Package ‘RVA’

November 1, 2021

Title RNAseq Visualization Automation
Version 0.0.5
Description Automate downstream visualization & pathway analysis in RNAseq analysis. ‘RVA’ is a collection of functions that efficiently visualize RNAseq differential expression analysis result from summary statistics tables. It also utilize the Fisher’s exact test to evaluate gene set or pathway enrichment in a convenient and efficient manner.
Maintainer Xingpeng Li <xingpeng.li@pfizer.com>
URL https://github.com/THERMOSTATS/RVA
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
biocViews
Imports GSVAdat (>= 1.22.0), clusterProfiler (>= 3.15.1), data.table (>= 1.12.8), edgeR (>= 3.28.1), org.Hs.eg.db (>= 3.10.0), ComplexHeatmap (>= 2.2.0), GSEABase (>= 1.48.0), circlize (>= 0.4.10), dplyr (>= 1.0.0), ggplot2 (>= 3.3.2), ggpubr (>= 0.4.0), grid (>= 3.6.1), gridExtra (>= 2.3), haven (>= 2.3.1), msigdb (>= 7.1.1), plotly (>= 4.9.2.1), purrr (>= 0.3.4), rWikiPathways (>= 1.6.1), stringr (>= 1.4.0), tibble, tidyr (>= 1.1.0), XML, rlang
Depends R (>= 2.10)
NeedsCompilation no
Author Xingpeng Li [aut, cre] (<https://orcid.org/0000-0002-1331-1225>)
Repository CRAN
Date/Publication 2021-11-01 21:40:02 UTC
R topics documented:

c2BroadSets 3
cal.pathway.scores 3
calc.cfb 4
count_table 5
dlPathwaysDB 5
get.cpm.colors 6
get.cutoff.df 6
get.cutoff.ggplot 7
make.cutoff.plotly 7
multiPlot 8
nullreturn 8
plot_cutoff 9
plot_cutoff_single 11
plot_gene 12
plot_heatmap.cfb 13
plot_heatmap.cpm 14
plot_heatmap.expr 14
plot_pathway 16
plot_qq 18
plot_volcano 19
prettyGraphs 21
produce.cutoff.message 22
produce.cutoff.warning 23
reformat.ensembl 23
sample_annotation 24
sample_count_cpm 24
Sample_disease_gene_set 25
Sample_summary_statistics_table 25
Sample_summary_statistics_table1 26
secondCutoffErr 26
transform.geneid 27
validate.annot 28
validate.baseline 29
validate.col.types 29
validate.comp.names 30
validate.data 30
validate.data.annot 31
validate.FC 31
validate.flag 32
validate.genes.present 32
validate.geneset 33
validate.numeric 34
validate.pathways.db 35
validate.pval.range 35
validate.pvalflag 36
validate.pvals 36
c2BroadSets

validate.single.table.isnotlist .. 37
validate.stats .. 37
validate.stats.cols ... 38
wpA2020 ... 38

Index 39

c2BroadSets This is data to be included in package

Description
This is data to be included in package

Usage
c2BroadSets

Format
GeneSetCollection

GeneSetCollection GeneSetCollection from BroadCollection

cal.pathway.scores calculate pathway scores

Description
Calculate pathway scores

Usage
cal.pathway.scores(
 data,
 pathway.db,
 gene.id.type,
 FCflag,
 FDRflag,
 FC.cutoff,
 FDR.cutoff,
 OUT.Directional = NULL,
 IS.list = FALSE,
 customized.pathways,
 ...
)

Arguments

data A summary statistics table (data.frame) or data.list generated by DE analysis software like limma or DEseq2
pathway.db pathway database used
gene.id.type gene.id.type
FCflag The column name (character) of fold change information, assuming the FC is log2 transformed. Default = "logFC".
FDRflag The column name (character) of adjusted p value or FDR. Default = "adj.P.Val".
FC.cutoff The fold change cutoff (numeric) selected to subset summary statistics table. Default = 1.5.
FDR.cutoff The FDR cutoff selected (numeric) to subset summary statistics table. Default = 0.05.
OUT.Directional logical, whether output directional or non-directional pathway analysis result, default: NULL.
IS.list logical, whether the input is a list, default: NULL
customized.pathways the customized pathways in the format of two column dataframe to be used in analysis

... pass over parameters

Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

calc.cfb Calculate CFB

Description

This function calculates the change from baseline.

Usage

calc.cfb(data, annot, baseline.flag, baseline.val)
Arguments

data Dataframe with subject id, annotation flag, gene id and cpm value (from count tables) columns.

annot A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the sample.id value with values matching the column names of sample IDs in data. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.

baseline.flag A character vector of column names. These columns in annot contain the values to compare across.

baseline.val A character vector of values. This vector must be the same length as baseline.flag, and the value at each index must represent a value from the column given by the corresponding index in baseline.flag.

count_table This is data to be included in package

dlPathwaysDB DL Pathways DB

Description

This is data to be included in package

Usage

count_table

dlPathwaysDB(pathway.db, customized.pathways = NULL, ...)

get.cutoff.df

Arguments

pathway.db The database to be used for enrichment analysis. Can be one of the following, "rWikiPathways", "KEGG", "REACTOME", "Hallmark", "rWikiPathways_aug_2020"
customized.pathways the user provided pathway added for analysis.
... pass over parameters

Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

get.cpm.colors Get CPM Colors

Description

This function creates the color gradient for the cpm data.

