Package ‘RSSL’

March 14, 2023

Version 0.9.6

Title Implementations of Semi-Supervised Learning Approaches for Classification

Depends R(>= 2.10.0)

Imports methods, Rcpp, MASS, kernlab, quadprog, Matrix, dplyr, tidyr, ggplot2, reshape2, scales, cluster

LinkingTo Rcpp, RcppArmadillo

Suggests testthat, rmarkdown, SparseM, numDeriv, LiblineaR, covr

Description A collection of implementations of semi-supervised classifiers and methods to evaluate their performance. The package includes implementations of, among others, Implicitly Constrained Learning, Moment Constrained Learning, the Transductive SVM, Manifold regularization, Maximum Contrastive Pessimistic Likelihood estimation, S4VM and WellSVM.

License GPL (>= 2)

URL https://github.com/jkrijthe/RSSL

BugReports https://github.com/jkrijthe/RSSL

Collate 'Generics.R' 'Classifier.R' 'CrossValidation.R'
 'LeastSquaresClassifier.R' 'EMLeastSquaresClassifier.R'
 'NormalBasedClassifier.R' 'LinearDiscriminantClassifier.R'
 'EMLinearDiscriminantClassifier.R' 'NearestMeanClassifier.R'
 'EMNearestMeanClassifier.R' 'LogisticRegression.R'
 'EntropyRegularizedLogisticRegression.R' 'Evaluate.R'
 'GRFClassifier.R' 'GenerateSSLData.R' 'HelperFunctions.R'
 'ICLeastSquaresClassifier.R' 'ICLinearDiscriminantClassifier.R'
 'KernelLeastSquaresClassifier.R'
 'KernelICLeastSquaresClassifier.R'
 'LaplacianKernelLeastSquaresClassifier.R' 'LaplacianSVM.R'
 'LearningCurve.R' 'LinearSVM.R' 'LogisticLossClassifier.R'
 'MCLinearDiscriminantClassifier.R' 'MCNearestMeanClassifier.R'
 'MCPLDA.R' 'MajorityClassClassifier.R' 'Measures.R'
 'Plotting.R' 'QuadraticDiscriminantClassifier.R' 'RSSL.R'
 'RcppExports.R' 'S4VM.R' 'SVM.R' 'SelfLearning.R' 'TSVM.R'
R topics documented:

'USMLeastSquaresClassifier.R' 'WellSVM.R' 'scaleMatrix.R'
'svmd.R' 'svmLin.R' 'testdata-data.R'

Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation yes
Author Jesse Krijthe [aut, cre]
Maintainer Jesse Krijthe <jkrijthe@gmail.com>
Repository CRAN
Date/Publication 2023-03-14 08:40:02 UTC

R topics documented:

add_missinglabels_mar ... 4
adjacency_knn .. 5
BaseClassifier .. 5
c.CrossValidation ... 6
classify .. 6
cov_ml .. 7
CrossValidationSSL ... 7
decisionvalues .. 9
df_to_matrices ... 10
diabetes ... 10
EMLeastSquaresClassifier ... 11
EMLinearDiscriminantClassifier 13
EMNearestMeanClassifier ... 14
EntropyRegularizedLogisticRegression 15
find_a_violated_label ... 16
gaussian_kernel .. 17
generate2ClassGaussian ... 17
generateABA ... 18
generateCrescentMoon .. 19
generateFourClusters ... 19
generateParallelPlanes .. 20
generateSlicedCookie ... 21
generateSpirals ... 21
generateTwoCircles ... 22
gem_classifier ... 22
gem_linearclassifier .. 23
GRFClassifier ... 23
harmonic_function .. 25
ICLeastSquaresClassifier ... 26
ICLinearDiscriminantClassifier 28
KernelICLeastSquaresClassifier 29
KernelLeastSquaresClassifier 30
LaplacianKernelLeastSquaresClassifier 32
add_missinglabels_mar

Throw out labels at random

Description

Original labels are saved in attribute y_true

Usage

```r
add_missinglabels_mar(df, formula = NULL, prob = 0.1)
```

Arguments

- `df` : data.frame; Data frame of interest
- `formula` : formula; Formula to indicate the outputs
- `prob` : numeric; Probability of removing the label

See Also

Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()
adjacency_knn

Description

Calculates symmetric adjacency: objects are neighbours if either one of them is in the set of nearest neighbours of the other.

Usage

adjacency_knn(X, distance = "euclidean", k = 6)

Arguments

X : matrix; input matrix
distance : character; distance metric used in the dist function
k : integer; Number of neighbours

Value

Symmetric binary adjacency matrix

BaseClassifier

Classifier used for enabling shared documenting of parameters

Description

Classifier used for enabling shared documenting of parameters

Usage

BaseClassifier(X, y, X_u, verbose, scale, eps, x_center, intercept, lambda,
y_scale, kernel, use_Xu_for_scaling, ...)

Arguments

X : matrix; Design matrix for labeled data
y : factor or integer vector; Label vector
X_u : matrix; Design matrix for unlabeled data
verbose : logical; Controls the verbosity of the output
scale : logical; Should the features be normalized? (default: FALSE)
eps : numeric; Stopping criterion for the maximinimization
x_center : logical; Should the features be centered?
intercept logical; Whether an intercept should be included
lambda numeric; L2 regularization parameter
y_scale logical; whether the target vector should be centered
kernel kernlab::kernel to use
use_Xu_for_scaling logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization
...
 Not used

c.CrossValidation

Description
Merge result of cross-validation runs on single datasets into a the same object

Usage
S3 method for class 'CrossValidation'
c(...)

Arguments
...
 Named arguments for the different objects, where the name reflects the dataset name

clapply

Description
Use mclapply conditional on not being in RStudio

Usage
clapply(X, FUN, ..., mc.cores = getOption("mc.cores", 2L))

Arguments
X vector
FUN function to be applied to the elements of X
...
 optional arguments passed to FUN
mc.cores number of cores to use
cov_ml

Biased (maximum likelihood) estimate of the covariance matrix

Description

Biased (maximum likelihood) estimate of the covariance matrix

Usage

cov_ml(X)

Arguments

- **X**: matrix with observations

CrossValidationSSL

Cross-validation in semi-supervised setting

Description

Cross-validation for semi-supervised learning, in which the dataset is split in three parts: labeled training object, unlabeled training object and validation objects. This can be used to evaluate different approaches to semi-supervised classification under the assumption the labels are missing at random. Different cross-validation schemes are implemented. See below for details.

Usage

CrossValidationSSL(X, y, ...)

```r
## S3 method for class 'list'
CrossValidationSSL(X, y, ..., verbose = FALSE, mc.cores = 1)

## S3 method for class 'matrix'
CrossValidationSSL(X, y, classifiers, measures = list(Error = measure_error), k = 10, repeats = 1, verbose = FALSE, leaveout = "test", n_labeled = 10, prop_unlabeled = 0.5, time = TRUE, pre_scale = FALSE, pre_pca = FALSE, n_min = 1, low_level_cores = 1, ...)
```

Arguments

- **X**: design matrix of the labeled objects
- **y**: vector with labels
- **...**: arguments passed to underlying functions
- **verbose**: logical; Controls the verbosity of the output
CrossValidationSSL

- **mc.cores**: integer; Number of cores to be used
- **classifiers**: list; Classifiers to crossvalidate
- **measures**: named list of functions giving the measures to be used
- **k**: integer; Number of folds in the cross-validation
- **repeats**: integer; Number of repeated assignments to folds
- **leaveout**: either "labeled" or "test", see details
- **n_labeled**: Number of labeled examples, used in both leaveout modes
- **prop_unlabeled**: numeric; proportion of unlabeled objects
- **time**: logical; Whether execution time should be saved.
- **pre_scale**: logical; Whether the features should be scaled before the dataset is used
- **pre_pca**: logical; Whether the features should be preprocessed using a PCA step
- **n_min**: integer; Minimum number of labeled objects per class
- **low_level_cores**: integer; Number of cores to use compute repeats of the learning curve

Details

The input to this function can be either: a dataset in the form of a feature matrix and factor containing the labels, a dataset in the form of a formula and data.frame or a named list of these two options. There are two main modes in which the cross-validation can be carried out, controlled by the `leaveout` parameter. When `leaveout` is "labeled", the folds are formed by non-overlapping labeled training sets of a user specified size. Each of these folds is used as a labeled set, while the rest of the objects are split into the an unlabeled and the test set, controlled by `prop_unlabeled` parameter. Note that objects can be used multiple times for testing, when training on a different fold, while other objects may never used for testing.

The "test" option of `leaveout`, on the other hand, uses the folds as the test sets. This means every object will be used as a test object exactly once. The remaining objects in each training iteration are split randomly into a labeled and an unlabeled part, where the number of the labeled objects is controlled by the user through the `n_labeled` parameter.

Examples

```r
X <- model.matrix(Species~.-1,data=iris)
y <- iris$Species

classifiers <- list("LS"=function(X,y,X_u,y_u) {
    LeastSquaresClassifier(X,y,lambda=0)
},
    "EM"=function(X,y,X_u,y_u) {
        SelfLearning(X,y,X_u,
                    method=LeastSquaresClassifier)
    }
)

measures <- list("Accuracy" = measure_accuracy,
                 "Loss" = measure_losstest,
                 "Loss labeled" = measure_losslab,
                 "Loss Lab+Unlab" = measure_losstrain
)```
# Cross-validation making sure test folds are non-overlapping

cvresults1 <- CrossValidationSSL(X,y,
    classifiers=classifiers,
    measures=measures,
    leaveout="test", k=10,
    repeats = 2,n_labeled = 10)

print(cvresults1)
plot(cvresults1)

# Cross-validation making sure labeled sets are non-overlapping

cvresults2 <- CrossValidationSSL(X,y,
    classifiers=classifiers,
    measures=measures,
    leaveout="labeled", k=10,
    repeats = 2,n_labeled = 10,
    prop_unlabeled=0.5)

print(cvresults2)
plot(cvresults2)

---

decisionvalues

**Decision values returned by a classifier for a set of objects**

**Description**

Returns decision values of a classifier

**Usage**

decisionvalues(object, newdata)

## S4 method for signature 'LeastSquaresClassifier'
decisionvalues(object, newdata)

## S4 method for signature 'KernelLeastSquaresClassifier'
decisionvalues(object, newdata)

## S4 method for signature 'LinearSVM'
decisionvalues(object, newdata)

## S4 method for signature 'SVM'
decisionvalues(object, newdata)

## S4 method for signature 'TSVM'
decisionvalues(object, newdata)

## S4 method for signature 'svmlinClassifier'
decisionvalues(object, newdata)
Arguments

object Classifier object
newdata new data to classify

df_to_matrices Convert data.frame with missing labels to matrices

Description

Convert data.frame with missing labels to matrices

Usage

df_to_matrices(df, formula = NULL)

Arguments

df data.frame; Data
formula formula; Description of problem

See Also

Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), measure_accuracy(), missing_labels().split_dataset_ssl().split_random().true_labels()

diabetes diabetes data for unit testing

Description

Useful for testing the WellSVM implementation
EMLeastSquaresClassifier

An Expectation Maximization like approach to Semi-Supervised Least Squares Classification

Description

As studied in Krijthe & Loog (2016), minimizes the total loss of the labeled and unlabeled objects by finding the weight vector and labels that minimize the total loss. The algorithm proceeds similar to EM, by subsequently applying a weight update and a soft labeling of the unlabeled objects. This is repeated until convergence.

Usage

```
EMLeastSquaresClassifier(X, y, X_u, x_center = FALSE, scale = FALSE,
 verbose = FALSE, intercept = TRUE, lambda = 0, eps = 1e-09,
 y_scale = FALSE, alpha = 1, beta = 1, init = "supervised",
 method = "block", objective = "label", save_all = FALSE,
 max_iter = 1000)
```

Arguments

- **X** matrix; Design matrix for labeled data
- **y** factor or integer vector; Label vector
- **X_u** matrix; Design matrix for unlabeled data
- **x_center** logical; Should the features be centered?
- **scale** logical; Should the features be normalized? (default: FALSE)
- **verbose** logical; Controls the verbosity of the output
- **intercept** logical; Whether an intercept should be included
- **lambda** numeric; L2 regularization parameter
- **eps** Stopping criterion for the minimization
- **y_scale** logical; whether the target vector should be centered
- **alpha** numeric; the mixture of the new responsibilities and the old in each iteration of the algorithm (default: 1)
- **beta** numeric; value between 0 and 1 that determines how much to move to the new solution from the old solution at each step of the block gradient descent
- **init** objective character; "random" for random initialization of labels, "supervised" to use supervised solution as initialization or a numeric vector with a coefficient vector to use to calculate the initialization
- **method** character; one of "block", for block gradient descent or "simple" for LBFGS optimization (default="block")
- **objective** character; "responsibility" for hard label self-learning or "label" for soft-label self-learning
- **save_all** logical; saves all classifiers trained during block gradient descent
- **max_iter** integer; maximum number of iterations
EMLeastSquaresClassifier

Details

By default (method="block") the weights of the classifier are updated, after which the unknown labels are updated. method="simple" uses LBFGS to do this update simultaneously. Objective="responsibility" corresponds to the responsibility based, instead of the label based, objective function in Krijthe & Loog (2016), which is equivalent to hard-label self-learning.

References


See Also

Other RSSL classifiers: EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

library(dplyr)
library(ggplot2)

set.seed(1)

df <- generate2ClassGaussian(200,d=2,var=0.2) %>%
    add_missinglabels_mar(Class~, prob = 0.96)

# Soft-label vs. hard-label self-learning
classifiers <- list(
    "Supervised"=LeastSquaresClassifier(Class~, df),
    "EM-Soft"=EMLeastSquaresClassifier(Class~, df, objective="label"),
    "EM-Hard"=EMLeastSquaresClassifier(Class~, df, objective="responsibility")
)

df %>%
    ggplot(aes(x=X1, y=X2, color=Class)) +
    geom_point() +
    coord_equal() +
    scale_y_continuous(limits=c(-2,2)) +
    stat_classifier(aes(linetype=..classifier..),
                    classifiers=classifiers)
EMLinearDiscriminantClassifier

Semi-Supervised Linear Discriminant Analysis using Expectation Maximization

Description

Expectation Maximization applied to the linear discriminant classifier assuming Gaussian classes with a shared covariance matrix.

Usage

EMLinearDiscriminantClassifier(X, y, X_u, method = "EM", scale = FALSE, eps = 1e-08, verbose = FALSE, max_iter = 100)

Arguments

- X: matrix; Design matrix for labeled data
- y: factor or integer vector; Label vector
- X_u: matrix; Design matrix for unlabeled data
- method: character; Currently only "EM"
- scale: logical; Should the features be normalized? (default: FALSE)
- eps: Stopping criterion for the maximization
- verbose: logical; Controls the verbosity of the output
- max_iter: integer; Maximum number of iterations

Details

Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization step) and updates the responsibilities for the unlabeled objects (Expectation step).

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSM(), LogisticLossClassifier, LogisticRegression, MLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()
EMNearestMeanClassifier

Semi-Supervised Nearest Mean Classifier using Expectation Maximization

Description

Expectation Maximization applied to the nearest mean classifier assuming Gaussian classes with a spherical covariance matrix.

Usage

EMNearestMeanClassifier(X, y, X_u, method = "EM", scale = FALSE, eps = 1e-04)

Arguments

- **X**: matrix; Design matrix for labeled data
- **y**: factor or integer vector; Label vector
- **X_u**: matrix; Design matrix for unlabeled data
- **method**: character; Currently only "EM"
- **scale**: Should the features be normalized? (default: FALSE)
- **eps**: Stopping criterion for the maximinimization

Details

Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization step) and updates the responsibilities for the unlabeled objects (Expectation step).

References

EntropyRegularizedLogisticRegression

**Entropy Regularized Logistic Regression**

---

**Description**

R Implementation of entropy regularized logistic regression implementation as proposed by Grandvalet & Bengio (2005). An extra term is added to the objective function of logistic regression that penalizes the entropy of the posterior measured on the unlabeled examples.

**Usage**

