the predictor variables. Note that for matrices, the order of predictors should match the order of predictors in the formula. Uses the fitted values of the model if omitted.

type
"response" returns predicted probabilities for the (observable) RR responses, "link" returns predicted logit-values for the (latent) sensitive attribute, and "attribute" returns predicted probabilities of having the (latent) sensitive attribute.

se.fit
Return standard errors for the predicted values in addition to confidence intervals. SEs on the logit scale are computed using the observed Fisher information from the fitted model. Standard errors for the probability scale are computed using the delta method.

ci
Confidence level for confidence interval. If \texttt{ci=}FALSE, no confidence interval is returned. Confidence intervals on the probability scale (if \texttt{type=}"response" or \texttt{type=}"attribute") are computed based on the CI on the logit-scale using the inverse link function (hence, the CI will in general not be symmetric).

Value

either a vector of predicted values or a matrix with columns for the point estimates, confidence interval, and standard errors (if \texttt{se.fit=}TRUE and \texttt{ci=}=.95).

\begin{itemize}
 \item \texttt{RRcor}
 \begin{itemize}
 \item \texttt{Bivariate correlations including randomized response variables}
 \end{itemize}
\end{itemize}

Description

\texttt{RRcor} calculates bivariate Pearson correlations of variables measured with or without RR.

Usage

\texttt{RRcor(x, y = NULL, models, p.list, group = NULL, bs.n = 0, bs.type = c("se.n", "se.p", "pval"), nCPU = 1)}

Arguments

\begin{itemize}
 \item \texttt{x}
 \begin{itemize}
 \item a numeric vector, matrix or data frame.
 \end{itemize}
 \item \texttt{y}
 \begin{itemize}
 \item NULL (default) or a vector, matrix or data frame with compatible dimensions to \texttt{x}.
 \end{itemize}
 \item \texttt{models}
 \begin{itemize}
 \item a vector defining which RR design is used for each variable. Must be in the same order as variables appear in \texttt{x} and \texttt{y} (by columns). Available discrete models: Warner, Kuk, FR, Mangat, UQTknown, UQTunknown, Crosswise, Triangular, SLD and direct (i.e., no randomized response design). Available continuous models: mix.norm, mix.exp.
 \end{itemize}
\end{itemize}
a list containing the randomization probabilities of the RR models defined in
models. Either, all direct-variables (i.e., no randomized response) in models
can be excluded in p.list; or, if specified, randomization probabilities p are
ignored for direct-variables. See \texttt{RRun1} for a detailed specification of p.

group

a matrix defining the group membership of each participant (values 1 and 2)
for all multiple group models (SLD, UQTunknown). If only one of these models
is included in models, a vector can be used. For more than one model, each
column should contain one grouping variable

bs.n

number of samples used to get bootstrapped standard errors

bs.type
to get bootstrapped standard errors, use "se.p" for the parametric and/or "se.n"
for the nonparametric bootstrap. Use "pval" to get p-values from the parametric
bootstrap (assuming a true correlation of zero). Note that bs.n has to be larger
than 0. The parametric bootstrap is based on the assumption, that the continuous
variable is normally distributed within groups defined by the true state of the
RR variable. For polytomous forced response (FR) designs, the RR variable
is assumed to have equally spaced distances between categories (i.e., that it is
interval scaled)

ncpu

only relevant for the bootstrap: either the number of CPU cores or a cluster
initialized via \texttt{makeCluster}.

Details

Correlations of RR variables are calculated by the method of Fox & Tracy (1984) by interpreting
the variance induced by the RR procedure as uncorrelated measurement error. Since the error is
independent, the correlation can be corrected to obtain an unbiased estimator.

Note that the continuous RR model \texttt{mix.norm} with the randomization parameter \(p = c(p\text{.truth, mean, SD}) \)
assumes that participants respond either to the sensitive question with probability \(p\text{.truth} \) or oth-
erwise to a known masking distribution with known mean and SD. The estimated correlation only
depends on the mean and SD and does not require normality. However, the assumption of normality
is used in the parametric bootstrap to obtain standard errors.