Usage

get.cpm.colors(data)

Arguments

data The CPM dataset.

g.get.cutoff.df Create ggplot object for number of differentially expressed genes with different FDR and fold change cutoff.

Description

This function processes dataframe from plot_cutoff_single function and produces a ggplot object which depicts the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

g.get.cutoff.df(datin, pvalues, FCs, FCflag = "logFC", FDRflag = "adj.P.Val")
get.cutoff.ggplot

Arguments

datin
pvalues
FCs
FCflag
FDRflag

Dataframe from plot_cutoff_single.
A set of p-values for FDR cutoff to be checked.
A set of fold change cutoff to be checked.
The column name of the log2FC in the summary statistics table.
The column name of the False Discovery Rate (FDR) in the summary statistics table.

Description

This function processes dataframe from plot_cutoff_single function and produces a ggplot object which depicts the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

gtcutoff.ggplot(df, FCflag, FDRflag)

Arguments

df
FCflag
FDRflag

Dataframe from plot_cutoff_single.
The column name of the log2FC in the summary statistics table.
The column name of the False Discovery Rate (FDR) in the summary statistics table.

make.cutoff.plotly

Create plotly object for number of DE genes at different cutoff combinations

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 to produce an interactive visual object which depicts the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

make.cutoff.plotly(df)

Arguments

df

Summary statistics table from limma or DEseq2, where each row is a gene.
multiPlot

Description

Multi plot is for directional and non-directional plots

Usage

multiPlot(allID, backup.d.sig, nd.res, ...)

Arguments

- **allID**: A vector of all pathway ID’s from directional and non directional enriched datasets.
- **backup.d.sig**: A dataframe type of object with directional pathways data prior to any cutoff’s being applied
- **nd.res**: A dataframe type of object with non directional pathways data prior to any cutoff’s being applied
- **...**: pass on variables

Details

Multi plot is for directional and non-directional plots, when one of the plots doesn’t contain observations.

Value

Returns ggplot.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

nullreturn

Description

The function takes in a boolean value and a numeric value, which it uses to decide what to output.

Usage

nullreturn(IS.list, type = 1)
plot_cutoff

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS.list</td>
<td>Indicator of whether the data frame being input is list or not.</td>
</tr>
<tr>
<td>type</td>
<td>If type = 1 (default) return directional null plot. If type = 2 return non directional null plot.</td>
</tr>
</tbody>
</table>

Details

nullreturn is a function that returns NULL for single df inputs that don’t hold true for threshold values. It returns an empty dataframe for list inputs which don’t satisfy the cutoff’s

Value

The function returns either returns a data frame or the value NULL.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

plot_cutoff Check number of DE genes at different cutoff combinations

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 to evaluate the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

plot_cutoff(
 data = data,
 comp.names = NULL,
 FCflag = "logFC",
 FDRflag = "adj.P.Val",
 FCmin = 1.2,
 FCmax = 2,
 FCstep = 0.1,
 p.min = 0,
 p.max = 0.2,
 p.step = 0.01,
 plot.save.to = NULL,
 gen.3d.plot = TRUE,
 gen.plot = TRUE
)
Arguments

data: Summary statistics table or a list of summary statistics tables from limma or DEseq2, where each row is a gene.

comp.names: A character vector that contains the comparison names which correspond to the same order as data.

FCflag: The column name of the log2FC in the summary statistics table. Default = "logFC".

FDRflag: The column name of the False Discovery Rate (FDR) in the summary statistics table. Default = "adj.P.Val".

FCmin: The minimum starting fold change cutoff to be checked, so the minimum fold change cutoff to be evaluated will be FCmin + FCstep, FCmin default = 1.

FCmax: The maximum fold change cutoff to be checked, default = 2.

FCstep: The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.01.

p.min: The minimum starting FDR cutoff to be checked, so the minimum fold change cutoff to be evaluated will be p.min + p.step, p.min default = 0.

p.max: The maximum FDR cutoff to be checked, default = 0.2.

p.step: The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.005.

plot.save.to: The address where to save the plot from simplified cutoff combination with FDR of 0.01, 0.05, 0.1, and 0.2.

gen.3d.plot: Whether generate a 3d plotly object to visualize the result, only applys to single dataframe input, default = F.

gen.plot: Whether generate a plot to visualize the result, default = T.

Details

The function takes the summary statistics and returns a list which contains 3 objects: a table which describes the number of DE genes with different cutoff combinations of FDR and fold change, a ggplot object which depicts a simplified version of cutoff selection combination, and a plotly 3d visualization object which depicts a high resolution of cutoff combinations. The default range of the fold change is from 1 to 2, and p value is from 0 to 0.2, with the step of 0.01 for FC and 0.005 for FDR.