```r
EntropyRegularizedLogisticRegression(X, y, X_u = NULL, lambda = 0,
 lambda_entropy = 1, intercept = TRUE, init = NA, scale = FALSE,
 x_center = FALSE)
```

**Arguments**

- `X`: matrix; Design matrix for labeled data
- `y`: factor or integer vector; Label vector
- `X_u`: matrix; Design matrix for unlabeled data
- `lambda`: l2 Regularization
- `lambda_entropy`: Weight of the labeled observations compared to the unlabeled observations
- `intercept`: logical; Whether an intercept should be included
- `init`: Initial parameters for the gradient descent
- `scale`: logical; Should the features be normalized? (default: FALSE)
- `x_center`: logical; Should the features be centered?

**Value**

S4 object of class EntropyRegularizedLogisticRegression with the following slots:

- `w`: weight vector
- `classnames`: the names of the classes

**References**

Examples

```r
library(RSSL)
library(ggplot2)
library(dplyr)

An example where ERLR finds a low-density separator, which is not
the correct solution.
set.seed(1)
df <- generateSlicedCookie(1000,expected=FALSE) %>%
 add_missinglabels_mar(Class~.,0.98)

class_lr <- LogisticRegression(Class~.,df,lambda = 0.01)
class_erlr <- EntropyRegularizedLogisticRegression(Class~.,df,
 lambda=0.01,lambda_entropy = 100)

ggplot(df,aes(x=X1,y=X2,color=Class)) +
 geom_point() +
 stat_classifier(aes(linetype=..classifier..),
 classifiers = list("LR"=class_lr,"ERLR"=class_erlr)) +
 scale_y_continuous(limits=c(-2,2)) +
 scale_x_continuous(limits=c(-2,2))

df_test <- generateSlicedCookie(1000,expected=FALSE)
mean(predict(class_lr,df_test)==df_test$Class)
mean(predict(class_erlr,df_test)==df_test$Class)
```

---

find_a_violated_label  
**Find a violated label**

**Description**

Find a violated label

**Usage**

```r
find_a_violated_label(alpha, K, y, ind_y, lr, y_init)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>classifier weights</td>
</tr>
<tr>
<td>K</td>
<td>kernel matrix</td>
</tr>
<tr>
<td>y</td>
<td>label vector</td>
</tr>
</tbody>
</table>
gaussian_kernel

ind_y  Labeled/Unlabeled indicator
lr     positive ratio
y_init label initialization

gaussian_kernel calculated the gaussian kernel matrix

Description
calculated the gaussian kernel matrix

Usage
gaussian_kernel(x, gamma, x_test = NULL)

Arguments
x          A d x n training data matrix
gamma      kernel parameter
x_test     A d x m testing data matrix

Value
k - A n x m kernel matrix and dis_mat - A n x m distance matrix

generate2ClassGaussian
Generate data from 2 Gaussian distributed classes

Description
Generate data from 2 Gaussian distributed classes

Usage
generate2ClassGaussian(n = 10000, d = 100, var = 1, expected = TRUE)

Arguments
n          integer; Number of examples to generate
d          integer; dimensionality of the problem
var        numeric; size of the variance parameter
expected   logical; whether the decision boundary should be the expected or perpendicular
generateABA

Generate data from 2 alternating classes

Description

Two clusters belonging to three classes: the cluster in the middle belongs to one class and the two on the outside to the others.

Usage

generateABA(n = 100, d = 2, var = 1)

Arguments

- **n**: integer; Number of examples to generate
- **d**: integer; dimensionality of the problem
- **var**: numeric; size of the variance parameter

See Also

Other RSSL datasets: generate2ClassGaussian(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()

Examples

data <- generateABA(n=1000,d=2,var=1)
plot(data[,1],data[,2],col=data$Class,asp=1)
**generateCrescentMoon**  
*Generate Crescent Moon dataset*

**Description**

Generate a "crescent moon"/"banana" dataset

**Usage**

```r
generateCrescentMoon(n = 100, d = 2, sigma = 1)
```

**Arguments**

- `n`: integer; Number of objects to generate
- `d`: integer; Dimensionality of the dataset
- `sigma`: numeric; Noise added

**See Also**

Other RSSL datasets:  
- `generate2ClassGaussian()`, `generateABA()`, `generateFourClusters()`, `generateParallelPlanes()`, `generateSlicedCookie()`, `generateSpirals()`, `generateTwoCircles()`

**Examples**

```r
data<-generateCrescentMoon(150,2,1)
plot(data$X1,data$X2,col=data$Class,asp=1)
```

**generateFourClusters**  
*Generate Four Clusters dataset*

**Description**

Generate a four clusters dataset

**Usage**

```r
generateFourClusters(n = 100, distance = 6, expected = FALSE)
```

**Arguments**

- `n`: integer; Number of observations to generate
- `distance`: numeric; Distance between clusters (default: 6)
- `expected`: logical; TRUE if the large margin equals the class boundary, FALSE if the class boundary is perpendicular to the large margin
generateParallelPlanes

Generate Parallel planes

Description

Generate Parallel planes

Usage

generateParallelPlanes(n = 100, classes = 3, sigma = 0.1)

Arguments

n integer; Number of objects to generate
classes integer; Number of classes
sigma double; Noise added

See Also

Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(),
generateParallelPlanes(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()

Examples

library(ggplot2)
df <- generateParallelPlanes(100,3)
ggplot(df, aes(x=x,y=y,color=Class,shape=Class)) +
  geom_point()
**generateSlicedCookie**  
*Generate Sliced Cookie dataset*

**Description**
Generate a sliced cookie dataset: a circle with a large margin in the middle.

**Usage**
generateSlicedCookie(n = 100, expected = FALSE, gap = 1)

**Arguments**
- **n** integer; number of observations to generate
- **expected** logical; TRUE if the large margin equals the class boundary, FALSE if the class boundary is perpendicular to the large margin
- **gap** numeric; Size of the gap

**Value**
A data.frame with n objects from the sliced cookie example

**See Also**
Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSpirals(), generateTwoCircles()

**Examples**
data <- generateSlicedCookie(1000, expected=FALSE)
plot(data[,1],data[,2],col=data$Class,asp=1)

---

**generateSpirals**  
*Generate Intersecting Spirals*

**Description**
Generate Intersecting Spirals

**Usage**
generateSpirals(n = 100, sigma = 0.1)

**Arguments**
- **n** integer: Number of objects to generate per class
- **sigma** numeric: Noise added
geom_classifier

See Also

Other RSSL datasets: `generate2ClassGaussian()`, `generateABA()`, `generateCrescentMoon()`, `generateFourClusters()`, `generateParallelPlanes()`, `generateSlicedCookie()`, `generateTwoCircles()`

Examples

```r
data <- generateSpirals(100, sigma=0.1)
#plot3D::scatter3D(data$x, data$y, data$z, col="black")
```

generateTwoCircles Generate data from 2 circles

Description

One circle circumscribes the other

Usage

```r
generateTwoCircles(n = 100, noise_var = 0.2)
```

Arguments

- `n`: integer; Number of examples to generate
- `noise_var`: numeric; size of the variance parameter

See Also

Other RSSL datasets: `generate2ClassGaussian()`, `generateABA()`, `generateCrescentMoon()`, `generateFourClusters()`, `generateParallelPlanes()`, `generateSlicedCookie()`, `generateSpirals()`

geom_classifier Plot RSSL classifier boundary (deprecated)

Description

Deprecated: Use `geom_linearclassifier` or `stat_classifier` to plot classification boundaries

Usage

```r
geom_classifier(..., show_guide = TRUE)
```

Arguments

- `...`: List of trained classifiers
- `show_guide`: logical (default: TRUE); Show legend
**geom_linearclassifier**

Plot linear RSSL classifier boundary

**Description**

Plot linear RSSL classifier boundary

**Usage**

`geom_linearclassifier(..., show_guide = TRUE)`

**Arguments**

- `...` List of trained classifiers
- `show_guide` logical (default: TRUE); Show legend

**Examples**

```r
library(ggplot2)
library(dplyr)

df <- generate2ClassGaussian(100,d=2,var=0.2) %>%
 add_missinglabels_mar(Class~., 0.8)

df %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
 geom_point() +
 geom_linearclassifier("Supervised"=LinearDiscriminantClassifier(Class~.,df),
 "EM"=EMLinearDiscriminantClassifier(Class~,df))
```

**GRFClassifier**

Label propagation using Gaussian Random Fields and Harmonic functions

**Description**

Implements the approach proposed in Zhu et al. (2003) to label propagation over an affinity graph. Note, as in the original paper, we consider the transductive scenario, so the implementation does not generalize to out of sample predictions. The approach minimizes the squared difference in labels assigned to different objects, where the contribution of each difference to the loss is weighted by the affinity between the objects. The default in this implementation is to use a knn adjacency matrix based on euclidean distance to determine this weight. Setting `adjacency=“heat“` will use an RBF kernel over euclidean distances between objects to determine the weights.
GRFClassifier

Usage

GRFClassifier(X, y, X_u, adjacency = "nn",
adjacency_distance = "euclidean", adjacency_k = 6,
adjacency_sigma = 0.1, class_mass_normalization = FALSE, scale = FALSE,
x_center = FALSE)

Arguments

X matrix; Design matrix for labeled data
y factor or integer vector; Label vector
X_u matrix; Design matrix for unlabeled data
adjacency character; "nn" for nearest neighbour graph or "heat" for radial basis adjacency matrix
adjacency_distance character; distance metric for nearest neighbour adjacency matrix
adjacency_k integer; number of neighbours for the nearest neighbour adjacency matrix
adjacency_sigma double; width of the rbf adjacency matrix
class_mass_normalization logical; Should the Class Mass Normalization heuristic be applied? (default: FALSE)
scale logical; Should the features be normalized? (default: FALSE)
x_center logical; Should the features be centered?

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM, LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

library(RSSL)
library(ggplot2)
library(dplyr)

set.seed(1)
df_circles <- generateTwoCircles(400, noise=0.1) >>
# Harmonic Solution

```r
 harmonic_function add_missinglabels_mar(Class~.,0.99)

Visualize the problem
df_circles %>%
 ggplot(aes(x=X1,y=X2,color=Class)) +
 geom_point() +
 coord_equal()

Visualize the solution
class_grf <- GRFClassifier(Class~.,df_circles,
 adjacency="heat",
 adjacency_sigma = 0.1)
df_circles %>%
 filter(is.na(Class)) %>%
 mutate(Responsibility=responsibilities(class_grf)[,1]) %>%
 ggplot(aes(x=X1,y=X2,color=Responsibility)) +
 geom_point() +
 coord_equal()

Generate problem
df_para <- generateParallelPlanes()
df_para$Class <- NA
df_para$Class[1] <- "a"
df_para$Class[101] <- "b"
df_para$Class[201] <- "c"
df_para$Class <- factor(df_para$Class)

Visualize problem
df_para %>%
 ggplot(aes(x=x,y=y,color=Class)) +
 geom_point() +
 coord_equal()

Estimate GRF classifier with knn adjacency matrix (default)
class_grf <- GRFClassifier(Class~.,df_para)

df_para %>%
 filter(is.na(Class)) %>%
 mutate(Assignment=factor(apply(responsibilities(class_grf),1,which.max))) %>%
 ggplot(aes(x=x,y=y,color=Assignment)) +
 geom_point()
```

---

**harmonic_function**

*Direct R Translation of Xiaojin Zhu's Matlab code to determine harmonic solution*

**Description**

Direct R Translation of Xiaojin Zhu’s Matlab code to determine harmonic solution
Usage

harmonic_function(W, Y)

Arguments

W matrix; weight matrix where the first L rows/column correspond to the labeled examples.
Y matrix; l by c 0,1 matrix encoding class assignments for the labeled objects

Value

The harmonic solution, i.e. eq (5) in the ICML paper, with or without class mass normalization

ICLeastSquaresClassifier

Implicitly Constrained Least Squares Classifier

Description


Usage

ICLeastSquaresClassifier(X, y, X_u = NULL, lambda1 = 0, lambda2 = 0,
intercept = TRUE, x_center = FALSE, scale = FALSE, method = "LBFGS",
projection = "supervised", lambda_prior = 0, trueprob = NULL,
eps = 1e-09, y_scale = FALSE, use_Xu_for_scaling = TRUE)

Arguments

X Design matrix, intercept term is added within the function
y Vector or factor with class assignments
X_u Design matrix of the unlabeled data, intercept term is added within the function
lambda1 Regularization parameter in the unlabeled+labeled data regularized least squares
lambda2 Regularization parameter in the labeled data only regularized least squares
intercept TRUE if an intercept should be added to the model
x_center logical; Whether the feature vectors should be centered
scale logical; If TRUE, apply a z-transform to all observations in X and X_u before running the regression
method Either "LBFGS" for solving using L-BFGS-B gradient descent or "QP" for a quadratic programming based solution
projection One of "supervised", "semisupervised" or "euclidean"
lambda_prior numeric; prior on the deviation from the supervised mean y
ICLeastSquaresClassifier

trueprob numeric; true mean y for all data
eps numeric; Stopping criterion for the maximinimization
y_scale logical; whether the target vector should be centered
use_Xu_for_scaling logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization

Details

In Implicitly Constrained semi-supervised Least Squares (ICLS) of Krijthe & Loog (2015), we minimize the quadratic loss on the labeled objects, while enforcing that the solution has to be a solution that minimizes the quadratic loss for all objects for some (fractional) labeling of the data (the implicit constraints). The goal of this classifier is to use the unlabeled data to update the classifier, while making sure it still works well on the labeled data.

