Package ‘RSAlgaeR’

April 10, 2018

Type Package
Title Builds Empirical Remote Sensing Models of Water Quality
Variables and Analyzes Long-Term Trends
Version 1.0.0
Author Carly Hansen
Maintainer Carly Hansen <carlyahansen@gmail.com>
Description Assists in processing reflectance data, developing empirical models using stepwise regression and a generalized linear modeling approach, cross-validation, and analysis of trends in water quality conditions (specifically chl-a) and climate conditions using the Theil-Sen estimator.
License GPL-2
Encoding UTF-8
URL http://github.com/cahhansen/RSAlgae
BugReports https://github.com/cahhansen/RSAlgae/issues
LazyData TRUE
RoxygenNote 6.0.1
Depends R (>= 2.10)
Imports plyr, lubridate, ggplot2, hydroGOF, stats, cvTools, mblm, graphics, utils
NeedsCompilation no
Repository CRAN
Date/Publication 2018-04-10 13:14:47 UTC

R topics documented:

annual.summary.climate .. 2
annual.summary.wq ... 3
annualtrend.ts ... 3
apply.mod.seasona1onal ... 4
climate.factor.effect .. 5
climatedata .. 6
annual.summary.climate

summarize climate conditions on an annual basis

Description
summarize climate conditions on an annual basis

Usage
annual.summary.climate(df, datecol, valuecol, parameter)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>with estimated values, dates, location identifiers</td>
</tr>
<tr>
<td>datecol</td>
<td>string, name of column with dates</td>
</tr>
<tr>
<td>valuecol</td>
<td>string, name of column with climate parameter values</td>
</tr>
<tr>
<td>parameter</td>
<td>string, name of parameter ("Precipitation","Temperature")</td>
</tr>
</tbody>
</table>

Value
list of annual (seasonal) summaries

Examples

data(climatedata)
sumdata <- annual.summary.climate(df=climatedata,valuecol="PRCP",datecol="DATE",
parameter="Precipitation")
annual.summary.wq

Description
summarize max and mean water quality conditions on an annual basis

Usage
annual.summary.wq(df, valuecol, datecol, locationcol)

Arguments
- df: data frame with estimated values, dates, location identifiers
- valuecol: string, name of column with water quality values
- datecol: string, name of column with dates (must be date format)
- locationcol: string, name of column with location identifiers

Value
dataframe of annual summaries

Examples
data(estimatedrecord)
sumdata <- annual.summary.wq(df=estimatedrecord, valuecol="EstChlValue", datecol="ImageDate", locationcol="StationID")

annualtrend.ts

Description
Explore long term annual trends with Theil-Sen Estimator

Usage
annualtrend.ts(record, valuecol, datecol, var, monthlybias = FALSE)
Arguments

- **record**: dataframe with record of estimated water quality
- **valuecol**: string, name of column with water quality values
- **datecol**: string, name of column with dates
- **var**: string, aggregator (e.g. mean, max)
- **monthlybias**: calculates annual average using monthly averages (in case of differing numbers of samples for each month)

Value

- summary of the Theil-Sen estimator

Examples

```r
data(estimatedrecord)
annualtrend.ts(record=estimatedrecord,valuecol="EstChlValue", datecol="ImageDate",var="mean",monthlybias="TRUE")
```

Description

Apply GLM to remotely sensed record

Usage

```r
apply.mod.seasonal(df, datecol, model, season, threshold)
```

Arguments

- **df**: dataframe with reflectance values
- **datecol**: string, name of column with imagery dates
- **model**: calibrated GLM
- **season**: vector of months to include in the season
- **threshold**: numeric value above which is considered unreasonable/noise

Value

- dataframe of predicted values and confidence intervals

Examples

```r
data(srd datafor application)
data(utahsummermod)
estdata <- apply.mod.seasonal(df=srd datafor application, datecol="ImageDate",model=utahsummermod,season=c("July","August","September"),threshold=500)
```
climate.factor.effect

Description
Evaluates difference in values based on climate conditions.