Value

If the input data is a data list, then a multi-facet ggplot plot object which contains each of the summary statistics table will be returned; otherwise, if the input data is a data frame, then the function will return a list which contains 3 elements:

df.sub: A dataframe, which contains the number of genes(3rd column) with FDR (1st column), Fold Change (2nd column)

plot3d: A plotly object to show the 3d illustration of all possible cutoff selection and the number of DE genes in the 3d surface

gp: A ggplot object to show the simplified cutoff combination result
plot_cutoff_single

References

Xingpeng Li & Olya Besedina, RVA - RNAseq Visualization Automation tool.

Examples

plot_cutoff(Sample_summary_statistics_table)

plot_cutoff(data = list(Sample_summary_statistics_table, Sample_summary_statistics_table1),
 comp.names = c("A", "B"))

plot_cutoff_single

Create plotly object for number of DE genes at different cutoff combinations

Description

This function processes summary statistics table generated by differential expression analysis like
limma or DESeq2 and produces a table which contains gene counts for each of the p-value and FC
combination

Usage

plot_cutoff_single(datin, FCflag, FDRflag, FCs, pvalues)

Arguments

datin Summary statistics table from limma or DEseq2, where each row is a gene.
FCflag The column name of the log2FC in the summary statistics table.
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics
table.
FCs A set of fold change cutoff to be checked.
pvalues A set of p-values for FDR cutoff to be checked.
Description

This is the function to process the gene count table to show gene expression variations over time or across groups.

Usage

plot_gene(
 data = ~dat,
 anno = ~meta,
 gene.names = c("AAAS", "A2ML1", "AADACL3"),
 ct.table.id.type = "ENSEMBL",
 gene.id.type = "SYMBOL",
 treatment = "Treatment",
 sample.id = "sample_id",
 time = "day",
 log.option = TRUE,
 plot.save.to = NULL,
 input.type = "count"
)

Arguments

data Count table in the format of dataframe with gene id as row.names.
anno Annotation table that provides design information.
gene.names Genes to be visualized, in the format of character vector.
ct.table.id.type The gene id format in data should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
gene.id.type The gene id format of gene.names should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
treatment The column name to specify treatment groups.
sample.id The column name to specify sample IDs.
time The column name to specify different time points.
log.option Logical option, whether to log2 transform the CPM as y-axis. Default = True.
plot_heatmap.cfb

plot.save.to The address to save the plot from simplified cutoff combination with FDR of 0.01, 0.05, 0.1, and 0.2.

input.type One of count or cpm indicating what the input data type is. If count, the CPM of the input data will be calculated using `edgeR::cpm()`. Default = count.

Details

The function takes the gene counts and returns a ggplot that shows gene expression variation over time or group.

Value

The function returns a ggplot object.

References

Xingpeng Li, Tatiana Gelaf Romer & Aliyah Olaniyan, RVA - RNAseq Visualization Automation tool.

Examples

plot_gene(data = count_table, anno = sample_annotation)

plot_heatmap.cfb Plot a CFB Heatmap

Description

An alias for `plot_heatmap.expr(annot, cpm, fill = "CFB", ...)`.

Usage

`plot_heatmap.cfb(cpm, annot, title = "RVA CFB Heatmap", ...)`

Arguments

- `cpm` cpm data
- `annot` A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the sample.id value with values matching the column names of sample IDs in data. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.
- `title` A title for the heatmap. Default = "RVA Heatmap".
- `...` pass over parameters
plot_heatmap.cpm
Plot a CPM Heatmap

Description

An alias for `plot_heatmap.expr(annot, cpm, fill = "CPM", ...)`.

Usage

```r
plot_heatmap.cpm(cpm, annot, title = "RVA CPM Heatmap", ...)
```

Arguments

- `cpm`: cpm data
- `annot`: A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the `sample.id` value with values matching the column names of sample IDs in `data`. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.
- `title`: A title for the heatmap. Default = "RVA Heatmap".
- `...`: pass over parameters

plot_heatmap.expr
Plot Heatmap From Raw CPM

Description

Create a heatmap with either CFB or CPM averaged across individual samples.