Value

\texttt{RRcor} returns a list with the following components::

- \texttt{r} estimated correlation matrix
- \texttt{rSE.p, rSE.n} standard errors from parametric/nonparametric bootstrap
- \texttt{prob} two-sided p-values from parametric bootstrap
- \texttt{samples.p, samples.n} sampled correlations from parametric/nonparametric bootstrap (for the
 standard errors)

References

Research, 13, 188-197.
See Also

vignette('RRreg') or http://www.dwheek.de/separate_content/RRregManual/index.html
for a detailed description of the RR models and the appropriate definition of p

Examples

generate first RR variable
n <- 1000
p1 <- c(.3,.7)
gData <- RRgen(n,pi=.3,model="Kuk",p1)

generate second RR variable
p2 <- c(.8,.5)
t2 <- rbinom(n=n, size=1, prob=(gData$true+1)/2)
temp <- RRgen(model="UQTknown",p=p2, trueState=t2)
gData$UQTr <- temp$response

gData$UQTtrue <- temp$true

generate continuous covariate
gData$cov <- rnorm(n,0,4) + gData$UQTtrue + gData$true

estimate correlations using directly measured / RR variables
cor(gData[,c("true","cov","UQTtrue")])
RRcor(x=gData[,c("response","cov","UQTresp")],
models=c("Kuk","d","UQTknown"),p.list= list(p1,p2))

RRgen

Generate randomized response data

Description

The method RRgen generates data according to a specified RR model, e.g., "Warner". True states
are either provided by a vector trueState or drawn randomly from a Bernoulli distribution. Useful
for simulation and testing purposes, e.g., power analysis.

Usage

RRgen(n, pi.true, model, p, complyRates = c(1, 1), sysBias = c(0, 0),
groupRatio = 0.5, Kukrep = 1, trueState = NULL)

Arguments

n sample size of generated data
pi.true true proportion in population (a vector for m-categorical "FR" or "custom" model)
model specifies the RR model, one of: "Warner", "UQTknown", "UQTunknown", "Mangat",
"mix.exp", "custom". See vignette("RRreg") for details.
p randomization probability (depending on model, see RRruni for details)
complyRates vector with two values giving the proportions of carriers and non-carriers who adhere to the instructions, respectively
sysBias probability of responding 'yes' (coded as 1) in case of non-compliance for carriers and non-carriers of the sensitive attribute, respectively. If sysBias=c(0,0), carriers and non-carriers systematically give the nonsensitive response 'no' (also known as self-protective(SP)-'no' responses). If sysBias=c(0,0.5), carriers always respond 'no' whereas non-carriers randomly select a response category. Note that sysBias = c(0.5,0.5) might be the best choice for Kuk and Crosswise. For the m-categorical "FR" or "custom" model, sysBias can be given as a probability vector for categories 0 to (m-1).
groupRatio proportion of participants in group 1. Only required for two-group models, e.g., SLD and CDM
Kukrep Number of repetitions of Kuk’s procedure (how often red and black cards are drawn)
trueState optional vector containing true states of participants (i.e., 1 for carriers and 0 for noncarriers of sensitive attribute; for FR: values from 0,1,...,M-1 (M = number of response categories) which will be randomized according to the defined procedure (if specified, n and pi.true are ignored)

Details

If trueState is specified, the randomized response procedure will be simulated for this vector, otherwise a random vector of length n with true proportion pi.true is drawn. Respondents answer biases can be simulated by adjusting the compliance rates: if complyRates is set to c(1,1), all respondents adhere to the randomization procedure. If one or both rates are smaller than 1, sysBias determines whether noncompliant respondents systematically choose the nonsensitive category or whether they answer randomly.

SLD - to generate data according to the stochastic lie detector with the proportion t of honest carriers, parameters are set to complyRates=c(t,1) and sysBias=c(0,0)

CDM - to generate data according to the cheating detection model with the proportion gamma of cheaters, parameters are set to complyRates=c(1-gamma,1-gamma) and sysBias=c(0,0)

Value

data.frame including the variables true and response (and for SLD and CDM a third variable group)

See Also

see vignette('RRreg') for a detailed description of the models and RRlog, RRlin and RRcor for the multivariate analysis of RR data

Examples

Generate responses of 1000 people according to Warner's model,
every participant complies to the RR procedure
RRlin <- RRgen(n=1000, pi.true=.3, model="Warner", p=.7)
colMeans(RRlin)

use Kuk's model with two decks of cards,
p gives the proportions of red cards for carriers/noncarriers
RRlin <- RRgen(n=1000, pi.true=.4, model="Kuk", p=c(.4,.7))
colMeans(RRlin)

Stochastic Lie Detector (SLD):
Only 80% of carriers answer according to the RR procedure
RRlin <- RRgen(n=1000, pi.true=.2, model="SLD", p=c(.2,.8),
 complyRates=c(.8,1), sysBias=c(0,0))
colMeans(RRlin)

RRlin

Linear randomized response regression

Description

Linear regression for a continuous criterion, using randomized-response (RR) variables as predictors.