Usage
```r
climate.factor.effect(wqrecord, imagedatecol, valuecol, climaterecord, 
climatevarcol, climatedatecol, maxlag, noevent, alternative = "two.sided",
overall = TRUE, months = NULL, locationcol = "", 
ylabel = "Average Value")
```

Arguments
- `wqrecord`: dataframe with estimated historical record of water quality parameter
- `imagedatecol`: string, name of column with the date of the estimate (date of remotely sensed imagery)
- `valuecol`: string, name of column with estimated or field-sampled water quality parameter
- `climaterecord`: dataframe with climate variables
- `climatevarcol`: character, name of climate variable (column) of interest
- `climatedatecol`: string, name of column with the date of the climate observation
- `maxlag`: numeric, number of days to lag the climate effect
- `noevent`: numeric, threshold for whether an event occurred
- `alternative`: character string specifying alternative hypothesis ("two.sided","greater","less")
- `overall`: boolean, TRUE: all locations, FALSE: by each location. Default is TRUE
- `months`: months an optional character string for if the t-test should be month specific
- `locationcol`: string, name of column with unique location identifier, used if overall is FALSE
- `ylabel`: string, optional label for plot

Value
results of wilcox test for differences in mean values (and, if overall, boxplots of water quality data)

Examples
```r
data(estimatedrecord)
data(climatedata)
effectresults <- climate.factor.effect(wqrecord=estimatedrecord,imagedatecol="ImageDate", 
valuecol="EstChlValue",climaterecord=climatedata,climatevarcol="TMAX",climatedatecol="DATE", 
maxlag=7,noevent=16,months=c("July"))
```
climatedata Climate data

Description
A dataset containing precipitation and maximum daily temperature for the Provo BYU NOAA Station

Usage
climatedata

Format
A data frame with 12238 rows and 3 variables:

- DATE date of observation
- PRCP precipitation volume (mm/day)
- TMAX max temperature (degrees C) ...

Source
NOAA Climate Data Archive

create.model.vars create.model.vars

Description
Create model variables used in model calibration and application

Usage
create.model.vars(filename, rowIndex = TRUE)

Arguments
- filename CSV file with formatted surface reflectance data
- rowIndex True or False, Indicates whether the first column in the formatted data file is a row index

Value
dataframe with variables used in model development or application
cv.model

Description
Use k-fold cross validation to evaluate the goodness of fit for a model.

Usage
```
cv.model(df, valuecol, k, model, gof)
```

Arguments
- **df**: dataframe, limited to independent/dependent variables
- **valuecol**: string, name of column with water quality values
- **k**: numeric, number of folds (will not be used if there are fewer observations than folds)
- **model**: formula
- **gof**: string, measure of the goodness of fit (PBIAS, R², RMSE)

Value
list of training and testing goodness of fit

estimatedrecord

Description
A dataset containing remotely sensed estimates of chlorophyll for Utah Lake.

Usage
```
estimatedrecord
```

Format
A data frame with 2041 rows and 5 variables:

- **ImageDate**: date of image acquisition
- **StationID**: location (corresponding to sampling locations)
- **EstChlValue**: estimated chlorophyll value
- **Lower**: lower end of confidence interval
- **Upper**: upper end of confidence interval
Source

derived from models developed by Carly Hansen and Landsat surface reflectance data

<table>
<thead>
<tr>
<th>formatSRdata</th>
</tr>
</thead>
</table>

Description

Format surface reflectance data

Usage

```
formatsrdata(data, value, imagerydate, samplingdate = "", location, datatype, qaband, qa_accept)
```