The Projected estimator of Krijthe & Loog (2016) builds on this by finding a classifier within the space of classifiers that minimize the quadratic loss on all objects for some labeling (the implicit constrained), that minimizes the distance to the supervised solution for some appropriately chosen distance measure. Using the projection="semisupervised", we get certain guarantees that this solution is always better than the supervised solution (see Krijthe & Loog (2016)), while setting projection="supervised" is equivalent to ICLS.

Both methods (ICLS and the projection) can be formulated as a quadratic programming problem and solved using either a quadratic programming solver (method="QP") or using a gradient descent approach that takes into account certain bounds on the labelings (method="LBFGS"). The latter is the preferred method.

Value

S4 object of class ICLeastSquaresClassifier with the following slots:

theta weight vector
classnames the names of the classes
modelform formula object of the model used in regression
scaling a scaling object containing the parameters of the z-transforms applied to the data
optimization the object returned by the optim function
unlabels the labels assigned to the unlabeled objects

References


ICLinearDiscriminantClassifier

Implicitly Constrained Semi-supervised Linear Discriminant Classifier

Description

Semi-supervised version of Linear Discriminant Analysis using implicit constraints as described in (Krijthe & Loog 2014). This method finds the soft labeling of the unlabeled objects, whose resulting LDA solution gives the highest log-likelihood when evaluated on the labeled objects only. See also ICLeastSquaresClassifier.

Usage

ICLinearDiscriminantClassifier(X, y, X_u, prior = NULL, scale = FALSE, init = NULL, sup_prior = FALSE, x_center = FALSE, ...)

Arguments

x     design matrix of the labeled objects
y     vector with labels
X_u   design matrix of the labeled objects
prior set a fixed class prior

Examples

data(testdata)
w1 <- LeastSquaresClassifier(testdata$X, testdata$y, intercept = TRUE,x_center = FALSE, scale=FALSE)
w2 <- ICLeastSquaresClassifier(testdata$X, testdata$y, testdata$X_u, intercept = TRUE, x_center = FALSE, scale=FALSE)
plot(testdata$X[,1],testdata$X[,2],col=factor(testdata$y),asp=1)
points(testdata$X_u[,1],testdata$X_u[,2],col="darkgrey",pch=16,cex=0.5)
abline(line_coefficients(w1)$intercept,
       line_coefficients(w1)$slope,lty=2)
abline(line_coefficients(w2)$intercept,
       line_coefficients(w2)$slope,lty=1)
KernelICLeastSquaresClassifier

scale  logical; Should the features be normalized? (default: FALSE)
init   not currently used
sup_prior  logical; use the prior estimates based only on the labeled data, not the imputed labels (default: FALSE)
x_center logical; Whether the data should be centered
... Additional Parameters, Not used

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

KernelICLeastSquaresClassifier

*Kernelized Implicitly Constrained Least Squares Classification*

Description

A kernel version of the implicitly constrained least squares classifier, see ICLeastSquaresClassifier.

Usage

```
KernelICLeastSquaresClassifier(X, y, X_u, lambda = 0,
 kernel = vanilladot(), x_center = TRUE, scale = TRUE, y_scale = TRUE,
 lambda_prior = 0, classprior = 0, method = "LBFGS",
 projection = "semisupervised")
```

Arguments

- `X`  matrix; Design matrix for labeled data
- `y`  factor or integer vector; Label vector
- `X_u`  matrix; Design matrix for unlabeled data
- `lambda` numeric; L2 regularization parameter
- `kernel`  kernlab::kernel to use
- `x_center` logical; Should the features be centered?
KernelLeastSquaresClassifier

Kernelized Least Squares Classifier

Description

Use least squares regression as a classification technique using a numeric encoding of classes as targets. Note this method minimizes quadratic loss, not the truncated quadratic loss.

Usage

KernelLeastSquaresClassifier(X, y, lambda = 0, kernel = vanilladot(),
  x_center = TRUE, scale = TRUE, y_scale = TRUE)

Arguments

X Design matrix, intercept term is added within the function
y Vector or factor with class assignments
lambda Regularization parameter of the l2 penalty in regularized least squares
kernel kernlab kernel function
x_center TRUE, whether the dependent variables (features) should be centered
scale If TRUE, apply a z-transform to the design matrix X before running the regression
y_scale TRUE center the target vector

Value

S4 object of class LeastSquaresClassifier with the following slots:

theta weight vector
classnames the names of the classes
modelform formula object of the model used in regression
scaling a scaling object containing the parameters of the z-transforms applied to the data
KernelLeastSquaresClassifier

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM, LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

library(RSSL)
library(ggplot2)
library(dplyr)

# Two class problem
df <- generateCrescentMoon(200)

class_lin <- KernelLeastSquaresClassifier(Class~.,df, kernel=kernlab::vanilladot(), lambda=1)
class_rbf1 <- KernelLeastSquaresClassifier(Class~.,df, kernel=kernlab::rbfdot(), lambda=1)
class_rbf5 <- KernelLeastSquaresClassifier(Class~.,df, kernel=kernlab::rbfdot(5), lambda=1)
class_rbf10 <- KernelLeastSquaresClassifier(Class~.,df, kernel=kernlab::rbfdot(10), lambda=1)

df %>%
  ggplot(aes(x=X1,y=X2,color=Class,shape=Class)) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(linetype=..classifier..),
  classifiers = list("Linear"=class_lin,
   "RBF sigma=1"=class_rbf1,
   "RBF sigma=5"=class_rbf5,
   "RBF sigma=10"=class_rbf10),
  color="black")

# Second Example
dmat<-model.matrix(Species~.-1,iris[51:150,])
tvec<-droplevels(iris$Species[51:150])
testdata <- data.frame(tvec,dmat[,1:2])
colnames(testdata)<-c("Class","X1","X2")

precision<-100
xgrid<-seq(min(dmat[,1]),max(dmat[,1]),length.out=precision)
ygrid<-seq(min(dmat[,2]),max(dmat[,2]),length.out=precision)
gridmat <- expand.grid(xgrid,ygrid)

g_kernel<-KernelLeastSquaresClassifier(dmat[,1:2],tvec,
   kernel=kernlab::rbfdot(0.01),
   lambda=0.000001,scale = TRUE)

plotframe <- cbind(gridmat, decisionvalues(g_kernel,gridmat))
colnames(plotframe) <- c("x","y","Output")
ggplot(plotframe, aes(x=x, y=y)) +
  geom_tile(aes(fill = Output)) +
  scale_fill_gradient(low="yellow", high="red", limits=c(0,1)) +
  geom_point(aes(x=X1, y=X2, shape=Class), data=testdata, size=3) +
  stat_classifier(classifiers=list(g_kernel))

# Multiclass problem
dmat <- model.matrix(Species~.-1, iris)
tvec <- iris$Species
testdata <- data.frame(tvec, dmat[,1:2])
colnames(testdata) <- c("Class", "X1", "X2")

precision <- 100
xgrid <- seq(min(dmat[,1]), max(dmat[,1]), length.out=precision)
ygrid <- seq(min(dmat[,2]), max(dmat[,2]), length.out=precision)
gridmat <- expand.grid(xgrid, ygrid)

g_kernel <- KernelLeastSquaresClassifier(dmat[,1:2], tvec,
  kernel = kernlab::rbfdot(0.1), lambda = 0.00001,
  scale = TRUE, x_center=TRUE)

plotframe <- cbind(gridmat,
  maxind=apply(decisionvalues(g_kernel, gridmat), 1, which.max))
ggplot(plotframe, aes(x=Var1, y=Var2)) +
  geom_tile(aes(fill = factor(maxind, labels=levels(tvec)))) +
  geom_point(aes(x=X1, y=X2, shape=Class), data=testdata, size=4, alpha=0.5)

---

LaplacianKernelLeastSquaresClassifier

*Laplacian Regularized Least Squares Classifier*

**Description**

Implements manifold regularization through the graph Laplacian as proposed by Belkin et al. 2006. As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

**Usage**

LaplacianKernelLeastSquaresClassifier(X, y, X_u, lambda = 0, gamma = 0,
  kernel = kernlab::vanilladot(), adjacency_distance = "euclidean",
  adjacency_k = 6, x_center = TRUE, scale = TRUE, y_scale = TRUE,
  normalized_laplacian = FALSE)

**Arguments**

- `X` matrix; Design matrix for labeled data
- `y` factor or integer vector; Label vector
LaplacianKernelLeastSquaresClassifier

X_u  matrix; Design matrix for unlabeled data
lambda numeric; L2 regularization parameter
gamma numeric; Weight of the unlabeled data
kernel kernlab::kernel to use
adjacency_distance character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean"
adjacency_k integer; Number of of neighbours used to construct adjacency graph.
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)
y_scale logical; whether the target vector should be centered
normalized_laplacian logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used

References

See Also
Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples
library(RSSL)
library(ggplot2)
library(dplyr)

## Example 1: Half moons

# Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3)
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.98)

lambda <- 0.01
gamma <- 10000
rbf_param <- 0.125

# Train classifiers

Examples
class_sup <- KernelLeastSquaresClassifier(
Class~., df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda, scale=FALSE)

class_lap <- LaplacianKernelLeastSquaresClassifier(
Class~., df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda, gamma=gamma,
normalized_laplacian = TRUE,
scale=FALSE)

classifiers <- list("Lap"=class_lap,"Sup"=class_sup)

# Plot classifiers (can take a couple of seconds)

df %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
geom_point() +
coord_equal() +
stat_classifier(aes(linetype=..classifier..),
    classifiers = classifiers ,
    color="black")

# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))

## Example 2: Two circles
set.seed(1)
df_orig <- generateTwoCircles(1000, noise=0.05)
df <- df_orig %>%
    add_missinglabels_mar(Class~.,0.994)

lambda <- 10e-12
gamma <- 100
rbf_param <- 0.1

# Train classifiers
## Not run:
class_sup <- KernelLeastSquaresClassifier(
Class~., df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda, scale=TRUE)

class_lap <- LaplacianKernelLeastSquaresClassifier(
Class~., df,
kernel=kernlab::rbfdot(rbf_param),
adjacency_k = 30,
lambda=lambda, gamma=gamma,
LaplacianSVM

normalized_laplacian = TRUE,
    scale=TRUE)

classifiers <- list("Lap"=class_lap,"Sup"=class_sup)

# Plot classifiers (Can take a couple of seconds)

df %>%
    ggplot(aes(x=X1,y=X2,color=Class,size=Class)) +
    scale_size_manual(values=c("1"=3,"2"=3),na.value=1) +
    geom_point() +
    coord_equal() +
    stat_classifier(aes(linetype=..classifier..),
        classifiers = classifiers ,
        color="black",size=1)

## End(Not run)

---

**LaplacianSVM**  

**Laplacian SVM classifier**

Description

Manifold regularization applied to the support vector machine as proposed in Belkin et al. (2006). As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

Usage

LaplacianSVM(X, y, X_u = NULL, lambda = 1, gamma = 1, scale = TRUE,  
    kernel = vanilladot(), adjacency_distance = "euclidean",  
    adjacency_k = 6, normalized_laplacian = FALSE, eps = 1e-09)

Arguments

- **X**: matrix; Design matrix for labeled data
- **y**: factor or integer vector; Label vector
- **X_u**: matrix; Design matrix for unlabeled data
- **lambda**: numeric; L2 regularization parameter
- **gamma**: numeric; Weight of the unlabeled data
- **scale**: logical; Should the features be normalized? (default: FALSE)
- **kernel**: kernlab::kernel to use
- **adjacency_distance**: character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean"
- **adjacency_k**: integer; Number of of neighbours used to construct adjacency graph.
normalized_laplacian
    logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used
eps
    numeric; Small value to ensure positive definiteness of the matrix in the QP formulation

Value

S4 object of type LaplacianSVM

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

```r
library(RSSL)
library(ggplot2)
library(dplyr)

Example 1: Half moons

Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3)
df <- df_orig %>%
 add_missinglabels_mar(Class~.,0.98)
lambda <- 0.001
C <- 1/(lambda*2*sum(!is.na(df$Class)))
gamma <- 10000
rbf_param <- 0.125

Train classifiers
class_sup <- SVM(
 Class~.,df,
 kernel=kernlab::rbfdot(rbf_param),
 C=C, scale=FALSE)

class_lap <- LaplacianSVM(
 Class~.,df,
 normalized_laplacian=TRUE,eps=0.001)
```

```
LaplacianSVM

```r
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,gamma=gamma,
normalized_laplacian = TRUE,
scale=FALSE)

classifiers <- list("Lap"=class_lap,"Sup"=class_sup)

# This takes a little longer to run:
# class_tsvm <- TSVM(
# Class~.,df,
# kernel=kernlab::rbfdot(rbf_param),
# C=C,Cstar=10,s=-0.8,
# scale=FALSE,balancing_constraint=TRUE)
# classifiers <- list("Lap"=class_lap,"Sup"=class_sup,"TSVM"=class_tsvm)

# Plot classifiers (Can take a couple of seconds)
## Not run:
df %>%
  ggplot(aes(x=X1,y=X2,color=Class)) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(linetype=..classifier..),
                  classifiers = classifiers ,
                  color="black")

## End(Not run)

# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))

## Example 2: Two circles
set.seed(3)
df_orig <- generateTwoCircles(1000,noise=0.05)
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.994)

lambda <- 0.000001
C <- 1/(lambda*2*sum(!is.na(df$Class)))
gamma <- 100
rbf_param <- 0.1

# Train classifiers (Takes a couple of seconds)
## Not run:
class_sup <- SVM(
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  C=C,scale=FALSE)

class_lap <- LaplacianSVM(
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  adjacency_k=50, lambda=lambda,gamma=gamma,
  normalized_laplacian = TRUE,
```

```
LearningCurveSSL

## Compute Semi-Supervised Learning Curve

### Description
Evaluate semi-supervised classifiers for different amounts of unlabeled training examples or different fractions of unlabeled vs. labeled examples.