Usage

```r
plot_heatmap.expr(
    data = ~count,
    annot = ~meta,
    sample.id = "sample_id",
    annot.flags = c("day", "Treatment", "tissue"),
    ct.table.id.type = "ENSEMBL",
    gene.id.type = "SYMBOL",
    gene.names = NULL,
    gene.count = 10,
    title = "RVA Heatmap",
    fill = "CFB",
    baseline.flag = "day",
    baseline.val = "0",
    plot.save.to = NULL,
    input.type = "count"
)
```
Arguments

data | A wide-format dataframe with geneid rownames, sample column names, and fill data matching input.type.
annot | A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the sample.id value with values matching the column names of sample IDs in data. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.
sample.id | The column name to specify sample ID.
annot.flags | A vector of column names corresponding to column names in annot which will be used to define the x-axis for the heatmap. Default = c("day", "dose").
c.t.table.id.type | The gene id format in data should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPRO.
gene.id.type | The gene id format of gene.names, should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPRO.
gene.names | A character vector or list of ensembl IDs for which to display gene information. If NULL, all genes will be included. Default = NULL.
gene.count | The number of genes to include, where genes are selected based on ranking by values in fill. Default = 10.
title | A title for the heatmap. Default = "RVA Heatmap".
fill | One of c("CPM", "CFB") to fill the heatmap cells with. Default = "CFB".
baseline.flag | A character vector of column names. If fill = "CFB", these columns in annot contain the values to compare across. Ignored if fill = "CPM". Default = "time-point".
baseline.val | A character vector of values. This vector must be the same length as baseline.flag, and the value at each index must represent a value from the column given by the corresponding index in baseline.flag. The samples corresponding to these values will be used as a baseline when calculating CFB. Ignored if fill = "CPM". Default = "Week 0".
plot.save.to | The address to save the heatmap plot.
input.type | One of count or cpm indicating what the input data type is. If count, the CPM of the input data will be calculated using edgeR::cpm(). Default = count.

Details

The function takes raw CPM data and returns both a list containing a data frame with values based on the fill parameter and a heatmap plot.
plot_pathway

Value

The function returns a list with 2 items:

- `df.sub` "A data frame of change from baselines values (fill = CFB in this example) for each gene id that is divided by a combination of treatment group and time point
- `gp` A Heatmap object from ComplexHeatmap which can be plotted

References

Xingpeng Li, Tatiana Gelaf Romer & Aliyah Olaniyan, RVA - RNAseq Visualization Automation tool.

Examples

```r
plot <- plot_heatmap.expr(data = count_table[,1:20], annot = sample_annotation[1:20,])
```

plot_pathway

Pathway analysis and visualization

Description

This is the function to do pathway enrichment analysis (and visualization) with rWikipathways (also KEGG, REACTOME & Hallmark) from a summary statistics table generated by differential expression analysis like limma or DESeq2.

Usage

```r
plot_pathway(
  data = ~df,
  comp.names = NULL,
  gene.id.type = "ENSEMBL",
  FC.cutoff = 1.2,
  FDR.cutoff = 0.05,
  FFlag = "logFC",
  FDRflag = "adj.P.Val",
  Fisher.cutoff = 0.1,
  Fisher.up.cutoff = 0.1,
  Fisher.down.cutoff = 0.1,
  plot.save.to = NULL,
  pathway.db = "rWikiPathways",
  customized.pathways = NULL,
  ...
)
```
Arguments

- **data**: A summary statistics table (data.frame) or data.list generated by DE analysis software like limma or DEseq2, where rownames are gene id.
- **comp.names**: A character vector containing the comparison names corresponding to the same order of the data.list. Default = NULL.
- **gene.id.type**: The gene id format in data should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
- **FC.cutoff**: The fold change cutoff (numeric) selected to subset summary statistics table. Default = 1.5.
- **FDR.cutoff**: The FDR cutoff selected (numeric) to subset summary statistics table. Default = 0.05.
- **FC.flag**: The column name (character) of fold change information, assuming the FC is log2 transformed. Default = "logFC".
- **FDR.flag**: The column name (character) of adjusted p value or FDR. Default = "adj.P.Val".
- **Fisher.cutoff**: The FDR cutoff selected (numeric) for the pathway enrichment analysis' Fisher’s exact test with all determined Differentially Expressed (DE) genes by FC.cutoff and FDR.cutoff.
- **Fisher.up.cutoff**: The FDR cutoff selected (numeric) for the pathway enrichment analysis' Fisher’s exact test with the upregulated gene set.
- **Fisher.down.cutoff**: The FDR cutoff selected (numeric) for the pathway enrichment analysis' Fisher’s exact test with the downregulated gene set.
- **plot.save.to**: The address to save the plot from simplified cutoff combination with FDR of 0.01, 0.05, 0.1, and 0.2.
- **pathway.db**: The database to be used for enrichment analysis. Can be one of the following, "rWikiPathways", "KEGG", "REACTOME", "Hallmark", "rWikiPathways_aug_2020".
- **customized.pathways**: The customized pathways in the format of two column dataframe (column name as "gs_name" and "entrez_gene") to be used in analysis.

Details

The function takes the summary statistics table and use user selected parameter based on check.cutoff to do pathway enrichment analysis.

Value

The function returns a list of 5 objects:

1. result table from directional pathway enrichment analysis
plot_qq

2 result table from non-directional pathway enrichment analysis
3 plot from directional pathway enrichment analysis
4 plot from non-directional pathway enrichment analysis
5 plot combining both directional and non-directional plot

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

Examples

result <- plot_pathway(data = Sample_summary_statistics_table,
gene.id.type = "ENSEMBL",
FC.cutoff = 1.5,
p.cutoff = 0.05,
pathway.db = "rWikiPathways_aug_2020"
)

plot_qq

Plot qqplot

Description

This function generates a QQ-plot object with confidence interval from summary statistics table generated by differential expression analysis like limma or DEseq2.