Usage

```r
RRlin(formula, data, models, p.list, group = NULL, Kukrep = 1,
  bs.n = 0, nCPU = 1, maxit = 1000, fit.n = 3, pibeta = 0.05)
```

Arguments

- **formula**: a continuous criterion is predicted by one or more categorical RR variables defined by `models`. If the number of predictors exceeds the number defined by the vector `models`, the remaining predictors are treated as non-randomized variables (e.g., direct questions). Interactions including any of the RR variables cannot be included.

- **data**: an optional data frame, list or environment, containing the variables in the model.

- **models**: character vector specifying RR model(s) in order of appearance in formula. Available models: "Warner", "UQTknown", "UQTunknown", "Mangat", "Kuk", "FR", "Crosswise", "Triangular", "CDM", "CDMsym", "SLD", "custom" (custom: a randomization matrix must be specified in the corresponding element of `p.list`, where the entry `p[i,j]` defines the probability of responding `i` (i-th row) given a true state of `j` (j-th column)).

- **p.list**: list of randomization probabilities for RR models in the same order as specified in `models`. Note, that the randomization probabilities `p` must be provided in a list, e.g., list(p=c(.2,.3)). See `RRuni` for details.

- **group**: vector or matrix specifying group membership by the indices 1 and 2. Only for multigroup RR models, e.g., UQTunknown, CDM or SLD

- **Kukrep**: defines the number of repetitions in Kuk’s card playing method
Number of samples used for the non-parametric bootstrap

only relevant for the bootstrap: either the number of CPU cores or a cluster initialized via `makeCluster`.

maximum number of iterations in optimization routine

number of fitting runs with random starting values

approximate ratio of probabilities pi to regression weights beta (to adjust scaling). Can be used for speeding-up and fine-tuning ML estimation (i.e., choosing a smaller value for larger beta values).

Returns an object `RRlin` which can be analysed by the generic method `summary`.

Daniel W. Heck

vignette('RRreg') or http://www.dwheck.de/separate_content/RRregManual/index.html for a detailed description of the RR models and the appropriate definition of p

```r
# generate two RR predictors
dat <- RRgen(n=500, pi=.4, model="Warner", p=.3)
dat2 <- RRgen(n=500, pi=c(.4,.6), model="FR", p=c(.1,.15))
dat$FR <- dat2$response
dat$trueFR <- dat2$true

# generate a third predictor and continuous dependent variables
dat$nonRR <- rnorm(500, 5, 1)
dat$depvar <- 2*dat$true - 3*dat2$true +
  .5*dat$nonRR + rnorm(500, 1, 7)

# use RRlin and compare to regression on non-RR variables
linreg <- RRlin(depvar~response+FR+nonRR, data=dat,
  models=c("Warner","FR"),
  p.list=list(.3, c(.1,.15)), fit.n=1)
summary(linreg)
summary(lm(depvar~true + trueFR+nonRR, data=dat))
```
Description

A dichotomous variable, measured once or more per person by a randomized response method, serves as dependent variable using one or more continuous and/or categorical predictors.

Usage

RRlog(formula, data, model, p, group, n.response = 1, LR.test = TRUE,
 fit.n = 3, EM.max = 1000, optim.max = 500, ...)

Arguments

- **formula**: specifying the regression model, see `formula`
- **data**: `data.frame`, in which variables can be found (optional)
- **p**: randomization probability/probabilities (depending on model, see RRruni for details)
- **group**: vector specifying group membership. Can be omitted for single-group RR designs (e.g., Warner). For two-group RR designs (e.g., CDM or SLD), use 1 and 2 to indicate the group membership, matching the respective randomization probabilities p[1], p[2]. If an RR design and a direct question (DQ) were both used in the study, the group indices are set to 0 (DQ) and 1 (RR; 1 or 2 for two-group RR designs). This can be used to test, whether the RR design leads to a different prevalence estimate by including a dummy variable for the question format (RR vs. DQ) as predictor. If the corresponding regression coefficient is significant, the prevalence estimates differ between RR and DQ. Similarly, interaction hypotheses can be tested (e.g., the correlation between a sensitive attribute and a predictor is only found using the RR but not the DQ design). Hypotheses like this can be tested by including the interaction of the DQ-RR-dummy variable and the predictor in formula (e.g., RR ~ dummy+predictor).
- **n.response**: number of responses per participant, e.g., if a participant responds to 5 RR questions with the same randomization probability p (either a single number if all participants give the same number of responses or a vector)
- **LR.test**: test regression coefficients by a likelihood ratio test, i.e., fitting the model repeatedly while excluding one parameter at a time (each nested model is fitted only once, which can result in local maxima). The likelihood-ratio test statistic $G^2(df = 1)$ is reported in the table of coefficients as deltaG2.
- **fit.n**: Number of fitting replications using random starting values to avoid local maxima.
Details