### Usage

```r
LearningCurveSSL(X, y, ...)
```

### Arguments
- **X**: design matrix
- **y**: vector of labels
- **...**: arguments passed to underlying function
- **classifiers**: list; Classifiers to crossvalidate
- **measures**: named list of functions giving the measures to be used

```r
LearningCurveSSL(X, y, classifiers, measures = list(Accuracy = measure_accuracy), type = "unlabeled", n_l = NULL, with_replacement = FALSE, sizes = 2^(1:8), n_test = 1000, repeats = 100, verbose = FALSE, n_min = 1, dataset_name = NULL, test_fraction = NULL, fracs = seq(0.1, 0.9, 0.1), time = TRUE, pre_scale = FALSE, pre_pca = FALSE, low_level_cores = 1, ...)
```
LearningCurveSSL

- **type**: Type of learning curve, either "unlabeled" or "fraction"
- **n_l**: Number of labeled objects to be used in the experiments (see details)
- **with replacement**: Indicated whether the subsampling is done with replacement or not (default: FALSE)
- **sizes**: vector with number of unlabeled objects for which to evaluate performance
- **n_test**: Number of test points if with_replacement is TRUE
- **repeats**: Number of learning curves to draw
- **verbose**: Print progressbar during execution (default: FALSE)
- **n_min**: Minimum number of labeled objects per class in
- **dataset_name**: character; Name of the dataset
- **test_fraction**: numeric; If not NULL a fraction of the object will be left out to serve as the test set
- **fracs**: list; fractions of labeled data to use
- **time**: logical; Whether execution time should be saved.
- **pre_scale**: logical; Whether the features should be scaled before the dataset is used
- **pre_pca**: logical; Whether the features should be preprocessed using a PCA step
- **low_level_cores**: integer; Number of cores to use compute repeats of the learning curve

**Details**

- **classifiers** is a named list of classifiers, where each classifier should be a function that accepts 4 arguments: a numeric design matrix of the labeled objects, a factor of labels, a numeric design matrix of unlabeled objects and a factor of labels for the unlabeled objects.
- **measures** is a named list of performance measures. These are functions that accept seven arguments: a trained classifier, a numeric design matrix of the labeled objects, a factor of labels, a numeric design matrix of unlabeled objects and a factor of labels for the unlabeled objects, a numeric design matrix of the test objects and a factor of labels of the test objects. See **measure_accuracy** for an example.

This function allows for two different types of learning curves to be generated. If **type="unlabeled"**, the number of labeled objects remains fixed at the value of **n_l**, where **sizes** controls the number of unlabeled objects. **n_test** controls the number of objects used for the test set, while all remaining objects are used if with_replacement=FALSE in which case objects are drawn without replacement from the input dataset. We make sure each class is represented by at least **n_min** labeled objects of each class. For **n_l**, additional options include: "enough" which takes the max of the number of features and 20, max(ncol(X)+5,20), "d" which takes the number of features or "2d" which takes 2 times the number of features.

If **type="fraction"** the total number of objects remains fixed, while the fraction of labeled objects is changed. **frac** sets the fractions of labeled objects that should be considered, while **test_fraction** determines the fraction of the total number of objects left out to serve as the test set.

**Value**

LearningCurve object
LeastSquaresClassifier

See Also

Other RSSL utilities: SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()

Examples

```r
set.seed(1)
df <- generate2ClassGaussian(2000,d=2,var=0.6)

classifiers <- list("LS"=function(X,y,X_u,y_u) {
 LeastSquaresClassifier(X,y,lambda=0)},
 "Self"=function(X,y,X_u,y_u) {
 SelfLearning(X,y,X_u,LeastSquaresClassifier)}
)

measures <- list("Accuracy" = measure_accuracy,
 "Loss Test" = measure_losstest,
 "Loss labeled" = measure_losslab,
 "Loss Lab+Unlab" = measure_losstrain)

These take a couple of seconds to run
Not run:
Increase the number of unlabeled objects
lc1 <- LearningCurveSSL(as.matrix(df[,1:2]),df$Class,
 classifiers=classifiers,
 measures=measures, n_test=1800,
 n_l=10, repeats=3)
plot(lc1)

Increase the fraction of labeled objects, example with 2 datasets
lc2 <- LearningCurveSSL(X=list("Dataset 1"=as.matrix(df[,1:2]),
 "Dataset 2"=as.matrix(df[,1:2])),
 y=list("Dataset 1"=df$Class,
 "Dataset 2"=df$Class),
 classifiers=classifiers,
 measures=measures,
 type = "fraction", repeats=3,
 test_fraction=0.9)
plot(lc2)
End(Not run)
```
LeastSquaresClassifier

Description

Classifier that minimizes the quadratic loss or, equivalently, least squares regression applied to a numeric encoding of the class labels as target. Note this method minimizes quadratic loss, not the truncated quadratic loss. Optionally, L2 regularization can be applied by setting the lambda parameter.

Usage

LeastSquaresClassifier(X, y, lambda = 0, intercept = TRUE,
                        x_center = FALSE, scale = FALSE, method = "inverse", y_scale = FALSE)

Arguments

- **x**: matrix; Design matrix for labeled data
- **y**: factor or integer vector; Label vector
- **lambda**: Regularization parameter of the l2 penalty
- **intercept**: TRUE if an intercept should be added to the model
- **x_center**: TRUE, whether the dependent variables (features) should be centered
- **scale**: If TRUE, apply a z-transform to the design matrix X before running the regression
- **method**: Method to use for fitting. One of c("inverse","Normal","QR","BFGS")
- **y_scale**: If True scale the target vector

Value

S4 object of class LeastSquaresClassifier with the following slots:

- **theta**: weight vector
- **classnames**: the names of the classes
- **modelform**: formula object of the model used in regression
- **scaling**: a scaling object containing the parameters of the z-transforms applied to the data

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()
Linear Discriminant Classifier

Description

Implementation of the linear discriminant classifier. Classes are modeled as Gaussians with different means but equal covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution.

Usage

```
LinearDiscriminantClassifier(X, y, method = "closedform", prior = NULL,
 scale = FALSE, x_center = FALSE)
```

Arguments

- **X**: Design matrix, intercept term is added within the function
- **y**: Vector or factor with class assignments
- **method**: the method to use. Either "closedform" for the fast closed form solution or "ml" for explicit maximum likelihood maximization
- **prior**: A matrix with class prior probabilities. If NULL, this will be estimated from the data
- **scale**: logical; If TRUE, apply a z-transform to the design matrix X before running the regression
- **x_center**: logical; Whether the feature vectors should be centered

Value

S4 object of class LeastSquaresClassifier with the following slots:

- **modelform**: weight vector
- **prior**: the prior probabilities of the classes
- **mean**: the estimates means of the classes
- **sigma**: The estimated covariance matrix
- **classnames**: a vector with the classnames for each of the classes
- **scaling**: scaling object used to transform new observations

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearSVM, LinearTSVM, LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()
Description

Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM or the Primal formulation.

Usage

LinearSVM(X, y, C = 1, method = "Dual", scale = TRUE, eps = 1e-09, reltol = 1e-13, maxit = 100)

Arguments

X matrix; Design matrix for labeled data
y factor or integer vector; Label vector
C Cost variable
method Estimation procedure c("Dual","Primal","BGD")
scale Whether a z-transform should be applied (default: TRUE)
eps Small value to ensure positive definiteness of the matrix in QP formulation
reitol relative value using during BFGS optimization
maxit Maximum number of iterations for BFGS optimization

Value

S4 object of type LinearSVM

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()
LinearTSVM

Linear CCCP Transductive SVM classifier

Description

Implementation for the Linear TSVM. This method is mostly for debugging purposes and does not allow for the balancing constraint or kernels, like the TSVM function.

Usage

LinearTSVM(X, y, X_u, C, Cstar, s = 0, x_center = FALSE, scale = FALSE, eps = 1e-06, verbose = FALSE, init = NULL)

Arguments

- **X**: matrix; Design matrix, intercept term is added within the function
- **y**: vector; Vector or factor with class assignments
- **X_u**: matrix; Design matrix of the unlabeled data, intercept term is added within the function
- **C**: numeric; Cost parameter of the SVM
- **Cstar**: numeric; Cost parameter of the unlabeled objects
- **s**: numeric; parameter controlling the loss function of the unlabeled objects
- **x_center**: logical; Should the features be centered?
- **scale**: logical; If TRUE, apply a z-transform to all observations in X and X_u before running the regression
- **eps**: numeric; Convergence criterion
- **verbose**: logical; print debugging messages (default: FALSE)
- **init**: numeric; Initial classifier parameters to start the convex concave procedure

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRCClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()}
**line_coefficients**

*Loss of a classifier or regression function*

**Description**

Loss of a classifier or regression function

**Usage**

```r
line_coefficients(object, ...)
```

```
S4 method for signature 'LeastSquaresClassifier'
line_coefficients(object)

S4 method for signature 'NormalBasedClassifier'
line_coefficients(object)

S4 method for signature 'LogisticRegression'
line_coefficients(object)

S4 method for signature 'LinearSVM'
line_coefficients(object)

S4 method for signature 'LogisticLossClassifier'
line_coefficients(object)

S4 method for signature 'QuadraticDiscriminantClassifier'
line_coefficients(object)

S4 method for signature 'SelfLearning'
line_coefficients(object)
```

**Arguments**

- **object**: Classifier; Trained Classifier object
- **...**: Not used

**Value**

numeric of the total loss on the test data
localDescent  \hspace{1cm} \textit{Local descent}

\textbf{Description}

Local descent used in S4VM

\textbf{Usage}

localDescent(instance, label, labelNum, unlabelNum, gamma, C, beta, alpha)

\textbf{Arguments}

- \textbf{instance} \hspace{1cm} Design matrix
- \textbf{label} \hspace{1cm} label vector
- \textbf{labelNum} \hspace{1cm} Number of labeled objects
- \textbf{unlabelNum} \hspace{1cm} Number of unlabeled objects
- \textbf{gamma} \hspace{1cm} Parameter for RBF kernel
- \textbf{C} \hspace{1cm} cost parameter for SVM
- \textbf{beta} \hspace{1cm} Controls fraction of objects assigned to positive class
- \textbf{alpha} \hspace{1cm} Controls fraction of objects assigned to positive class

\textbf{Value}

list(predictLabel=predictLabel, acc=acc, values=values, model=model)

LogisticLossClassifier  \hspace{1cm} \textit{Logistic Loss Classifier}

\textbf{Description}

Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.

\textbf{Usage}

LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE, init = NA, x_center = FALSE, ...)

**LogisticLossClassifier-class**

**Arguments**

- **x**: Design matrix, intercept term is added within the function
- **y**: Vector with class assignments
- **lambda**: Regularization parameter used for l2 regularization
- **intercept**: TRUE if an intercept should be added to the model
- **scale**: If TRUE, apply a z-transform to all observations in X and X_u before running the regression
- **init**: Starting parameter vector for gradient descent
- **x_center**: logical; Whether the feature vectors should be centered
- **...**: additional arguments

**Value**

S4 object with the following slots

- **w**: the weight vector of the linear classifier
- **classnames**: vector with names of the classes

**See Also**

Other RSSL classifiers: `EMLeastSquaresClassifier`, `EMLinearDiscriminantClassifier`, `GRFClassifier`, `ICLeastSquaresClassifier`, `ICLinearDiscriminantClassifier`, `KernelLeastSquaresClassifier`, `LaplacianKernelLeastSquaresClassifier()`, `LaplacianSVM`, `LeastSquaresClassifier`, `LinearDiscriminantClassifier`, `LinearSVM`, `LinearTSVM()`, `LogisticRegression`, `MCLinearDiscriminantClassifier`, `MCNearestMeanClassifier`, `MCPLDA`, `MajorityClassifier`, `NearestMeanClassifier`, `QuadraticDiscriminantClassifier`, `S4VM`, `SVM`, `SelfLearning`, `TSVM`, `USMLeastSquaresClassifier`, `WellSVM`, `svmlin()`

---

**Description**

LogisticLossClassifier
LogisticRegressionFast

Logistic Regression implementation that uses R’s glm

Description

Logistic Regression implementation that uses R’s glm

Usage

LogisticRegressionFast(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE)
logsumexp

Arguments

- **x** matrix; Design matrix for labeled data
- **y** factor or integer vector; Label vector
- **lambda** numeric; not used
- **intercept** logical; Whether an intercept should be included
- **scale** logical; Should the features be normalized? (default: FALSE)
- **init** numeric; not used
- **x_center** logical; Should the features be centered?