Usage

plot_qq(
data = data,
comp.names = NULL,
p.value.flag = "P.Value",
ci = 0.95,
plot.save.to = NULL
)

Arguments

data Summary statistics table or a list that contains multiple summary statistics tables from limma or DEseq2, where each row is a gene.
comp.names A character vector that contains the comparison names which correspond to the same order as data. No default.
p.value.flag The column name of P-VALUE (NOT FDR, NO multiplicity adjusted p-value) in the summary statistics table. Default = "P.Value".
ci Confidence interval. Default = 0.95
plot.save.to The file name and the address where to save the qq-plot "~/address_to_folder/qqplot.png". Default = NULL.
Details

The function produces the qqplot to evaluate the result from differential expression analysis. The output is a ggplot object.

Value

The function return a ggplot object of qqplot

References

Xingpeng Li & Tatiana Gelaf Romer & Olya Besedina, RVA - RNAseq Visualization Automation tool.

Examples

plot_qq(data = Sample_summary_statistics_table)
plot_qq(data = list(Sample_summary_statistics_table, Sample_summary_statistics_table1),
 comp.names = c("A","B"))

plot_volcano

Plot volcanoplot

Description

This function processes the summary statistics table generated by differential expression analysis like limma or DESeq2 to show on the volcano plot with the highlight gene set option (like disease related genes from Disease vs Healthy comparison).

Usage

plot_volcano(
 data = data,
 comp.names = NULL,
 geneset = NULL,
 geneset.FCflag = "logFC",
 highlight.1 = NULL,
 highlight.2 = NULL,
 upcolor = "#FF0000",
 downcolor = "#0000FF",
 plot.save.to = NULL,
 xlim = c(-4, 4),
 ylim = c(0, 12),
 FCflag = "logFC",
 FDRflag = "adj.P.Val",
 highlight.FC.cutoff = 1.5,
 highlight.FDR.cutoff = 0.05,
```r
plot_volcano

title = "Volcano plot",
xlab = "log2 Fold Change",
ylab = "log10(FDR)"
)

Arguments

data Summary statistics table or a list contain multiple summary statistics tables from
limma or DEseq2, where each row is a gene.

comp.names A character vector that contains the comparison names which correspond to the
same order as data. Required if data is list. No default.

geneset Summary statistic table that contains the genes which needed to be highlighted,
the gene name format (in row names) needs to be consistent with the main summary
statistics table). For example, this summary statistics table could be the
output summary statistics table from the Disease vs Healthy comparison (Only
contains the subsetted significant genes to be highlighted).

geneset.FCflag The column name of fold change in geneset, Default = "logFC".

highlight.1 Genes to be highlighted, in the format of a vector consists of gene names. The
gene name format needs to be consistent to the main summary statistics table.

highlight.2 Genes to be highlighted, in the format of a vector consists of gene names. The
gene name format needs to be consistent to the main summary statistics table.

upcolor The color of the gene names in highlight.1 or the positive fold change gene
in geneset, default = "#FDE725FF" (viridis color palette).

downcolor The color of the gene names in highlight.2 or the negative fold change gene
in geneset, default = "#440154FF" (viridis color palette).

plot.save.to The file name and address where to save the volcano plot, e.g. "~/address_to_folder/volcano_plot.png".

xlim Range of x axis. Default = c(-3, 3).

ylim Range of x axis. Default = c(0, 6).

FCflag Column name of log2FC in the summary statistics table. Default = "logFC".

FDRflag Column name of FDR in the summary statistics table. Default = "adj.P.Val".

highlight.FC.cutoff Fold change cutoff line want to be shown on the plot. Default = 1.5.

highlight.FDR.cutoff FDR cutoff shades want to be shown on the plot. Default = 0.05.

title The plot title. Default "Volcano plot".

xlab The label for x-axis. Default "log2 Fold Change".

ylab The label for y-axis. Default "log10(FDR)".

Details

The function takes the summary statistics table and returns a ggplot, with the option to highlight
genes, e.g. disease signature genes, the genes which are up-regulated and down-regulated in diseased subjects.
Value

The function return a volcano plot as a ggplot object.

References

Xingpeng Li & Tatiana Gelaf Romer & Olya Besedina, RVA - RNAseq Visualization Automation tool.

Examples

```r
plot_volcano(data = Sample_summary_statistics_table,
 geneset = Sample_disease_gene_set)
```

```r
plot_volcano(data = list(Sample_summary_statistics_table, Sample_summary_statistics_table1),
 comp.names = c("A", "B"),
 geneset = Sample_disease_gene_set)
```

prettyGraphs

Pretty Graphs

Description

Special cases where list input and at least one treatment has signal but others don’t.

Usage

