Package ‘RTIGER’

March 29, 2023

Type Package
Title HMM-Based Model for Genotyping and Cross-Over Identification
Version 2.1.0

Description Our method integrates information from all sequenced samples, thus avoiding loss of alleles due to low coverage. Moreover, it increases the statistical power to uncover sequencing or alignment errors <doi:10.1093/plphys/kiad191>.

Depends R (>= 3.6), GenomicRanges, GenomeInfoDb
License GPL (>= 2)
Encoding UTF-8
LazyData true
LazyDataCompression gzip
Imports methods, e1071, extraDistr, reshape2, ggplot2, TailRank, JuliaCall, IRanges, qpdf, grDevices, graphics, stats, utils
RoxygenNote 7.2.3

VignetteBuilder knitr
Suggests knitr, rmarkdown, markdown, Gviz, rtracklayer
biocViews GenomeAnnotation, HiddenMarkovModel, Sequencing

NeedsCompilation no

Author Rafael Campos-Martin [cre] (<https://orcid.org/0000-0002-1395-8571>), Sophia Schmickler [aut], Manish Goel [ctb], Korbinian Schneeberger [aut], Achim Tresch [aut]
Maintainer Rafael Campos-Martin <rafael.mpi@gmail.com>
Repository CRAN
Date/Publication 2023-03-29 09:20:02 UTC
R topics documented:

- ATseqlengths
- calcCOnumber
- dev
- fit
- generateObject
- myDat
- optimize_R
- plotCOs
- RTIGER
- RTIGER-class
- setupJulia
- sourceJulia

Index

ATseqlengths The autosome chromosome lengths for Arabidopsis Thaliana.

CalcCOnumber Obtain number of Cross-Over events per sample and chromosome.

Description

The autosome chromosome lengths for Arabidopsis Thaliana.

Author(s)

Rafael Campos-Martin

CalcCOnumber

Obtain number of Cross-Over events per sample and chromosome.

Usage

calcCOnumber(object)

Arguments

object a RViterbi object.

Value

Matrix m x n. M number of samples and N chromosomes.

@return a matrix with n chromosomes and m samples (n x m) and the number of CO events.
Examples

data("fittedExample")
co.num = calcCOnumber(myDat)

dev

Function to developers. It runs one EM step

Description

Function to developers. It runs one EM step

Usage

dev(psi, rigidity = NULL, nstates = 3, transition = NULL, start = NULL)

Arguments

- **psi**: list of psi probabilities.
- **rigidity**: Rigidity value.
- **nstates**: Number of states.
- **transition**: transition matrix
- **start**: initial probabilities

Value

List with updates probabilites

fit

Call Julia code to fit the values

Description

Call Julia code to fit the values

Usage

fit(rtigerobj, max.iter, eps, trace, all = TRUE, random = FALSE, specific = FALSE, nsamples = 20, post.processing = TRUE)
Arguments

- `rtigerobj` an RTIGER object.
- `max.iter` maximum number of iterations to accomplish by the EM.
- `eps` difference threshold to halt the EM.
- `trace` logical value whether to trace the changes in the parameters along the iterations.
- `all` logical value whether to use all data to fit the model.
- `random` if all FALSE use random samples.
- `specific` if all FALSE use specific samples.
- `nsamples` if random TRUE, how many samples to use.
- `post.processing` logical value, whether to run post-processing process.

Value

RTIGER object

Examples

```r
## Not run:
data("fittedExample")
sourceJulia()
myfit = fit(myDat, max.iter = 2, eps=0.01,
  trace = TRUE, all = TRUE,
  random = FALSE, specific = FALSE,
  nsamples = 20, post.processing = TRUE)

## End(Not run)
```

generateObject

Load data

Description

Load data

Usage

```r
generateObject(experimentDesign = NULL,nstates = 3, rigidity=NULL, seqlengths = NULL, verbose = TRUE)
```
Arguments

experimentDesign a data Frame that contains minimum a column with the files direction (name of the column files) and another with a shorter name to be used inside the function.

nstates the number of states to be fitted in the model. A standard setting would use 3 states (Homozygous1, Heterozygous, and Homozygous2).

rigidity an integer number specifying the rigidity parameter to be used.

seqlengths a named vector with the chromosome lengths of the organism that the user is working with.

verbose logical value. Whether to print info messages.

Value

RTIGER object

Examples

data("ATseqlengths")
path = system.file("extdata", package = "RTIGER")
files = list.files(path, full.names = TRUE)

nam = sapply(list.files(path), function(x) unlist(strsplit(x, split = "$\[.\]$"))[1])

expDesign = data.frame(files = files, name = nam)

names(ATseqlengths) = paste0("Chr", 1:5)

myres = generateObject(experimentDesign = expDesign,
 seqlengths = ATseqlengths,
 rigidity = 10)

Description

A fitted example using three own samples of Arabidopsis. More information in publication:

Author(s)

Rafael Campos-Martin
optimize_R

Find the optimum R value for a given data set

Description

Find the optimum R value for a given data set

Usage

optimize_R(object,
max_rigidity = 2^9, average_coverage = NULL, crossovers_per_megabase = NULL,
save_it = FALSE, savedir = NULL)

Arguments

object an RTIGER object
max_rigidity R values will be explored up the value given in this parameter. Default = 2^9
average_coverage For conservative results set it to the lowest average coverage of a sample in your experiment, or even to the lowest average coverage in a (sufficiently large) region in one of your samples. The lower the value, the more conservative (higher) our estimates of the false positive segments rates. If it is not provided it will be computed as the average of all data points.
crossovers_per_megabase For conservative results set it to the highest ratio of a sample in your experiment. The higher the value, the more conservative (higher) our estimates of the false positive segments rates. If it is not provided it will be computed as the average of all samples.
save_it logical values if the results should be saved. Plots might be complicated to interpret. We suggest to read the manuscript to understand them (https://doi.org/10.1093/plphys/kiad191)
savedir if results are saved, in which directory.