---

logsumexp  
*Numerically more stable way to calculate log sum exp*

---

**Description**

Numerically more stable way to calculate log sum exp

**Usage**

logsumexp(M)

**Arguments**

- **M** matrix; m by n input matrix, sum with be over the rows

**Value**

matrix; m by 1 matrix

---

loss  
*Loss of a classifier or regression function*

---

**Description**

Hinge loss on new objects of a trained LinearSVM

Hinge loss on new objects of a trained SVM
Usage

loss(object, ...)

## S4 method for signature 'LeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)

## S4 method for signature 'NormalBasedClassifier'
loss(object, newdata, y = NULL)

## S4 method for signature 'LogisticRegression'
loss(object, newdata, y = NULL)

## S4 method for signature 'KernelLeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)

## S4 method for signature 'LinearSVM'
loss(object, newdata, y = NULL)

## S4 method for signature 'LogisticLossClassifier'
loss(object, newdata, y = NULL, ...)

## S4 method for signature 'MajorityClassClassifier'
loss(object, newdata, y = NULL)

## S4 method for signature 'SVM'
loss(object, newdata, y = NULL)

## S4 method for signature 'SelfLearning'
loss(object, newdata, y = NULL, ...)

## S4 method for signature 'USMLeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)

## S4 method for signature 'svmlinClassifier'
loss(object, newdata, y = NULL)

Arguments

- **object**: Classifier; Trained Classifier
- **...**: additional parameters
- **newdata**: data.frame; object with test data
- **y**: factor; True classes of the test data

Value

numeric; the total loss on the test data
**losslogsum**

*LogsumLoss of a classifier or regression function*

**Description**

LogsumLoss of a classifier or regression function

**Usage**

```
losslogsum(object, ...)
```

## S4 method for signature 'NormalBasedClassifier'
losslogsum(object, newdata, Y, X_u, Y_u)

**Arguments**

- **object**: Classifier or Regression object
- **...**: Additional parameters
- **newdata**: Design matrix of labeled objects
- **Y**: label matrix of labeled objects
- **X_u**: Design matrix of unlabeled objects
- **Y_u**: label matrix of unlabeled objects

---

**losspart**

*Loss of a classifier or regression function evaluated on partial labels*

**Description**

Loss of a classifier or regression function evaluated on partial labels

**Usage**

```
losspart(object, ...)
```

## S4 method for signature 'NormalBasedClassifier'
losspart(object, newdata, Y)

**Arguments**

- **object**: Classifier; Trained Classifier
- **...**: additional parameters
- **newdata**: design matrix
- **Y**: class responsibility matrix
MajorityClassClassifier

*Majority Class Classifier*

**Description**

Classifier that returns the majority class in the training set as the prediction for new objects.

**Usage**

MajorityClassClassifier(X, y, ...)

**Arguments**

- **X** matrix; Design matrix for labeled data
- **y** factor or integer vector; Label vector
- **...** Not used

**See Also**

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLEastSquaresClassifier, WellSVM, svmlin()

MCLinearDiscriminantClassifier

*Moment Constrained Semi-supervised Linear Discriminant Analysis.*

**Description**

A linear discriminant classifier that updates the estimates of the means and covariance matrix based on unlabeled examples.

**Usage**

MCLinearDiscriminantClassifier(X, y, X_u, method = "invariant", prior = NULL, x_center = TRUE, scale = FALSE)
**Arguments**

- **X**  
  matrix; Design matrix for labeled data
- **y**  
  factor or integer vector; Label vector
- **X_u**  
  matrix; Design matrix for unlabeled data
- **method**  
  character; One of c("invariant","closedform")
- **prior**  
  Matrix (k by 1); Class prior probabilities. If NULL, estimated from data
- **x_center**  
  logical; Should the features be centered?
- **scale**  
  logical; Should the features be normalized? (default: FALSE)

**Details**

This method uses the parameter updates of the estimated means and covariance proposed in (Loog 2014). Using the method="invariant" option, uses the scale invariant parameter update proposed in (Loog 2014), while method="closedform" using the non-scale invariant version from (Loog 2012).

**References**


**See Also**

Other RSSL classifiers: `EMLeastSquaresClassifier`, `EMLinearDiscriminantClassifier`, `GRFClassifier`, `ICLeastSquaresClassifier`, `ICLinearDiscriminantClassifier`, `KernelLeastSquaresClassifier`, `LaplacianKernelLeastSquaresClassifier`, `LaplacianSVM`, `LeastSquaresClassifier`, `LinearDiscriminantClassifier`, `LinearSVM`, `LinearTSVM`, `LogisticLossClassifier`, `LogisticRegression`, `MCNearestMeanClassifier`, `MCPDLDA`, `MajorityClassClassifier`, `NearestMeanClassifier`, `QuadraticDiscriminantClassifier`, `S4VM`, `SVM`, `SelfLearning`, `TSVM`, `USMLeastSquaresClassifier`, `WellSVM`, `svmlin()`

---

**MCNearestMeanClassifier**

*Moment Constrained Semi-supervised Nearest Mean Classifier*

**Description**

Update the means based on the moment constraints as defined in Loog (2010). The means estimated using the labeled data are updated by making sure their weighted mean corresponds to the overall mean on all (labeled and unlabeled) data. Optionally, the estimated variance of the classes can be re-estimated after this update is applied by setting update_sigma to TRUE. To get the true nearest mean classifier, rather than estimate the class priors, set them to equal priors using, for instance prior=matrix(0.5,2).
Usage

MCNearestMeanClassifier(X, y, X_u, update_sigma = FALSE, prior = NULL,
                      x_center = FALSE, scale = FALSE)

Arguments

- **X**
  matrix; Design matrix for labeled data
- **y**
  factor or integer vector; Label vector
- **X_u**
  matrix; Design matrix for unlabeled data
- **update_sigma**
  logical; Whether the estimate of the variance should be updated after the means have been updated using the unlabeled data
- **prior**
  matrix; Class priors for the classes
- **x_center**
  logical; Should the features be centered?
- **scale**
  logical; Should the features be normalized? (default: FALSE)

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

---

**MCPLDA**

*Maximum Contrastive Pessimistic Likelihood Estimation for Linear Discriminant Analysis*

Description

Maximum Contrastive Pessimistic Likelihood (MCPL) estimation (Loog 2016) attempts to find a semi-supervised solution that has a higher likelihood compared to the supervised solution on the labeled and unlabeled data even for the worst possible labeling of the data. This is done by attempting to find a saddle point of the maximin problem, where the max is over the parameters of the semi-supervised solution and the min is over the labeling, while the objective is the difference in likelihood between the semi-supervised and the supervised solution measured on the labeled and unlabeled data. The implementation is a translation of the Matlab code of Loog (2016).
**Usage**

```r
MCPLDA(X, y, X_u, x_center = FALSE, scale = FALSE, max_iter = 1000)
```

**Arguments**

- `X`: matrix; Design matrix for labeled data
- `y`: factor or integer vector; Label vector
- `X_u`: matrix; Design matrix for unlabeled data
- `x_center`: logical; Should the features be centered?
- `scale`: logical; Should the features be normalized? (default: FALSE)
- `max_iter`: integer; Maximum number of iterations

**References**


**See Also**

Other RSSL classifiers: `EMLeastSquaresClassifier`, `EMLinearDiscriminantClassifier`, `GRFClassifier`, `ICLeastSquaresClassifier`, `ICLinearDiscriminantClassifier`, `KernelLeastSquaresClassifier`, `LaplacianKernelLeastSquaresClassifier`, `LaplacianSVM`, `LeastSquaresClassifier`, `LinearDiscriminantClassifier`, `LinearSVM`, `LinearTSVM`, `LogisticLossClassifier`, `LogisticRegression`, `MCLinearDiscriminantClassifier`, `MCNearestMeanClassifier`, `MajorityClassClassifier`, `NearestMeanClassifier`, `QuadraticDiscriminantClassifier`, `S4VM`, `SVM`, `SelfLearning`, `TVM`, `USMLeastSquaresClassifier`, `WellSVM`, `svmlin()`

---

**measure_accuracy**  
Performance measures used in classifier evaluation

**Description**

Classification accuracy on test set and other performance measure that can be used in `CrossValidationSSL` and `LearningCurveSSL`

**Usage**

```r
measure_accuracy(trained_classifier, X_l = NULL, y_l = NULL, X_u = NULL, y_u = NULL, X_test = NULL, y_test = NULL)

measure_error(trained_classifier, X_l = NULL, y_l = NULL, X_u = NULL, y_u = NULL, X_test = NULL, y_test = NULL)

measure_losstest(trained_classifier, X_l = NULL, y_l = NULL, X_u = NULL, y_u = NULL, X_test = NULL, y_test = NULL)
```
minimaxlda

Implements weighted likelihood estimation for LDA

Description

Implements weighted likelihood estimation for LDA

Usage

minimaxlda(a, w, u, iter)

Arguments

a is the data set
w is an indicator matrix for the K classes of a or, potentially, a weight matrix in which the fraction with which a sample belongs to a particular class is indicated
u is a bunch of unlabeled data
iter decides on the amount of time we spend on minimaxing the stuff

Functions

• measure_error(): Classification error on test set
• measure_losstest(): Average Loss on test objects
• measure_losslab(): Average loss on labeled objects
• measure_losstrain(): Average loss on labeled and unlabeled objects

See Also

Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()
**missing_labels**

**Value**

m contains the means, p contains the class priors, iW contains the INVERTED within covariance matrix, uw returns the weights for the unlabeled data, i returns the number of iterations used

**Description**

Access the true labels for the objects with missing labels when they are stored as an attribute in a data frame

**Usage**

missing_labels(df)

**Arguments**

df data.frame; data.frame with y_true attribute

**See Also**

Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels mar(), df_to_matrices(), measure_accuracy(), split_dataset_ssl(), split_random(), true_labels()

---

**NearestMeanClassifier Nearest Mean Classifier**

**Description**

Implementation of the nearest mean classifier modeled. Classes are modeled as gaussians with equal, spherical covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution. To get true nearest mean classification, set prior as a matrix with equal probability for all classes, i.e. matrix(0.5,2).

**Usage**

NearestMeanClassifier(X, y, prior = NULL, x_center = FALSE, scale = FALSE)
Arguments

- `X`: matrix; Design matrix for labeled data
- `y`: factor or integer vector; Label vector
- `prior`: matrix; Class prior probabilities. If NULL, this will be estimated from the data
- `x_center`: logical; Should the features be centered?
- `scale`: logical; Should the features be normalized? (default: FALSE)

Value

S4 object of class LeastSquaresClassifier with the following slots:

- `modelform`: weight vector
- `prior`: the prior probabilities of the classes
- `mean`: the estimates means of the classes
- `sigma`: The estimated covariance matrix
- `classnames`: a vector with the classnames for each of the classes
- `scaling`: scaling object used to transform new observations

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

---

plot.CrossValidation  

*Plot CrossValidation object*

Description

Plot CrossValidation object

Usage

```r
S3 method for class 'CrossValidation'
plot(x, y, ...)
```

Arguments

- `x`: CrossValidation object
- `y`: Not used
- `...`: Not used
plot.LearningCurve

Description
Plot LearningCurve object

Usage
## S3 method for class 'LearningCurve'
plot(x, y, ...)  

Arguments
x LearningCurve object
y Not used
... Not used

posterior

Class Posteriors of a classifier

Description
Class Posteriors of a classifier

Usage
posterior(object, ...)  

## S4 method for signature 'NormalBasedClassifier'
posterior(object, newdata)  

## S4 method for signature 'LogisticRegression'
posterior(object, newdata)  

Arguments
object Classifier or Regression object
... Additional parameters
newdata matrix of dataframe of objects to be classified
**predict, scaleMatrix-method**

*Predict for matrix scaling inspired by stdize from the PLS package*

**Description**

Predict for matrix scaling inspired by stdize from the PLS package

**Usage**

```r
S4 method for signature 'scaleMatrix'
predict(object, newdata, ...)
```

**Arguments**

- `object`: scaleMatrix object
- `newdata`: data to be scaled
- `...`: Not used

---

**PreProcessing**

*Preprocess the input to a classification function*

**Description**

The following actions are carried out: 1. data.frames are converted to matrix form and labels converted to an indicator matrix 2. An intercept column is added if requested 3. centering and scaling is applied if requested.

**Usage**

```
PreProcessing(X, y, X_u = NULL, scale = FALSE, intercept = FALSE, x_center = FALSE, use_Xu_for_scaling = TRUE)
```

**Arguments**

- `X`: Design matrix, intercept term is added within the function
- `y`: Vector or factor with class assignments
- `X_u`: Design matrix of the unlabeled observations
- `scale`: If TRUE, apply a z-transform to the design matrix X
- `intercept`: Whether to include an intercept in the design matrices
- `x_center`: logical (default: TRUE); Whether the feature vectors should be centered
- `use_Xu_for_scaling`: logical (default: TRUE); Should the unlabeled data be used to determine scaling?
PreProcessingPredict

Value

list object with the following objects:

- **X**: design matrix of the labeled data
- **y**: integer vector indicating the labels of the labeled data
- **X_u**: design matrix of the unlabeled data
- **classnames**: names of the classes corresponding to the integers in y
- **scaling**: a scaling object used to scale the test observations in the same way as the training set
- **modelform**: a formula object containing the used model

Description

The following actions are carried out:
1. data.frames are converted to matrix form and labels converted to integers
2. An intercept column is added if requested
3. centering and scaling is applied if requested.