Arguments

data dataframe of surface reflectance data. Designed to work with reflectance values for bands from Landsat surface reflectance products (Blue, Red, Green, NIR, SWIR1, SWIR2, QA Band) at specific point locations

value string, name of column with water quality parameter values

imagerydate string, name of column for imagery dates (must be date format)

samplingdate string, name of column for sampling dates (only required if dataset is used for calibration, must be date format)

location string, name of column for location identifier

datatype string, "Calibration" or "Estimated"

qaband string, name of column for QA (such as a cloudmask) rating

qa_accept vector, QA classes which are acceptable

Value

dataframe with formatted data

Examples

data(srdata)

```r
formattedsrdata <- formatsrdata(data=srdata, value="FieldValue", imagerydate="ImageDate", samplingdate="SamplingDate", location="StationID", datatype="Calibration", qaband="CloudMask", qa_accept=c(0,1))
```
Description

Lags a variable by a time step

Usage

`lagpad(x, k)`

Arguments

- `x` climate data
- `k` time step to lag (positive results in a forward shift, negative results in backwards shift)

Description

Evaluate Model Performance (R2 and RMSE)

Usage

`modresults(model, data, value, title = "")`

Arguments

- `model` GLM model
- `data` data for calibration/evaluation
- `value` string, name of column with water quality values
- `title` string, optional suffix for the title of the plot

Value

prints summary of model and plot of modeled vs. observed
monthlytrendNts

Description
Calculates annual linear trend of average monthly values and significance of with Theil-Sen Estimator (used for robust to non-normal data)

Usage
monthlytrendNts(record, valuecol, datecol, months, var)

Arguments
- record: dataframe with record of estimated water quality
- valuecol: string, name of column with values
- datecol: string, name of column with dates
- months: list of months
- var: string, aggregator (e.g. mean, max)

Value
summary of the Theil-Sen estimator

plotrecord

Description
Plots estimated and observed data

Usage
plotrecord(data, datavalue, date, obsdata, obsdatavalue, obsdate, lake = "", labels = TRUE, ylab = expression(paste("Chl-a ("mu"," g/L"))

Arguments
- data: Dataframe with estimated values
- datavalue: string, name of column with values in estimated dataframe
- date: string, name of column with date of imagery used for estimating values (must be date class)
- obsdata: Dataframe with Observed Data
plotrecord.cal

obsvdatavalue: string, name of column with values in observed dataframe
obsdate: string, name of column with date of observation (must be date class)
lake: string, Name of Lake
labels: optional for plotting
ylab: string, label for y axis

Value

plot of estimated and observed data

Description

Plots estimated record with calibrated data

Usage

plotrecord.cal(data, caldata, value, date, location, ylab = expression(paste("Chl-a (", mu, "g/L)")))

Arguments

data: Dataframe with estimated values (value), dates (ImageDate), location identifier
caldata: Dataframe with data used in Calibration (value, ImageDate, and Lake column)
value: string, name of column with water quality values
date: string, name of column with imagery dates
location: string, name of column with location identifiers
ylab: string, label for y axis

Value

plot of estimated record with data used for calibration
plotrecord.errors

Description

Plots estimated record with error bars

Usage

plotrecord.errors(data, value, date, location,
 ylab = expression(paste("Chl-a \(\mu \) \(g/L \))))

Arguments

data
 Dataframe with estimated values, dates, location identifiers, lower and upper bounds (lower and upper)
value
 string, name of column with water quality values
date
 string, name of column with imagery dates
location
 string, name of column with location identifiers
ylab
 string, label for y axis

Value

plots the estimated record with error bars

srdata

Surface reflectance data from Landsat 5 and 7

Description

A dataset containing the surface reflectance for locations in Utah Lake from Landsat 5 and 7 (pre-collection dataset) in Google Earth Engine.

Usage

srdata
Format

A data frame with 215 rows and 16 variables:

- **Blue** reflectance in the blue band
- **CloudMask** classes used for masking clouds/haze (0 or 1 are clear/water)
- **FieldValue** sampled or observed chlorophyll a value
- **AbsDiffInDays** calculated difference between imagery date and sampling date
- **Green** reflectance in the green band
- **ImageDate** date of imagery acquisition
- **ImageName** name of Landsat scene
- **Method** method used in sampling
- **NIR** reflectance in the Near infrared band
- **Organization** agency responsible for collecting sample data
- **Red** reflectance in the red band
- **SWIR1** reflectance in the short wave infrared 1 band
- **SWIR2** reflectance in the short wave infrared 2 band
- **SamplingDate** date of sample collection
- **Sensor** sensor used to measure surface reflectance
- **StationID** location of sample ...