```r
prettyGraphs(vizdf, ...)
```

Arguments

- `vizdf` A dataframes of enriched pathways.
- `...` pass on variables

Details

Pretty Graphs is a function specifically meant to be in cases where one of the input treatments meet cutoff, but one or more of the other treatments don’t meet the cutoff values. This is important so that ggplot doesn’t throw any errors.

Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
produce.cutoff.message

Create a message about fold change and pvalues used to produce the plot.

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 and produces a message about pvalues and fold change used.

Usage

```r
produce.cutoff.message(
 data,
 FCmin,
 FCmax,
 FCstep,
 FDRflag,
 p.min,
 p.max,
 p.step
)
```

Arguments

data Summary statistics table from limma or DEseq2, where each row is a gene.
FCmin The minimum starting fold change cutoff to be checked, so the minimum fold change cutoff to be evaluated will be FCmin + FCstep, FCmin default = 1.
FCmax The maximum fold change cutoff to be checked, default = 2.
FCstep The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.01.
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics table.
p.min The minimum starting FDR cutoff to be checked, so the minimum fold change cutoff to be evaluated will be p.min + p.step, p.min default = 0.
p.max The maximum FDR cutoff to be checked, default = 0.2.
p.step The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.005.
produce.cutoff.warning

Create a warning about pvalue or FDR minimum value

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 and produces a warning about pvalue or FDR minimum value.

Usage

produce.cutoff.warning(data, FDRflag)

Arguments

data: Summary statistics table from limma or DESeq2, where each row is a gene.
FDRflag: The column name of the False Discovery Rate (FDR) in the summary statistics table.

reformat.ensembl

Reformat Ensembl GeneIDs

Description

This is the function to exclude the version number from the input ensembl type gene ids.

Usage

reformat.ensembl(logcpm, ct.table.id.type)
reformat.ensembl(logcpm, ct.table.id.type)

Arguments

logcpm: The input count table transformed into log counts per million.
ct.table.id.type: The gene id format in logcpm should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
sample_annotation

This is data to be included in package

Description
This is data to be included in package

Usage
sample_annotation

Format
Sample annotation document

sample_id  sample name


tissue  tissue for comparison

subject_id  subject id

day  time points ...

sample_count_cpm

This is data to be included in package

Description
This is data to be included in package

Usage
sample_count_cpm

Format
An example cpm table where row names are gene ID, each column is a sample

counttable  count cpm table ...
Sample_disease_gene_set

This is data to be included in package

Description
This is data to be included in package

Usage
Sample_disease_gene_set

Format
An example disease gene set from summary statistics table as dataframe, row names are gene ID the summary statistics can be calculated from disease vs healthy, which is this example.

logFC  log2 fold change from comparison
AveExpr Average expression for this gene
P.Value p value
adj.P.Val adjusted p value or FDR ...

Sample_summary_statistics_table
This is data to be included in package

Description
This is data to be included in package

Usage
Sample_summary_statistics_table

Format
An example summary statistics table as dataframe, row names are gene ID

logFC  log2 fold change from comparison
AveExpr Average expression for this gene
P.Value p value
adj.P.Val adjusted p value or FDR ...
Sample_summary_statistics_table1

This is data to be included in package

Description

This is data to be included in package

Usage

Sample_summary_statistics_table1

Format

Second example summary statistics table as dataframe, row names are gene ID

logFC  log2 fold change from comparison
AveExpr Average expression for this gene
P.Value  p value
adj.P.Val adjusted p value or FDR ...

secondCutoffErr  Second Cutoff Error

Description

The function takes in a list of dataframe, comp names and a specified type, to output a dataframe styled for ggplot.

Usage

secondCutoffErr(df, comp.names, TypeQ = 1)

Arguments

df  A list of dataframes.
comp.names  a character vector contain the comparison names corresponding to the same order to the dat.list. default = NULL.
TypeQ  If type = 1(default) return directional null plot. If type = 2 return non directional null plot.

Details

secondCutoffErr is a function specifically meant to be used for list inputs. It is used for cases where after applying filter to the data, one of the comparison ID gets left out, this adversely effects the ggplot
Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

transform.geneid  Transform GeneIDs

Description

This is the function to transform the input gene id type to another gene id type.

Usage

```r
S3 method for class 'geneid'
transform(gene.names, from = ~gene.id.type, to = ~ct.table.id.type)

S3 method for class 'geneid'
transform(gene.names, from = ~gene.id.type, to = ~ct.table.id.type)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene.names</td>
<td>Genes, in the format of character vector, to be transformed.</td>
</tr>
<tr>
<td>from</td>
<td>The gene id format of gene.names, should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.</td>
</tr>
<tr>
<td>to</td>
<td>The new gene id format should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.</td>
</tr>
</tbody>
</table>
validate.annot

Validate Annotation Table

Description

Ensure that an annotation has all of the required columns.