The logistic regression model is fitted first by an EM algorithm, in which the dependend RR variable is treated as a misclassified binary variable (Magder & Hughes, 1997). The results are used as starting values for a Newton-Raphson based optimization by \texttt{optim}.

Value

Returns an object \texttt{rrlog} which can be analysed by the generic method \texttt{summary}. In the table of coefficients, the column \texttt{wald} refers to the Chi2 test statistic which is computed as Chi$^2 = z^2 = \text{Estimate}^2/\text{StdErr}^2$. If \texttt{lrNtest = true}, the test statistic \texttt{deltagR} is the likelihood-ratio-test statistic, which is computed by fitting a nested logistic model without the corresponding predictor.

Author(s)

Daniel W. Heck

References

See Also

\texttt{vignette('RRreg')} or \texttt{http://www.dwheck.de/separate_content/RRregManual/index.html} for a detailed description of the RR models and the appropriate definition of \texttt{p}

Examples

```r
# generate data set without biases
dat <- RRgen(1000, pi=.3, "Warner", p=.9)
dat$covariate <- rnorm(1000)
dat$covariate[dat$true==1] <- rnorm(sum(dat$true==1),.4,1)
# analyse
ana <- RRlog(response~covariate, dat,"Warner", p=.9, fit.n = 1)
summary(ana)
# check with true, latent states:
glm(true~covariate, dat, family=binomial(link="logit"))
```
Mixed Effects Logistic Regression for RR Data

Description

Uses the package "lme4" to fit a generalized linear mixed model (GLMM) with an adjusted link function.

Usage

```r
RRmixed(formula, data, model, p, const = 1e-04, adjust_control = FALSE, ...
```

Arguments

- `formula`: two-sided formula including random and fixed effects (see below or `glmer` for details)
- `data`: an optional data frame with variables named in formula
- `model`: type of RR design. Only 1-group RR designs are supported at the moment (i.e., "Warner", "FR", "UQTknown", "Crosswise", "Triangular", "Kuk", "Mangat", "custom"). See `RRuni` or vignette(RRreg) for details.
- `p`: randomization probability
- `const`: the RR link function is not defined for small and/or large probabilities (the boundaries depend on `model` and `p`). To increase robustness of the estimation, these probabilities smaller and larger than the respective boundaries (plus/minus a constant defined via `const`) are smoothed by separate logit-link functions.
- `adjust_control`: whether to adjust the control arguments for `glmer`, which might help in case of convergence issues for some models. `lmerControl` settings are changed to `nAGQ@initStep = FALSE` and `optimizer = "bobyqa"`.
- `...`: further arguments passed to `glmer`

Details

Some examples for formula:

- random intercept: `response ~ covariate + (1 | group)`
- random slope: `response ~ covariate + (0 + covariate | group)`
- both random slope and intercept: `response ~ covariate +(covariate | group)`
- level-2 predictor (must have constant values within groups!): `response ~ lev2 + (1|group)`

Note that parameter estimation will be unstable and might fail if the observed responses are not in line with the model. For instance, a Forced-Response model (model="FR") with `p=c(0,1/4)` requires that expected probabilities for responses are in the interval [.25,1.00]. If the observed proportion of responses is very low (<.25), intercepts will be estimated to be very small (<0) and/or parameter estimation might fail. See `glmer` for setting better starting values and `lmerControl` for further options to increase stability.
RRsimu

Value

an object of class glmerMod

References

Examples

generate data with a level-1 predictor
set.seed(1234)
d <- data.frame(group=factor(rep(LETTERS[1:20],each=50)),
 cov=rnorm(20*50))

generate dependent data based on logistic model (random intercept):
d$true <- simulate(~ cov + (1|group), newdata=d,
 family=binomial(link="logit"),
 newparams=list(beta=c("(Intercept)"=-.5, cov=1),
 theta=c("group.(Intercept)"=.8)))[[1]]

scramble responses using RR:
model <- "FR"
p <- c(true0=.1, true1=.2)
d$resp <- RRgen(model="FR", p=p, trueState=d$true)$response

fit model:
mod <- RRmixed(resp ~ cov +(1|group), data=d, model="FR", p=p)
summary(mod)

RRsimu

Monte Carlo simulation for one or two RR variables

Description

Simulate and analyse bivariate data including either one RR variable (either correlation, logistic, or linear regression model) or two RR variables (only correlations). Useful for power analysis, parametric bootstraps or for testing the effects of noncompliance on the stability of estimates.