Usage

PreProcessingPredict(modelform, newdata, y = NULL, classnames = NULL, scaling = NULL, intercept = FALSE)

Arguments

- **modelform**: Formula object with model
- **newdata**: data.frame object with objects
- **y**: Vector or factor with class assignments (default: NULL)
- **classnames**: Vector with class names
- **scaling**: Apply a given z-transform to the design matrix X (default: NULL)
- **intercept**: Whether to include an intercept in the design matrices

Value

list object with the following objects:

- **X**: design matrix of the labeled data
- **y**: integer vector indicating the labels of the labeled data
print.CrossValidation  
*Print CrossValidation object*

**Description**
Print CrossValidation object

**Usage**
```r
S3 method for class 'CrossValidation'
print(x, ...)
```

**Arguments**
- `x`  CrossValidation object
- `...`  Not used

print.LearningCurve  
*Print LearningCurve object*

**Description**
Print LearningCurve object

**Usage**
```r
S3 method for class 'LearningCurve'
print(x, ...)
```

**Arguments**
- `x`  LearningCurve object
- `...`  Not used
projection_simplex

**Description**

Dn = x : x n-dim, 1 >= x >= 0, sum(x) = 1 R translation of Loog’s version of Xiaojing Ye’s initial implementation. The algorithm works row-wise

**Usage**

projection_simplex(y)

**Arguments**

- **y**
  matrix with vectors to be projected onto the simplex

**Value**

projection of y onto the simplex

**References**

Algorithm is explained as in http://arxiv.org/abs/1101.6081

---

QuadraticDiscriminantClassifier

**Quadratic Discriminant Classifier**

**Description**

Implementation of the quadratic discriminant classifier. Classes are modeled as Gaussians with different covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution.

**Usage**

QuadraticDiscriminantClassifier(X, y, prior = NULL, scale = FALSE, ...)

**Arguments**

- **X**
  matrix; Design matrix for labeled data
- **y**
  factor or integer vector; Label vector
- **prior**
  A matrix with class prior probabilities. If NULL, this will be estimated from the data
- **scale**
  logical; Should the features be normalized? (default: FALSE)
- **...**
  Not used
responsibilities

Value

S4 object of class LeastSquaresClassifier with the following slots:

- modelform: weight vector
- prior: the prior probabilities of the classes
- mean: the estimates means of the classes
- sigma: The estimated covariance matrix
- classnames: a vector with the classnames for each of the classes
- scaling: scaling object used to transform new observations

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

---

responsibilities  Responsibilities assigned to the unlabeled objects

Description

Responsibilities assigned to the unlabeled objects

Usage

responsibilities(object, ...)

Arguments

- object: Classifier; Trained Classifier
- ...: additional parameters

Value

numeric; responsibilities on the unlabeled objects
Description

RSSL provides implementations for semi-supervised classifiers, as well as some functions to aid in the evaluation of these procedures.

Details

Most functions take a formula and data.frame or a matrix and factor as input and output a trained Classifier object, whose class is the class of a specific type of classifier model. predict can then be used to generate predictions for new objects, decisionvalues returns the decision values for new objects and loss outputs the loss used by the classifier evaluated on a set of new objects.

For a complete list of functions, use library(help = "RSSL").

Description

Show RSSL classifier

Show the contents of a classifier

Usage

## S4 method for signature 'Classifier'
show(object)

## S4 method for signature 'NormalBasedClassifier'
show(object)

## S4 method for signature 'scaleMatrix'
show(object)

Arguments

object classifier
rssl-predict  Predict using RSSL classifier

Description

Predict using RSSL classifier

For the SelfLearning Classifier the Predict Method delegates prediction to the specific model object

Usage

```r
S4 method for signature 'LeastSquaresClassifier'
predict(object, newdata, ...)

S4 method for signature 'NormalBasedClassifier'
predict(object, newdata)

S4 method for signature 'LogisticRegression'
predict(object, newdata)

S4 method for signature 'GRFClassifier'
responsibilities(object, newdata, ...)

S4 method for signature 'GRFClassifier'
predict(object, newdata = NULL, ...)

S4 method for signature 'KernelLeastSquaresClassifier'
predict(object, newdata, ...)

S4 method for signature 'LinearSVM'
predict(object, newdata)

S4 method for signature 'LogisticLossClassifier'
predict(object, newdata)

S4 method for signature 'MajorityClassClassifier'
predict(object, newdata)

S4 method for signature 'SVM'
predict(object, newdata)

S4 method for signature 'SelfLearning'
predict(object, newdata, ...)

S4 method for signature 'USMLeastSquaresClassifier'
predict(object, newdata, ...)
```
## S4 method for signature 'WellSVM'
predict(object, newdata, ...)

## S4 method for signature 'WellSVM'
decisionvalues(object, newdata)

## S4 method for signature 'svmLinClassifier'
predict(object, newdata, ...)

### Arguments

object     classifier
newdata    objects to generate predictions for
...         Other arguments

---

**S4VM**

*Safe Semi-supervised Support Vector Machine (S4VM)*

### Description


### Usage

\[
S4VM(X, y, X_u = NULL, C1 = 100, C2 = 0.1, sample_time = 100, 
gamma = 0, x_center = FALSE, scale = FALSE, lambda_tradeoff = 3)
\]

### Arguments

- **X**: matrix; Design matrix for labeled data
- **y**: factor or integer vector; Label vector
- **X_u**: matrix; Design matrix for unlabeled data
- **C1**: double; Regularization parameter for labeled data
- **C2**: double; Regularization parameter for unlabeled data
- **sample_time**: integer; Number of low-density separators that are generated
- **gamma**: double; Width of RBF kernel
- **x_center**: logical; Should the features be centered?
- **scale**: logical; Should the features be normalized? (default: FALSE)
- **lambda_tradeoff**: numeric; Parameter that determines the amount of "risk" in obtaining a worse solution than the supervised solution, see Li & Zhou (2011)
Details

The method randomly generates multiple low-density separators (controlled by the sample_time parameter) and merges their predictions by solving a linear programming problem meant to penalize the cost of decreasing the performance of the classifier, compared to the supervised SVM. S4VM is a bit of a misnomer, since it is a transductive method that only returns predicted labels for the unlabeled objects. The main difference in this implementation compared to the original implementation is the clustering of the low-density separators: in our implementation empty clusters are not dropped during the k-means procedure. In the paper by Li (2011) the features are first normalized to [0,1], which is not automatically done by this function. Note that the solution may not correspond to a linear classifier even if the linear kernel is used.

Value

S4VM object with slots:

predictions Predictions on the unlabeled objects
labelings Labelings for the different clusters

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM, LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SelfLearning, TSVM, USMLEastSquaresClassifier, WellSVM, svmlin()

Examples

library(RSSL)
library(dplyr)
library(ggplot2)
library(tidyr)
set.seed(1)
df_orig <- generateSlicedCookie(100,expected=TRUE)
df <- df_orig %>% add_missinglabels_mar(Class~.,0.95)
g_s <- SVM(Class~.,df,C=1,scale=TRUE,x_center=TRUE)
g_s4 <- S4VM(Class~.,df,C1=1,C2=0.1,lambda_tradeoff = 3,scale=TRUE,x_center=TRUE)
labs <- g_s4@labelings[-c(1:5),]
colnames(labs) <- paste("Class",seq_len(ncol(g_s4@labelings)),sep="-")

# Show the labelings that the algorithm is considering
df %>%

library(RSSL)
library(dplyr)
library(ggplot2)
library(tidyr)
set.seed(1)
df_orig <- generateSlicedCookie(100,expected=TRUE)
df <- df_orig %>% add_missinglabels_mar(Class~.,0.95)
g_s <- SVM(Class~.,df,C=1,scale=TRUE,x_center=TRUE)
g_s4 <- S4VM(Class~.,df,C1=1,C2=0.1,lambda_tradeoff = 3,scale=TRUE,x_center=TRUE)
labs <- g_s4@labelings[-c(1:5),]
colnames(labs) <- paste("Class",seq_len(ncol(g_s4@labelings)),sep="-")

# Show the labelings that the algorithm is considering
df %>%

filter(is.na(Class)) %>%
bind_cols(data.frame(labs,check.names = FALSE)) %>%
select(-Class) %>%
gather(Classifier,Label,-X1,-X2) %>%
ggplot(aes(x=X1,y=X2,color=Label)) +
geom_point() +
facet_wrap(~Classifier,ncol=5)

# Plot the final labeling that was selected
# Note that this may not correspond to a linear classifier
# even if the linear kernel is used.
# The solution does not seem to make a lot of sense,
# but this is what the current implementation returns
df %>%
filter(is.na(Class)) %>%
mutate(prediction=g_s4@predictions) %>%
ggplot(aes(x=X1,y=X2,color=prediction)) +
geom_point() +
stat_classifier(color="black", classifiers=list(g_s))
scaleMatrix  

**Matrix centering and scaling**

**Description**

This function returns an object with a predict method to center and scale new data. Inspired by `stdize` from the PLS package.

**Usage**

```
scaleMatrix(x, center = TRUE, scale = TRUE)
```

**Arguments**

- `x`  
  matrix to be standardized  
- `center`  
  TRUE if `x` should be centered  
- `scale`  
  logical; TRUE if `x` should be scaled by the standard deviation

SelfLearning  

**Self-Learning approach to Semi-supervised Learning**

**Description**

Use self-learning (also known as Yarowsky’s algorithm or pseudo-labeling) to turn any supervised classifier into a semi-supervised method by iteratively labeling the unlabeled objects and adding these predictions to the set of labeled objects until the classifier converges.

**Usage**

```
SelfLearning(X, y, X_u = NULL, method, prob = FALSE, cautious = FALSE,
 max_iter = 100, ...)
```

**Arguments**

- `X`  
  matrix; Design matrix for labeled data  
- `y`  
  factor or integer vector; Label vector  
- `X_u`  
  matrix; Design matrix for unlabeled data  
- `method`  
  Supervised classifier to use. Any function that accepts as its first argument a design matrix `X` and as its second argument a vector of labels `y` and that has a predict method.  
- `prob`  
  Not used  
- `cautious`  
  Not used  
- `max_iter`  
  integer; Maximum number of iterations  
- `...`  
  additional arguments to be passed to `method`
solve_svm

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

data(testdata)
t_self <- SelfLearning(testdata$X,testdata$y,testdata$X_u,method=NearestMeanClassifier)
t_sup <- NearestMeanClassifier(testdata$X,testdata$y)
# Classification Error
1-mean(predict(t_self, testdata$X_test)==testdata$y_test)
1-mean(predict(t_sup, testdata$X_test)==testdata$y_test)
loss(t_self, testdata$X_test, testdata$y_test)

solve_svm

SVM solve.QP implementation

Description

SVM solve.QP implementation

Usage

solve_svm(K, y, C = 1)

Arguments

K Kernel matrix
y Output vector
C Cost parameter
split_dataset_ssl  
*Create Train, Test and Unlabeled Set*

**Description**
Create Train, Test and Unlabeled Set

**Usage**
```r
split_dataset_ssl(X, y, frac_train = 0.8, frac_ssl = 0.8)
```

**Arguments**
- **X**: matrix; Design matrix
- **y**: factor; Label vector
- **frac_train**: numeric; Fraction of all objects to be used as training objects
- **frac_ssl**: numeric; Fraction of training objects to used as unlabeled objects

**See Also**
Other RSSL utilities: `LearningCurveSSL()`, `SSLDDataFrameToMatrices()`, `add_missinglabels_mar()`, `df_to_matrices()`, `measure_accuracy()`, `missing_labels()`, `split_random()`, `true_labels()`

split_random  
*Randomly split dataset in multiple parts*

**Description**
The data.frame should start with a vector containing labels, or formula should be defined.

**Usage**
```r
split_random(df, formula = NULL, splits = c(0.5, 0.5), min_class = 0)
```

**Arguments**
- **df**: data.frame; Data frame of interest
- **formula**: formula; Formula to indicate the outputs
- **splits**: numeric; Probability of of assigning to each part, automatically normalized, should be >1
- **min_class**: integer; minimum number of objects per class in each part

**Value**
list of data.frames
See Also

Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), true_labels()

Examples

library(dplyr)

df <- generate2ClassGaussian(200,d=2)
dfs <- df %>% split_random(Class~.,split=c(0.5,0.3,0.2),min_class=1)
names(dfs) <- c("Train","Validation","Test")
lapply(dfs,summary)

SSLDataFrameToMatrices

Convert data.frame to matrices for semi-supervised learners

Description

Given a formula object and a data.frame, extract the design matrix X for the labeled observations, X_u for the unlabeled observations and y for the labels of the labeled observations. Note: always removes the intercept

Usage

SSLDataFrameToMatrices(model, D)

Arguments

model Formula object with model
D data.frame object with objects

Value

list object with the following objects:

X design matrix of the labeled data
X_u design matrix of the unlabeled data
y integer vector indicating the labels of the labeled data
classnames names of the classes corresponding to the integers in y

See Also

Other RSSL utilities: LearningCurveSSL(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()
**stat_classifier**

Plot RSSL classifier boundaries

### Description

Plot RSSL classifier boundaries

### Usage

```r
stat_classifier(mapping = NULL, data = NULL, show.legend = NA,
 inherit.aes = TRUE, breaks = 0, precision = 50, brute_force = FALSE,
 classifiers = classifiers, ...)
```

### Arguments

- **mapping**: aes; aesthetic mapping
- **data**: data.frame; data to be displayed
- **show.legend**: logical; Whether this layer should be included in the legend
- **inherit.aes**: logical; If FALSE, overrides the default aesthetics
- **breaks**: double; decision value for which to plot the boundary
- **precision**: integer; grid size to sketch classification boundary
- **brute_force**: logical; If TRUE, uses numerical estimation even for linear classifiers
- **classifiers**: List of Classifier objects to plot
- **...**: Additional parameters passed to geom

### Examples

```r
library(RSSL)
library(ggplot2)
library(dplyr)

df <- generateCrescentMoon(200)

This takes a couple of seconds to run
Not run:
g_svm <- SVM(Class~.,df,kernel = kernlab::rbfdot(sigma = 1))
g_ls <- LeastSquaresClassifier(Class~.,df)
g_nm <- NearestMeanClassifier(Class~.,df)

df %>%
ggplot(aes(x=X1,y=X2,color=Class,shape=Class)) +
 geom_point(size=3) +
 coord_equal() +
 scale_x_continuous(limits=c(-20,20), expand=c(0,0)) +
 scale_y_continuous(limits=c(-20,20), expand=c(0,0)) +
```
stderror

```r
stat_classifier(aes(linetype=.classifier.),
 color="black", precision=50,
 classifiers=list("SVM"=g_svm,"NM"=g_nm,"LS"=g_ls)
)

End(Not run)
```

---

**stderr**

*Calculate the standard error of the mean from a vector of numbers*

### Description

Calculate the standard error of the mean from a vector of numbers

### Usage

```r
stderr(x)
```

### Arguments

- **x**: numeric; vector for which to calculate standard error

---

**summary.CrossValidation**

*Summary of Crossvalidation results*

### Description

Summary of Crossvalidation results

### Usage

```r
S3 method for class 'CrossValidation'
summary(object, measure = NULL, ...)
```

### Arguments

- **object**: CrossValidation object
- **measure**: Measure of interest
- **...**: Not used
svdinv  
*Inverse of a matrix using the singular value decomposition*

**Description**
Inverse of a matrix using the singular value decomposition

**Usage**

\[ \text{svdinv}(X) \]

**Arguments**

\[ X \] matrix; square input matrix

**Value**

\[ Y \] matrix; inverse of the input matrix

svdinvsqrtm  
*Taking the inverse of the square root of the matrix using the singular value decomposition*

**Description**
Taking the inverse of the square root of the matrix using the singular value decomposition

**Usage**

\[ \text{svdinvsqrtm}(X) \]

**Arguments**

\[ X \] matrix; square input matrix

**Value**

\[ Y \] matrix; inverse of the square root of the input matrix
**svdsqrtm**

**Taking the square root of a matrix using the singular value decomposition**

**Description**

Taking the square root of a matrix using the singular value decomposition

**Usage**

svdsqrtm(X)

**Arguments**

X matrix; square input matrix

**Value**

Y matrix; square root of the input matrix

---

**SVM**

**SVM Classifier**

**Description**

Support Vector Machine implementation using the quadprog solver.