Usage

validate.annot(
    data,
    annot,
    annot.flags,
    sample.id,
    fill = "CPM",
    baseline.flag = NULL,
    baseline.val = NULL
)

Arguments

data The input count data.
annot The annotation dataframe.
annot.flags The vector of annotation flags passed by the user.
sample.id Sample id label to check if in annot.
fill The fill value indicated by the user,"count" or "CPM".
baseline.flag The baseline.flag passed by the user.
baseline.val The baseline value passed by the user.

Details

The function will check the following:

- The annot.flags values are columns in annot
- If fill = "cbf": validate the baseline.flag and baseline.val parameters.
- sample.id is a column in annot.

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.baseline  

**Validate Baseline Values**

**Description**

Ensures that user-input `baseline.val` and `baseline.flag` parameters are valid with respect to the `annot` dataframe.

**Usage**

`validate.baseline(annot, baseline.val, baseline.flag)`

**Arguments**

- `annot`: The annotation dataframe.
- `baseline.val`: The baseline value passed by the user.
- `baseline.flag`: The baseline.flag passed by the user.

**Details**

Specifically, validates that `baseline.flag` value(s) are columns in `annot`, and that `baseline.val` value(s) occur at least once in their respective `baseline.flag` columns.

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.col.types  

**Check Summary Statistics Required Column Types**

**Description**

`FCflag` and `FDRflag` must be numeric.

**Usage**

`validate.col.types(datin, name = 1, flags)`

**Arguments**

- `name`: summary statistics file position indicator
- `flags`: `FCflag` or `FDRflag` to be checked
validate.comp.names  Validate Comp Names

Description
This function ensures that when a list of data frames are used as input the the number of comp
names are the same as the number of data frames.

Usage
validate.comp.names(comp.names, data)

Arguments
comp.names  a character vector contain the comparison names corresponding to the same or-
der to the dat.list. default = NULL.
data  summary statistics table (data.frame) from limma or DEseq2, where rownames
are gene id.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation
tool.

validate.data  Validate Data Input

Description
Ensures that the data input has the required formatting.

Usage
validate.data(data)

Arguments
data  The wide-format dataframe with input data.

Details
Specifically, checks if data has rownaems and that all other columns can be coerced to numeric.
validate.data.annot

**Validate Data in the Context of Annotation**

**Description**

Ensures that the annotation file matches the data file with respect to sample IDs. Throws warnings if there are discrepancies.

**Usage**

\[
\text{validate.data.annot}(\text{data}, \text{annot}, \text{sample.id})
\]

**Arguments**

- **data**: input data
- **annot**: annotation file
- **sample.id**: sample id in the input

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

validate.FC

**Validate Foldchange**

**Description**

This function ensures the fold change minimum, maximum, and step are valid.

**Usage**

\[
\text{validate.FC}(\text{FCmin}, \text{FCmax}, \text{FCstep})
\]

**Arguments**

- **FCmin**: The minimum starting fold change cutoff to be checked, so the minimum fold change cutoff to be evaluated will be \(\text{FCmin} + \text{FCstep}\), \(\text{FCmin}\) default = 1.
- **FCmax**: The maximum fold change cutoff to be checked, default = 2.
- **FCstep**: The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.01.
Details
Specifically it checks that the FCmax is greater than the FCmin, that at least 1 FCstep can fit within the FCmax and FCmin, that FCmax and FCmin values are non-negative, and that FCstep is positive.

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.flag

**Validate Flag Value Is Valid**

Description
Ensures that the value is one of Options and throws an error otherwise.

Usage
validate.flag(value, name, Options)

Arguments
- value: The user-input value for the parameter
- name: The name of the parameter to be displayed in the error
- Options: A vector of valid values for value

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.genes.present

**Validate genes present**

Description
Checks how many of the gene id’s in the dataset are there in the geneset.

Usage
validate.genes.present(data.genes, geneset)
validate.geneset

Arguments

data.genes The gene id’s.
geneset a summary statistic table contain the genes want to be highlighted, the gene name format (in row names) needs to be consistent to the main summary statistics table). For example, this summary statistics table could be the output summary statistics table from Disease vs Healthy comparison (Only contain the subsetted significant genes want to be highlighted).

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

Description

This function ensures that the input geneset to check.cutoff is formatted properly and in a usable form.

Usage

validate.geneset(data, geneset, highlight.1, highlight.2)

Arguments

data summary statistics table or a list contain multiple summary statistics tables from limma or DEseq2, where each row is a gene.
geneset a summary statistic table contain the genes want to be highlighted, the gene name format (in row names) needs to be consistent to the main summary statistics table). For example, this summary statistics table could be the output summary statistics table from Disease vs Healthy comparison (Only contain the subsetted significant genes want to be highlighted).
highlight.1 genes want to be highlighted, in the format of a vector consists of gene names. The gene name format needs to be consistent to the main summary statistics table.
highlight.2 genes want to be highlighted, in the format of a vector consists of gene names. The gene name format needs to be consistent to the main summary statistics table.