Source

Utah Division of Water Quality and Landsat

srdataforapplication
Surface reflectance data from Landsat 5 and 7

Description

A dataset containing the surface reflectance for locations in Utah Lake from Landsat 5 and 7 (pre-collection dataset) in Google Earth Engine, used for applying models.

Usage

srdataforapplication
Format

A data frame with 2313 rows and 25 variables:

- **Blue** reflectance in the blue band
- **Green** reflectance in the green band
- **ImageDate** date of imagery acquisition
- **NIR** reflectance in the Near infrared band
- **Red** reflectance in the red band
- **SWIR1** reflectance in the short wave infrared 1 band
- **SWIR2** reflectance in the short wave infrared 2 band
- **StationID** location of sample
- **Green_Blue** reflectance in the green/blue band
- **Red_Blue** reflectance in the red/blue band
- **Red_Green** reflectance in the red/green band
- **Red_NIR** reflectance in the red/NIR band
- **Red_SWIR1** reflectance in the red/SWIR1 band
- **Green_SWIR1** reflectance in the green/SWIR1 band
- **Blue_SWIR1** reflectance in the blue/SWIR1 band
- **Red_SWIR2** reflectance in the red/SWIR2 band
- **Green_SWIR2** reflectance in the green/SWIR2 band
- **Blue_SWIR2** reflectance in the blue/SWIR2 band
- **NIR_SWIR1** reflectance in the nir/swir1 band
- **NIR_SWIR2** reflectance in the nir/swir2 band
- **NIR_Blue** reflectance in the nir/blue band
- **NIR_Green** reflectance in the nir/green band
- **NDVI** NDVI
- **avgRGB** average of reflectance in the visible bands
- **avgSWIR** average of reflectance in the SWIR bands ...

Source

Landsat
Description

Use stepwise regression to parameterize model

Usage

`step.model(data, imagerydate, value, modelvariables, timewindow, season, stepdirection, print.on = TRUE)`

Arguments

- `data`: dataframe, formatted calibration data (model variables: field data and surface reflectance values)
- `imagerydate`: string, name of column with dates of imagery
- `value`: string, name of column with water quality values
- `modelvariables`: vector of strings with the names of columns for bands to consider
- `timewindow`: numeric, number of days to allow for near coincidence
- `season`: vector, months to include in model
- `stepdirection`: string, direction for stepwise regression ("backward","both","forward")
- `print.on`: boolean, option to print the results of the model (default is TRUE)

Value

list with the stepwise model and the modeled values

utahsummermod

Example chlorophyll estimation model

Description

A dataset containing model information for Utah Lake - summer

Usage

`utahsummermod`
Format

A list of 30 items:

- coefficients
- residuals
- fitted.values
- effects
- R
- rank
- qr
- family
- linear.predictors
- deviance
- aic
- null.deviance
- iter
- weights
- prior.weights
- df.residual
- df.null
- y
- converged
- boundary
- model
- call
- formula
- terms
- data
- offset
- control
- method
- contrasts
- xlevels ...

Source

developed by Carly Hansen
Index

*Topic datasets
 climatedata, 6
 estimatedrecord, 7
 srdata, 12
 srdataforapplication, 13
 utahsummermod, 15

annual.summary.climate, 2
annual.summary.wq, 3
annualtrend.ts, 3
apply.mod.seasonal, 4
climate.factor.effect, 5
climatedata, 6
create.model.vars, 6
cv.model, 7
estimatedrecord, 7
formatSRdata, 8
lagpad, 9
modresults, 9
monthlytrend.ts, 10
plotrecord, 10
plotrecord.cal, 11
plotrecord.errors, 12
srdata, 12
srdataforapplication, 13
step.model, 15
utahsummermod, 15