**Usage**

SVM(X, y, C = 1, kernel = NULL, scale = TRUE, intercept = FALSE, x_center = TRUE, eps = 1e-09)

**Arguments**

X matrix; Design matrix for labeled data

y factor or integer vector; Label vector

C numeric; Cost variable

kernel kernlab::kernel to use

scale logical; Should the features be normalized? (default: FALSE)

intercept logical; Whether an intercept should be included

x_center logical; Should the features be centered?

eps numeric; Small value to ensure positive definiteness of the matrix in the QP formulation
Details

This implementation will typically be slower and use more memory than the svmlib implementation in the e1071 package. It is, however, useful for comparisons with the TSVM implementation.

Value

S4 object of type SVM

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SelfLearning, TSVM, USMLEastSquaresClassifier, WellSVM, svmlin()

svmlin svmlin implementation by Sindhwani & Keerthi (2006)

Description

R interface to the svmlin code by Vikas Sindhwani and S. Sathiya Keerthi for fast linear transductive SVMs.

Usage

svmlin(X, y, X_u = NULL, algorithm = 1, lambda = 1, lambda_u = 1, max_switch = 10000, pos_frac = 0.5, Cp = 1, Cn = 1, verbose = FALSE, intercept = TRUE, scale = FALSE, x_center = FALSE)

Arguments

X Matrix or sparseMatrix containing the labeled feature vectors, without intercept
y factor containing class assignments
X_u Matrix or sparseMatrix containing the unlabeled feature vectors, without intercept
algorithm integer; Algorithm choice, see details (default:1)
lambda double; Regularization parameter lambda (default 1)
lambda_u double; Regularization parameter lambda_u (default 1)
max_switch integer; Maximum number of switches in TSVM (default 10000)
pos_frac double; Positive class fraction of unlabeled data (default 0.5)
Cp double; Relative cost for positive examples (only available with algorithm 1)
Cn double; Relative cost for positive examples (only available with algorithm 1)
svmlin

verbose logical; Controls the verbosity of the output
intercept logical; Whether an intercept should be included
scale logical; Should the features be normalized? (default: FALSE)
x_center logical; Should the features be centered?

Details

The codes to select the algorithm are the following: 0. Regularized Least Squares Classification 1. SVM (L2-SVM-MFN) 2. Multi-switch Transductive SVM (using L2-SVM-MFN) 3. Deterministic Annealing Semi-supervised SVM (using L2-SVM-MFN).

References

Vikas Sindhwani and S. Sathiya Keerthi. Large Scale Semi-supervised Linear SVMs. Proceedings of ACM SIGIR, 2006

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLEastSquaresClassifier, WellSVM

Examples

data(svmlin_example)
t_svmlin_1 <- svmlin(svmlin_example$X_train[1:50,],
            svmlin_example$y_train,X_u=NULL, lambda = 0.001)
t_svmlin_2 <- svmlin(svmlin_example$X_train[1:50,],
            svmlin_example$y_train,
            X_u=svmlin_example$X_train[-c(1:50),],
            lambda = 10, lambda_u=100, algorithm = 2)

# Calculate Accuracy
mean(predict(t_svmlin_1,svmlin_example$X_test)==svmlin_example$y_test)
mean(predict(t_svmlin_2,svmlin_example$X_test)==svmlin_example$y_test)

data(testdata)

g_svm <- SVM(testdata$X,testdata$y)
g_sup <- svmlin(testdata$X,testdata$y,testdata$X_u,algorithm = 3)
g_semi <- svmlin(testdata$X,testdata$y,testdata$X_u,algorithm = 2)

mean(predict(g_svm,testdata$X_test)==testdata$y_test)
mean(predict(g_sup,testdata$X_test)==testdata$y_test)
mean(predict(g_semi,testdata$X_test)==testdata$y_test)
svmlin_example  Test data from the svmlin implementation

Description

Useful for testing the svmlin interface and to serve as an example

testdata  Example semi-supervised problem

Description

A list containing a sample from the GenerateSlicedCookie dataset for unit testing and examples.

svmproblem  Train SVM

Description

Train SVM

Usage

svmproblem(K)

Arguments

K  kernel

Value

alpha, b, obj
### threshold

Refine the prediction to satisfy the balance constraint

**Description**

Refine the prediction to satisfy the balance constraint

**Usage**

`threshold(y1, options)`

**Arguments**

- `y1` predictions
- `options` options passed

**Value**

`y2`

### true_labels

Access the true labels when they are stored as an attribute in a data frame

**Description**

Access the true labels when they are stored as an attribute in a data frame

**Usage**

`true_labels(df)`

**Arguments**

- `df` data.frame; data.frame with `y_true` attribute

**See Also**

Other RSSL utilities: `LearningCurveSSL()`, `SSLDataprameToMatrices()`, `add_missinglabels_mar()`, `df_to_matrices()`, `measure_accuracy()`, `missing_labels()`, `split_dataset_ssl()`, `split_random()`
TSVM

Transductive SVM classifier using the convex concave procedure

Description

Transductive SVM using the CCCP algorithm as proposed by Collobert et al. (2006) implemented in R using the quadprog package. The implementation does not handle large datasets very well, but can be useful for smaller datasets and visualization purposes.

Usage

TSVM(X, y, X_u, C, Cstar, kernel = kernlab::vanilladot(),
balancing_constraint = TRUE, s = 0, x_center = TRUE, scale = FALSE,
eps = 1e-09, max_iter = 20, verbose = FALSE)

Arguments

\(X\) matrix; Design matrix for labeled data
\(y\) factor or integer vector; Label vector
\(X_u\) matrix; Design matrix for unlabeled data
\(C\) numeric; Cost parameter of the SVM
\(Cstar\) numeric; Cost parameter of the unlabeled objects
\(kernel\) kernlab::kernel to use
\(balancing\_constraint\) logical; Whether a balancing constraint should be enforced that causes the fraction of objects assigned to each label in the unlabeled data to be similar to the label fraction in the labeled data.
\(s\) numeric; parameter controlling the loss function of the unlabeled objects (generally values between -1 and 0)
\(x\_center\) logical; Should the features be centered?
\(scale\) If TRUE, apply a z-transform to all observations in \(X\) and \(X_u\) before running the regression
\(eps\) numeric; Stopping criterion for the maximinimization
\(max\_iter\) integer; Maximum number of iterations
\(verbose\) logical; print debugging messages, only works for vanilladot() kernel (default: FALSE)

Details

\(C\) is the cost associated with labeled objects, while \(Cstar\) is the cost for the unlabeled objects. \(s\) control the loss function used for the unlabeled objects: it controls the size of the plateau for the symmetric ramp loss function. The balancing constraint makes sure the label assignments of the unlabeled objects are similar to the prior on the classes that was observed on the labeled data.
TSVM

References

See Also
Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, USMLEastSquaresClassifier, WellSVM, svmlin()

Examples
library(RSSL)

# Simple example with a few objects
X <- matrix(c(0,0.001,1,-1),nrow=2)
X_u <- matrix(c(-1,-1,0,0,-0.4,-0.5,-0.6,1.2,1.3,1.25),ncol=2)
y <- factor(c(-1,1))
g_sup <- SVM(X,y, scale=FALSE)
g_constraint <- TSVM(X=X,y=y, X_u=X_u,
C=1, Cstar=0.1, balancing_constraint = TRUE)
g_noconstraint <- TSVM(X=X,y=y, X_u=X_u,
C=1, Cstar=0.1, balancing_constraint = FALSE)
g_lin <- LinearTSVM(X=X,y=y, X_u=X_u, C=1, Cstar=0.1)

w1 <- g_sup@alpha %*% X
w2 <- g_constraint@alpha %*% rbind(X,X_u,X_u,colMeans(X_u))
w3 <- g_noconstraint@alpha %*% rbind(X,X_u,X_u)
w4 <- g_lin@w

plot(X[,1],X[,2],col=factor(y), asp=1, ylim=c(-3,3))
points(X_u[,1],X_u[,2], col="darkgrey", pch=16, cex=1)
abline((-g_sup@bias)/w1[2],-w1[1]/w1[2], lty=2)
abline((1-g_sup@bias)/w1[2],-w1[1]/w1[2], lty=2) # +1 Margin
abline((-1-g_sup@bias)/w1[2],-w1[1]/w1[2], lty=2) # -1 Margin
abline(-g_constraint@bias/w2[2],-w2[1]/w2[2], lty=1, col="green")
abline(-g_noconstraint@bias/w3[2],-w3[1]/w3[2], lty=1, col="red")
abline(-w4[1]/w4[3],-w4[2]/w4[3], lty=1, lwd=3, col="blue")

# An example
set.seed(42)
data <- generateSlicedCookie(200, expected=TRUE, gap=1)
X <- model.matrix(Class~.-1, data)
y <- factor(data$Class)
problem <- split_dataset_ssl(X,y,frac_ssl=0.98)

X <- problem$X
y <- problem$y
X_u <- problem$X_u
y_e <- unlist(list(problem$y,problem$y_u))
Xe<-rbind(X,X_u)

g_sup <- SVM(X,y,x_center=FALSE,scale=FALSE,C = 10)
g_constraint <- TSVM(X=X,y=y,X_u=X_u,
                     C=10,Cstar=10,balancing_constraint = TRUE,
                     x_center = FALSE,verbose=TRUE)

g_noconstraint <- TSVM(X=X,y=y,X_u=X_u,
                     C=10,Cstar=10,balancing_constraint = FALSE,
                     x_center = FALSE,verbose=TRUE)

g_lin <- LinearTSVM(X=X,y=y,X_u=X_u,C=10,Cstar=10,
                     verbose=TRUE,x_center = FALSE)

g_oracle <- SVM(Xe,y_e,scale=FALSE)

w1 <- c(g_sup@bias,g_sup@alpha %*% X)
w2 <- c(g_constraint@bias,g_constraint@alpha %*% rbind(X,X_u,X_u,colMeans(X_u)))
w3 <- c(g_noconstraint@bias,g_noconstraint@alpha %*% rbind(X,X_u,X_u))
w4 <- g_lin@w
w5 <- c(g_oracle@bias, g_oracle@alpha %*% Xe)
print(sum(abs(w4-w3)))

plot(X[,1],X[,2],col=factor(y),asp=1,ylim=c(-3,3))
points(X_u[,1],X_u[,2],col="darkgrey",pch=16,cex=1)
abline(-w1[1]/w1[3],-w1[2]/w1[3],lty=2)
abline(((1-w1[1])/w1[3]),-w1[2]/w1[3],lty=2) # +1 Margin
abline(((-1-w1[1])/w1[3]),-w1[2]/w1[3],lty=2) # -1 Margin

# Oracle:
abline(-w5[1]/w5[3],-w5[2]/w5[3],lty=1,col="purple")

# With balancing constraint:
abline(-w2[1]/w2[3],-w2[2]/w2[3],lty=1,col="green")

# Linear TSVM implementation (no constraint):
abline(-w4[1]/w4[3],-w4[2]/w4[3],lty=1,lwd=3,col="blue")

# Without balancing constraint:
abline(-w3[1]/w3[3],-w3[2]/w3[3],lty=1,col="red")
USMLeastSquaresClassifier

Description

This method uses the closed form solution of the supervised least squares problem, except that the second moment matrix (X’X) is exchanged with a second moment matrix that is estimated based on all data. See for instance Shaffer1991, where in this implementation we use all data to estimate E(X’X), instead of just the labeled data. This method seems to work best when the data is first centered x_center = TRUE and the outputs are scaled using y_scale = TRUE.

Usage

USMLeastSquaresClassifier(X, y, X_u, lambda = 0, intercept = TRUE,
    x_center = FALSE, scale = FALSE, y_scale = FALSE, ..., 
    use_Xu_for_scaling = TRUE)

Arguments

X matrix; Design matrix for labeled data
y factor or integer vector; Label vector
X_u matrix; Design matrix for unlabeled data
lambda numeric; L2 regularization parameter
intercept logical; Whether an intercept should be included
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)
y_scale logical; whether the target vector should be centered
... Not used
use_Xu_for_scaling logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization

References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, WellSVM, svmlin()
USMLLeastSquaresClassifier-class

USMLLeastSquaresClassifier

Description

USMLLeastSquaresClassifier

wdbc

wdbc data for unit testing

Description

Useful for testing the S4VM and WellSVM implementations

WellSVM

WellSVM for Semi-supervised Learning

Description

WellSVM is a minimax relaxation of the mixed integer programming problem of finding the optimal labels for the unlabeled data in the SVM objective function. This implementation is a translation of the Matlab implementation of Li (2013) into R.