Usage

RRsimu(numRep, n, pi, model, p, cor = 0, b.log = 0,
 complyRates = c(1, 1), sysBias = c(0, 0), method = c("RRuni",
 "RRcor", "RRlog", "RRLin"), alpha = 0.05, groupRatio = 0.5,
 MList = FALSE, getPower = TRUE, nCPU = 1)
Arguments

numRep | number of replications
n | sample size
pi | true proportion of carriers of sensitive attribute (for 2 RR variables: vector)
model | either one or two RR model (as vector), see RRuni
p | randomization probability (for 2 RR variables: a list). See RRuni for details.
cor | true Pearson-correlation used for data generation (for RRcor). Can also be used to generate data with two dichotomous RR variables.
b.log | true regression coefficient in logistic regression (for RRlog)
complyRates | vector with two values giving the proportions of participants who adhere to the instructions in the subset with or without the sensitive attribute, respectively (for 2 RR variables: a list)
sysBias | probability of responding 'yes' (coded as 1 in the RR variable) in case of non-compliance for carriers and non-carriers, respectively. See RRgen
method | vector specifying which RR methods to be used in each replication. For a single RR variable, the methods RRuni, RRcor, RRlog, and RRlin are available. For 2 RR variables, only RRcor is available.
alpha | significance threshold for testing the logistic regression parameter beta
groupRatio | proportion of participants in group 1. Only for two-group models (e.g., "SLD") (for 2 RR variables: vector)
Mlest | concerns RRuni: whether to use optim to get ML instead of moment estimates (only relevant if pi is outside of [0,1])
getPower | whether to compute power for method="RRcor" (performs an additional bootstrap assuming independence)
ncpu | either the number of CPU cores or a cluster initialized via makeCluster.

Details

For a single RR variable:
The parameter b.log is the slope-coefficient for the true, latent values in a logistic regression model that is used for data generation.
The argument cor is used for data generation for linear models. The directly measured covariate is sampled from a normal distribution with shifted means, depending on the true state on the sensitive attribute (i.e., the true, underlying values on the RR variable). For dichotomous RR variables, this corresponds to the assumption of an ordinary t-test, where the dependent variable is normally distributed within groups with equal variance. The difference in means is chosen in a way, to obtain the point-biserial correlation defined by cor.
For two RR variables:
cor has to be used. In case of two dichotomous RR variables, the true group membership of individuals is sampled from a 2x2 cross table. Within this table, probabilities are chosen in a way, to obtain the point-tetrachoric correlation defined by cor
Note, that for the FR model with multiple response categories (e.g., from 0 to 4), the specified cor is not the exact target of the sampling procedure. It assumes a normal distribution for each true state, with constant differences between the groups (i.e., it assumes an interval scaled variable).
Value

A list containing

- `parEsts` matrix containing the estimated parameters
- `results` matrix with mean parameters, standard errors, and number of samples to which the respective method could not be fitted
- `power` vector with the estimated power of the selected randomized response procedures

Examples

```r
# Not run: Simulate data according to the Warner model
# mcsim <- RRsimu(numRep=100, n=300, pi=.4,
#                 model="Warner", p=.2, cor=.3)
# print(mcsim)
```

RRuni

Univariate analysis of randomized response data

Description

Analyse a data vector `response` with a specified RR model (e.g., Warner) with known randomization probability `p`

Usage

```r
RRuni(response, data, model, p, group = NULL, MLeest = TRUE,
       Kukrep = 1)
```

Arguments

- `response` either vector of responses containing 0='no' and 1='yes' or name of response variable in data. For the Forced Response (FR) model, response values are integers from 0 to (m-1), where 'm' is the number of response categories. In Kuk's card playing method (Kuk), the observed response variable gives the number of red cards.
- `data` optional data.frame containing the response variable
- `p` randomization probability (see details or vignette("RRreg"))
- `group` a group vector of the same length as response containing values 1 or 2, only required for two-group models, which specify different randomization probabilities for two groups, e.g., CDM or SLD. If a data.frame data is provided, the variable group is searched within it.
- `MLeest` whether to use optim to get ML instead of moment estimates (only relevant if pi is outside of [0,1])
- `Kukrep` number of repetitions of Kuk's card-drawing method
Details