Value

A value with the optimum rigidity for the data set.

Examples

data("fittedExample")
bestR = optimize_R(myDat)
plotCOs

Obtain number of Cross-Over events per sample and chromosome.

Description
Obtain number of Cross-Over events per sample and chromosome.

Usage
plotCOs(object, file = NULL)

Arguments
object a RViterbi object.
file file where to save the plot for CO numbers

Value
a plot

Examples

data("fittedExample")
co.num = calcCOnumber(myDat)

RTIGER
Load, Fit, and plot

Description
Load, Fit, and plot

Usage
RTIGER(expDesign, rigidity=NULL, outputdir=NULL, nstates = 3, seqlengths = NULL, eps=0.01, max.iter=50, autotune = FALSE, max_rigidity = 2^9, average_coverage = NULL, crossovers_per_megabase = NULL, trace = FALSE, tiles = 4e5, all = TRUE, random = FALSE, specific = FALSE, nsamples = 20, post.processing = TRUE, save.results = TRUE, verbose = TRUE)
Arguments

expDesign a data Frame that contains minimum a column with the files direction (name of the column files) and another with a shorter name to be used inside the function.

rigidity an integer number specifying the rigidity parameter to be used.

outputdir a character string that specifies the directory in which to save the results form the function.

nstates the number of states to be fitted in the model. A standard setting would use 3 states (Homozygous1, Heterozygous, and Homozygous2).

seqlengths a named vector with the chromosome lengths of the organism that the user is working with.

eps the threshold of the difference between the parameters value between the previous and actuay iteration to stope de EM algorithm.

max.iter maximum number of iterations of the EM algorithm before to stop in case that eps has not been achieved.

autotune Logical value if the R-value should be tuned by our algorithm. This will take longer as it needs a first training with the rigidity value provided by the user and then the optimization step is carried. Finally, a training using the optimum R will be performed and results for the optimum R will be returned.

max_rigidity If autotune true, R values will be explored up the value given in this parameter. Default = 2^9

average_coverage If autotune true, for conservative results set it to the lowest average coverage of a sample in your experiment, or evne to the lowest average coverage in a (sufficiently large) region in one of your samples. The lower the value, the more conservative (higher) our estimates of the false positive segments rates. If it is not provided it will be computed as the average of all data points.

crossovers_per_megabase If autotune true, for conservative results set it to the highest ratio of a sample in your experiment. The higher the value, the more conservative (higher) our estimates of the false positive segments rates. If it is not provided it will be computed as the average of all samples.

trace logical value. Whether or not to keep track of the parameters for the HMM along the iterations. Deafault FALSE

tiles length of the tiles by which the genome will be segmented in order to compute the ratio of COs in the complete dataset.

all logical value. Whether to use the complete data set to fit the rHMM. default TRUE.

random Logical value. Choose randomly a subset of the complete dataset to fit the rHMM. Default FALSE

specific Logical value to specify which samples to take.

nsamples if random TRUE, how many samples should be taken randomly.

post.processing Logical value. Whether to run an extra step that fine maps the segment borthers. Default TRUE
save.results Logical value, whether to generate and save the plots and igv files.
verbose Logical, whether to print info to console.

Value

Matrix m x n. M number of samples and N chromosomes.
RTIGER object

Examples

```r
## Not run:
data("ATseqlengths")
sOURCEjulia()
path = system.file("extdata", package = "RTIGER")
files = list.files(path, full.names = TRUE)
nam = sapply(list.files(path), function(x) unlist(strsplit(x, split = "."))[1])
expDesign = data.frame(files = files, name = nam)
names(ATseqlengths) = paste0("Chr", 1:5)
myres = RTIGER(expDesign = expDesign,
               outputdir = "/home/campos/Documents/outputjulia/",
               seqlengths = ATseqlengths,
               rigidity = 4,
               max.iter = 2,
               trace = FALSE,
               save.results = TRUE)
## End(Not run)
```

RTIGER-class

This class is a generic container for RTIGER analysis

Description

This class is a generic container for RTIGER analysis

Slots

matobs Nested lists. the first level is a list of samples. For each sample there are 5 matrices that contains the allele counts for each position.
params a list with the parameters after training.
info List with phenotypic data of the samples.
Viterbi List of chromosomes with the viterbi path per sample.
Probabilities Computed probabilities for the EM algorithm.
um.iter Number of iterations needed to stop the EM algorithm.
setupJulia

Description
Installs the needed packages in JULIA to run the EM algorithm for rHMM.

Usage
setupJulia(JULIA_HOME = NULL)

Arguments
JULIA_HOME

the file folder which contains julia binary, if not set, JuliaCall will look at the
global option JULIA_HOME, if the global option is not set, JuliaCall will then
look at the environmental variable JULIA_HOME, if still not found, JuliaCall
will try to use the julia in path.

Value
empty

sourceJulia

Description
Function needed before using RTIGER() function. It loads the scripts
in Julia that fit the rHMM.

Usage
sourceJulia()

Value
empty
Index

* data
 ATseqlengths, 2
 myDat, 5
 .RTIGER (RTIGER-class), 9

ATseqlengths, 2
calcCOnumber, 2
dev, 3
fit, 3
generateObject, 4
myDat, 5
optimize_R, 6
plotCOS, 7
RTIGER, 7
RTIGER-class, 9

setupJulia, 10
sourceJulia, 10