Usage

WellSVM(X, y, X_u, C1 = 1, C2 = 0.1, gamma = 1, x_center = TRUE, scale = FALSE, use_Xu_for_scaling = FALSE, max_iter = 20)

Arguments

x matrix; Design matrix for labeled data
y factor or integer vector; Label vector
X_u matrix; Design matrix for unlabeled data
C1 double; A regularization parameter for labeled data, default 1;
C2 double; A regularization parameter for unlabeled data, default 0.1;
gamma double; Gaussian kernel parameter, i.e., k(x,y) = exp(-gamma^2||x-y||^2/avg) where avg is the average distance among instances; when gamma = 0, linear kernel is used. default gamma = 1;
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)
use_Xu_for_scaling logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization
max_iter integer; Maximum number of iterations
References


See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, svmlin()

Examples

library(RSSL)
library(ggplot2)
library(dplyr)

set.seed(1)
df_orig <- generateSlicedCookie(200,expected=TRUE)
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.98)
classifiers <- list("Well"=WellSVM(Class~.,df,C1 = 1, C2=0.1,
  gamma = 0,x_center=TRUE,scale=TRUE),
  "Sup"=SVM(Class~.,df,C=1,x_center=TRUE,scale=TRUE))

df %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
geom_point() +
coord_equal() +
stat_classifier(aes(color=..classifier..),
classifiers = classifiers)

wellsvm_direct

wellsvm_direct

wellsvm implements the wellsvm algorithm as shown in [1].

Description

wellsvm implements the wellsvm algorithm as shown in [1].

Usage

wellsvm_direct(x, y, testx, testy, C1 = 1, C2 = 0.1, gamma = 1)
Arguments

\begin{itemize}
  \item \texttt{x} \quad \text{A Nxd training data matrix, where } N \text{ is the number of training instances and } d \text{ is the dimension of instance;}
  
  \item \texttt{y} \quad \text{A Nx1 training label vector, where } y = 1/-1 \text{ means positive/negative, and } y = 0 \text{ means unlabeled;}
  
  \item \texttt{testx} \quad \text{A Mxd testing data matrix, where } M \text{ is the number of testing instances;}
  
  \item \texttt{testy} \quad \text{A Mx1 testing label vector}
  
  \item \texttt{C1} \quad \text{A regularization parameter for labeled data, default } 1;
  
  \item \texttt{C2} \quad \text{A regularization parameter for unlabeled data, default } 0.1;
  
  \item \texttt{gamma} \quad \text{Gaussian kernel parameter, i.e., } k(x,y) = \exp(-\text{gamma}^2\|x-y\|^2/\text{avg}) \text{ where avg is the average distance among instances; when gamma = 0, linear kernel is used. default gamma = 1;}
\end{itemize}

Value

- prediction - A Mx1 predicted testing label vector; accuracy - The accuracy of prediction; cputime - cpu running time;

References


WellSVM_SSL

Convex relaxation of S3VM by label generation

Description

Convex relaxation of S3VM by label generation

Usage

\begin{verbatim}
WellSVM_SSL(K0, y, opt, yinit = NULL)
\end{verbatim}

Arguments

\begin{itemize}
  \item \texttt{K0} \quad \text{kernel matrix}
  
  \item \texttt{y} \quad \text{labels}
  
  \item \texttt{opt} \quad \text{options}
  
  \item \texttt{yinit} \quad \text{label initialization (not used)}
\end{itemize}
WellSVM\textsubscript{supervised}

\textit{A degenerated version of WellSVM where the labels are complete, that is, supervised learning}

\textbf{Description}

A degenerated version of WellSVM where the labels are complete, that is, supervised learning

\textbf{Usage}

\texttt{WellSVM\textsubscript{supervised}(K0, y, opt, ind\_y)}

\textbf{Arguments}

- \texttt{K0} kernel matrix
- \texttt{y} labels
- \texttt{opt} options
- \texttt{ind\_y} Labeled/Unlabeled indicator

\textbf{wlda}

\textit{Implements weighted likelihood estimation for LDA}

\textbf{Description}

Implements weighted likelihood estimation for LDA

\textbf{Usage}

\texttt{wlda(a, w)}

\textbf{Arguments}

- \texttt{a} is the data set
- \texttt{w} is an indicator matrix for the K classes or, potentially, a weight matrix in which the fraction with which a sample belongs to a particular class is indicated

\textbf{Value}

\texttt{m} contains the means, \texttt{p} contains the class priors, \texttt{iW} contains the INVERTED within covariance matrix
**wlda_error**

Measures the expected error of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account

**Description**

Measures the expected error of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account

**Usage**

```r
wlda_error(m, p, iW, a, w)
```

**Arguments**

- `m`: means
- `p`: class prior
- `iW`: is the inverse of the within covariance matrix
- `a`: design matrix
- `w`: weights

**wlda_loglik**

Measures the expected log-likelihood of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account

**Description**

Measures the expected log-likelihood of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account

**Usage**

```r
wlda_loglik(m, p, iW, a, w)
```

**Arguments**

- `m`: means
- `p`: class prior
- `iW`: is the inverse of the within covariance matrix
- `a`: design matrix
- `w`: weights

**Value**

Average log likelihood
Index

* RSSL classifiers
  - EMLeastSquaresClassifier, 11
  - EMLinearDiscriminantClassifier, 13
  - GRFClassifier, 23
  - ICLeastSquaresClassifier, 26
  - ICLinearDiscriminantClassifier, 28
  - KernelLeastSquaresClassifier, 30
  - LaplacianKernelLeastSquaresClassifier, 32
  - LaplacianSVM, 35
  - LeastSquaresClassifier, 40
  - LinearDiscriminantClassifier, 42
  - LinearSVM, 43
  - LinearTSVM, 44
  - LogisticLossClassifier, 46
  - LogisticRegression, 48
  - MajorityClassClassifier, 52
  - MCLinearDiscriminantClassifier, 52
  - MCPLDA, 54
  - NearestMeanClassifier, 57
  - QuadraticDiscriminantClassifier, 63
  - S4VM, 67
  - SelfLearning, 70
  - SVM, 77
  - svmlin, 78
  - TSVM, 82
  - USMLeastSquaresClassifier, 84
  - WellSVM, 86

* RSSL datasets
  - generate2ClassGaussian, 17
  - generateABA, 18
  - generateCrescentMoon, 19
  - generateFourClusters, 19
  - generateParallelPlanes, 20
  - generateSlicedCookie, 21
  - generateSpirals, 21
  - generateTwoCircles, 22

* RSSL utilities
  - add_missinglabels_mar, 4
  - df_to_matrices, 10
  - LearningCurveSSL, 38
  - measure_accuracy, 55
  - missing_labels, 57
  - split_dataset_ssl, 72
  - split_random, 72
  - SSLDataFrameToMatrices, 73
  - true_labels, 81
  - add_missinglabels_mar, 4, 10, 40, 56, 57, 72, 73, 81
  - adjacency_knn, 5
  - BaseClassifier, 5
  - c.CrossValidation, 6
  - clapply, 6
  - cov_ml, 7
  - CrossValidationSSL, 7, 55
  - decisionvalues, 9
  - decisionvalues, KernelLeastSquaresClassifier-method (decisionvalues), 9
  - decisionvalues, LeastSquaresClassifier-method (decisionvalues), 9
  - decisionvalues, LinearSVM-method (decisionvalues), 9
  - decisionvalues, SVM-method (decisionvalues), 9
  - decisionvalues, svmlinClassifier-method (decisionvalues), 9
  - decisionvalues, TSVM-method (decisionvalues), 9
  - decisionvalues, WellSVM-method (rssl-predict), 66
  - df_to_matrices, 4, 10, 40, 56, 57, 72, 73, 81
  - diabetes, 10
EMLinearDiscriminantClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 85, 87
EMNearestMeanClassifier, 14
EntropyRegularizedLogisticRegression, 15, 48
find_a_violated_label, 16
gaussian_kernel, 17
generate2ClassGaussian, 17, 18–22
generateABA, 18, 18, 19–22
generateCrescentMoon, 18, 19, 20–22
generateFourClusters, 18, 19, 19, 20–22
generateParallelPlanes, 18–20, 20, 21, 22
generateSlicedCookie, 18–20, 21, 22
generateSpirals, 18–21, 21, 22
generateTwoCircles, 18–22, 22
geom_classifier, 22
gem_linearclassifier, 23
harmonic_function, 25
ICLeastSquaresClassifier, 12, 13, 24, 26, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 85, 87
ILinearDiscriminantClassifier, 12, 13, 24, 28, 28, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 85, 87
KernelICLeastSquaresClassifier, 29
LearningCurveSSL, 4, 10, 38, 55–57, 72, 73, 81
line_coefficients, 45
line_coefficients, LeastSquaresClassifier-method (line_coefficients), 45
line_coefficients, LinearSVM-method (line_coefficients), 45
line_coefficients, LogisticLossClassifier-method (line_coefficients), 45
line_coefficients, LogisticRegression-method (line_coefficients), 45
line_coefficients, NormalBasedClassifier-method (line_coefficients), 45
line_coefficients, QuadraticDiscriminantClassifier-method (line_coefficients), 45
line_coefficients, SelfLearning-method (line_coefficients), 45
LinearDiscriminantClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 85, 87
LinearSVM, 12, 13, 24, 28, 29, 31, 33, 36, 41, 42, 43, 44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 85, 87
logsumexp, 49
loss, 49
loss, KernelLeastSquaresClassifier-method (loss), 49
loss, LeastSquaresClassifier-method
(loss), 49
loss, LinearSVM-method (loss), 49
loss, LogisticLossClassifier-method (loss), 49
loss, LogisticRegression-method (loss), 49
loss, MajorityClassClassifier-method (loss), 49
loss, NormalBasedClassifier-method (loss), 49
loss, SelfLearning-method (loss), 49
loss, SVM-method (loss), 49
loss, svmlinClassifier-method (loss), 49
loss, USMLeastSquaresClassifier-method (loss), 49
losslogsum, 51
losslogsum, NormalBasedClassifier-method (losslogsum), 51
losspart, 51
losspart, NormalBasedClassifier-method (losspart), 51
MajorityClassClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52, 53–55, 58, 64, 68, 71, 78, 79, 83, 85, 87
MLinearDiscriminantClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52, 52, 54, 55, 58, 64, 68, 71, 78, 79, 83, 85, 87
MCNearestMeanClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–54, 54, 58, 64, 68, 71, 78, 79, 83, 85, 87
MCPLDA, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–54, 54, 58, 64, 68, 71, 78, 79, 83, 85, 87
measure_accuracy, 4, 10, 39, 40, 55, 57, 72, 73, 81
measure_error (measure_accuracy), 55
measure_losslab (measure_accuracy), 55
measure_losstest (measure_accuracy), 55
measure_lossstrain (measure_accuracy), 55
minimaxlda, 56
missing_labels, 4, 10, 40, 56, 57, 72, 73, 81
NearestMeanClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 57, 64, 68, 71, 78, 79, 83, 85, 87
plot.CrossValidation, 58
plot.LearningCurve, 59
posterior, 59
posterior, LogisticRegression-method (posterior), 59
posterior, NormalBasedClassifier-method (posterior), 59
predict, GRFClassifier-method (rssl-predict), 66
predict, KernelLeastSquaresClassifier-method (rssl-predict), 66
predict, LeastSquaresClassifier-method (rssl-predict), 66
predict, LinearSVM-method (rssl-predict), 66
predict, LogisticLossClassifier-method (rssl-predict), 66
predict, LogisticRegression-method (rssl-predict), 66
predict, MajorityClassClassifier-method (rssl-predict), 66
predict, NormalBasedClassifier-method (rssl-predict), 66
predict, scaleMatrix-method, 60
predict, SelfLearning-method (rssl-predict), 66
predict, SVM-method (rssl-predict), 66
predict, svmlinClassifier-method (rssl-predict), 66
predict, USMLeastSquaresClassifier-method (rssl-predict), 66
predict, WellSVM-method (rssl-predict), 66
PreProcessing, 60
PreProcessingPredict, 61
print.CrossValidation, 61
print.LearningCurve, 62
projection_simplex, 63
responsibilities, 64
responsibilities, GRFClassifier-method (rssl-predict), 66
RSSL, 65
rssl-formatting, 65
rssl-predict, 66
S4VM-class, 69
sample_k_per_level, 69
scaleMatrix, 70
SelfLearning, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 70, 78, 79, 83, 85, 87
show,Classifier-method
   (rssl-formatting), 65
show,NormalBasedClassifier-method
   (rssl-formatting), 65
show, scaleMatrix-method
   (rssl-formatting), 65
solve_svm, 71
split_dataset_ssl, 4, 10, 40, 56, 57, 72, 73, 81
split_random, 4, 10, 40, 56, 57, 72, 73, 81
SSLDataFrameToMatrices, 4, 10, 40, 56, 57, 72, 73, 81
stat_classifier, 74
stderr, 75
summary.CrossValidation, 75
svdinv, 76
svdinv_sqrtm, 76
svdsqrtm, 77
SVM, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 77, 79, 83, 85, 87
svmlin, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 78, 83, 85, 87
svmlin_example, 80
svmproblem, 80
testdata, 80
threshold, 81
true_labels, 4, 10, 40, 56, 57, 72, 73, 81
TSVM, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 82, 85, 87

USMLeastSquaresClassifier, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 84, 87
USMLeastSquaresClassifier-class, 86

wdbc, 86
WellSVM, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47, 48, 52–55, 58, 64, 68, 71, 78, 79, 83, 85, 86
wellsvm_direct, 87
WellSVM_SSL, 88
WellSVM_supervised, 89
wlda, 89
wlda_error, 90
wlda_loglik, 90