Details

The function ensures that only a dataframe or vectors are supplied, that at least one or the other is supplied, and that their formatting is correct if supplied. It also checks if any of the genes overlap with the genes in the datanames.
validate.numeric

**Value**

A character value indicating if the geneset was passed as a dataframe (df) or two vectors (vec), if a list is input the number of returned values equal the length of the list.

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

validate.numeric | Validate Numeric Column

**Description**

Ensures that a column in a dataframe which must be numeric is numeric and throws an error otherwise.

**Usage**

validate.numeric(datin, col, name = 1)

**Arguments**

- `datin` The data in question.
- `col` The column to validate as numeric.
- `name` the position of dataset

**Details**

This specifically checks if any of the values in the column can be coerced as numeric.

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.pathways.db  Validate Pathways DB

Description
To ensure selected db name is correct.

Usage
validate.pathways.db(pathway.db, customized.pathways)

Arguments
pathway.db  The database to be used for enrichment analysis. Can be one of the following, "rWikiPathways", "KEGG", "REACTOME", "Hallmark", "rWikiPathways_aug_2020"

customized.pathways  the customized pathways in the format of two column dataframe (column name as "gs_name" and "entrez_gene") to be used in analysis

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.pval.range  Validate P-value Range

Description
Error-handling for invalid p-value.

Usage
validate.pval.range(pval, name)

Arguments
pval  The pvalue
name  The name of the value to include in the error.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.pvalflag  Validate pval flag

Description
To ensure p value flags are the same accross datasets.

Usage
validate.pvalflag(data, value)

Arguments
- **data**  A list of summary statistics table (data.frame) from limma or DEseq2, where rownames are gene id.
- **value**  P value flag.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.pvals  Validate Pvalues

Description
This function ensures the fold change minimum, maximum, and step are valid.

Usage
validate.pvals(p.min, p.max, p.step)

Arguments
- **p.min**  The minimum starting FDR cutoff to be checked, so the minimum fold change cutoff to be evaluated will be p.min + p.step, p.min default = 0.
- **p.max**  The maximum FDR cutoff to be checked, default = 0.2.
- **p.step**  The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.005.

Details
Specifically it checks that the pvalues are between 0-1, and that at least 1 p.step fits within the p.min and p.max bounds and is positive.
validate.single.table.isnotlist

Validate Single Table is not list

Description
Makes sure the summary table being input is of the right class and format.

Usage
validate.single.table.isnotlist(data)

Arguments
- data: summary statistics table (data.frame) from limma or DEseq2, where rownames are gene id.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.stats

Validate Summary Statistics File

Description
Check for required column names and types.

Usage
validate.stats(datin, name = 1, ...)

Arguments
- name: summary statistics file position indicator
- ... pass on variables

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.stats.cols  

Check Summary Statistics Required Columns

Description

Required columns are FCflag and FDRflag

Usage

validate.stats.cols(datin, name = 1, req.cols)

Arguments

datin  the summary statistics file.
name  summary statistics file position indicator
req.cols  required column names of FCflag and FDRflag pass on from validate.stats

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

wpA2020  This is data to be included in package

Description

This is data to be included in package

Usage

wpA2020

Format

Rwikipathway data downloaded version 2020

name  pathway name
version  version
wpid  pathway id
org  host name ...
Index

* datasets
  c2BroadSets, 3
  count_table, 5
  sample_annotation, 24
  sample_count_cpm, 24
  Sample_disease_gene_set, 25
  Sample_summary_statistics_table, 25
  Sample_summary_statistics_table1, 26
  wpA2020, 38

c2BroadSets, 3
cal.pathway.scores, 3
calc.cfb, 4
count_table, 5
dlPathwaysDB, 5
edgeR::cpm(), 13, 15
get.cpm.colors, 6
get.cutoff.df, 6
get.cutoff.ggplot, 7
make.cutoff.plotly, 7
multiPlot, 8
nullreturn, 8
plot_cutoff, 9
plot_cutoff_single, 11
plot_gene, 12
plot_heatmap.cfb, 13
plot_heatmap.cpm, 14
plot_heatmap.expr, 14
plot_pathway, 16
plot_qq, 18
plot_volcano, 19
prettyGraphs, 21
produce.cutoff.message, 22
produce.cutoff.warning, 23
reformat.ensembl, 23
sample_annotation, 24
sample_count_cpm, 24
Sample_disease_gene_set, 25
Sample_summary_statistics_table, 25
Sample_summary_statistics_table1, 26
secondCutoffErr, 26
transform.geneid, 27
validate.annot, 28
validate.baseline, 29
validate.col.types, 29
validate.comp.names, 30
validate.data, 30
validate.data.annot, 31
validate.FC, 31
validate.flag, 32
validate.genes.present, 32
validate.geneset, 33
validate.numeric, 34
validate.pathways.db, 35
validate.pval.range, 35
validate.pvalflag, 36
validate.pvals, 36
validate.single.table.isnotlist, 37
validate.stats, 37
validate.stats.cols, 38

wpA2020, 38