Each RR design model differs in the definition of the randomization probability \(p \), which is defined as a single probability for:

- "Warner": Probability to get sensitive Question
- "Mangat": Prob. for noncarriers to respond truthfully (i.e., with No=0)
- "Crosswise": Probability to respond 'yes' to irrelevant second question (coding of responses: \(1=\text{[no-no]} \text{' or 'yes-yes'}; 0=\text{[yes-no or no-yes]}'\)
- "Triangular": Probability to respond 'yes' to irrelevant second question (coding of responses: \(0=\text{'no'} \) to both questions (= 'circle'; \(1=\text{'yes' to at least one question ('triangle')}'\)

and as a two-valued vector of probabilities for:

- "Kuk": Probability of red cards in first and second set, respectively (red=1, black=0);
- Unrelated Question ("Unrelated known"): Prob. to respond to sensitive question and known prevalence of 'yes' responses to unrelated question
- Unrelated Question ("Unrelated unknown"): Prob. to respond to sensitive question in group 1 and 2, respectively
- Cheating Detection ("CDM"): Prob. to be prompted to say yes in group 1 and 2, respectively
- Symmetric CDM ("CDM_sym"): 4-valued vector: Prob. to be prompted to say 'yes'/no' in group 1 and 'yes'/no' in group 2
- Stochastic Lie Detector ("SLD"): Prob. for noncarriers to reply with \(0=\text{'no'} \) in group 1 and 2, respectively
- Forced Response model ("FR"): \(m \)-valued vector (\(m \)=number of response categories) with the probabilities of being prompted to select response categories \(0,1,...,m-1 \), respectively (requires \(\sum p < 1 \))
- RR as misclassification ("custom"): a quadratic misclassification matrix is specified, where the entry \(p[i,j] \) defines the probability of responding \(i \) (\(i \)-th row) given a true state of \(j \) (\(j \)-th column) (see \texttt{getPW})

For the continuous RR models:

- "mix.norm": 3-valued vector - Prob. to respond to sensitive question and mean and SD of the masking normal distribution of the unrelated question
- "mix.exp": 2-valued vector - Prob. to respond to sensitive question and mean of the masking exponential distribution of the unrelated question
- "mix.unknown": 2-valued vector - Prob. of responding to sensitive question in group 1 and 2, respectively

Value

an \texttt{RRuni} object, can by analyzed by using \texttt{summary}

See Also

\texttt{vignette('RRreg')} or \texttt{http://www.dwheck.de/separate_content/RRregManual/index.html} for a detailed description of the RR models and the appropriate definition of \(p \)
Examples

```r
# Generate responses of 1000 people according to Warner's model
# with an underlying true proportion of .3
genData <- RRgen(n=1000, pi=.3, model="Warner", p=.7)
# Analyse univariate data to estimate 'pi'
analyse <- RRuni(response=genData$response, model="Warner", p=.7)
summary(analyse)

# Generate data in line with the Stochastic Lie Detector
# assuming that 90% of the respondents answer truthfully
genData2 <- RRgen(n=1000, pi=.3, model="SLD", p=c(.2,.8),
                  complyRates=c(.8,1), groupRatio=0.4)
analyse2 <- RRuni(response=genData2$response, model="SLD",
                   p=c(.2,.8), group=genData2$group)
summary(analyse2)
```
Index

*Topic **datasets**
 minarets, 4
*Topic **package**
 RRreg-package, 2

formula, 14
getPW, 3, 20
glmer, 16

list, 12
lme4, 16
lmerControl, 16

makeCluster, 7, 9, 13, 18
minarets, 4

optim, 15

plot, 6
plot.powerplot, 5
plot.RRlog, 5
powerplot, 5, 6
predict.RRlog, 6, 7

RRcor, 2, 6, 8, 11, 18
RRgen, 2, 10, 18
RRlin, 2, 6, 11, 12, 18
RRlog, 2, 5, 6, 8, 11, 14, 18
RRmixed, 16
RRreg(RRreg-package), 2
RRreg-package, 2
RRsimu, 2, 6, 7, 17
RRuni, 2, 9, 11, 12, 14, 16, 18, 19

summary, 13, 15, 20