Package ‘RZigZag’

April 30, 2018

Type Package

Title Zig-Zag Sampler

Version 0.1.6

Date 2018-04-30

Author Joris Bierkens

Maintainer Joris Bierkens <joris.bierkens@tudelft.nl>

Description Implements the Zig-Zag algorithm with subsampling and control variates (ZZ-
CV) of (Bierkens, Fearnhead, Roberts, 2016) <arXiv:1607.03188> as applied to Bayesian logis-
tic regression, as well as basic Zig-Zag for a Gaussian target distribution, and Bouncy Parti-
cle Sampler for a Gaussian target.

License GPL (>=2)

Imports Rcpp (>=0.12.3)

LinkingTo Rcpp, RcppEigen

RoxygenNote 6.0.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-04-30 11:05:01 UTC

R topics documented:

BPSGaussian e e e e e e 2
RZigZag e 3
ZigZagGaussian e e e e e e e e e 4
ZigZaglogiStic e e e e e e 5
Index 8

BPSGaussian

BPSGaussian

BPSGaussian

Description

Applies the BPS Sampler to a Gaussian target distribution, as detailed in Bouchard-Coté et al, 2017.
Assume potential of the form

Uz) = (z — mu)TV(z —mu)/2,

i.e. a Gaussian with mean vector mu and covariance matrix inv (V)

Usage

BPSGaussian(V, mu, n_iterations, x@, finalTime = -1, refresh_rate =1,
unit_velocity = TRUE, n_samples = 0L, n_batches = 0oL,
computeCovariance = FALSE)

Arguments

\
mu

n_iterations

X0

finalTime

refresh_rate

unit_velocity

the inverse covariance matrix of the Gaussian target distribution
mean of the Gaussian target distribution

Number of algorithm iterations; will result in the equivalent amount of skeleton
points in Gaussian case because no rejections are needed.

starting point

If provided and nonnegative, run the BPS sampler until a trajectory of continu-
ous time length finalTime is obtained (ignoring the value of n_iterations)

lambda_refresh

TRUE indicates velocities uniform on unit sphere, FALSE indicates standard
normal velocities

n_samples Number of discrete time samples to extract from the Zig-Zag skeleton.
n_batches If non-zero, estimate effective sample size through the batch means method,
with n_batches number of batches.
computeCovariance
Boolean indicating whether to estimate the covariance matrix.
Value

Returns a list with the following objects:

skeletonTimes: Vector of switching times

skeletonPoints: Matrix whose columns are locations of switches. The number of columns is
identical to the length of skeletonTimes. Be aware that the skeleton points themselves are NOT
samples from the target distribution.

skeletonDirections: Matrix whose columns are directions just after switches. The number of
columns is identical to the length of skeletonTimes.

RZigZag 3

samples: If n_samples > 0, this is a matrix whose n_samples columns are samples along the
Zig-Zag trajectory.

mode: Not used for a Gaussian target.
batchMeans: If n_batches > 0, this is a matrix whose n_batches columns are the batch means

means: If n_batches > 0, this is a vector containing the means of each coordinate along the
Zig-Zag trajectory

covariance :If n_batches > @ or computeCovariance = TRUE, this is a matrix containing the
sample covariance matrix along the trajectory

asVarEst: If n_batches > @ this is an estimate of the asymptotic variance along each component

ESS: If n_batches > 0 this is an estimate of the effective sample size along each component

Examples

V <- matrix(c(3,1,1,3),nrow=2)

mu <- ¢(2,2)

x0 <- ¢(0,0)

result <- BPSGaussian(V, mu, 100, x@, n_samples = 10)
plot(result$skeletonPoints[1,], result$skeletonPoints[2,],type="'1",asp=1)
points(result$samples[1,], result$samples[2,], col='magenta')

RZigZag RZigZag

Description

Implements the Zig-Zag algorithm with subsampling and control variates (ZZ-CV) of (Bierkens,
Fearnhead, Roberts, 2018) https://arxiv.org/abs/1607.03188 as applied to Bayesian logistic
regression, as well as basic Zig-Zag for a Gaussian target distribution.

Details

This package currently consists of the following functions: ZigZaglogistic for logistic regres-

sion, ZigZagGaussian for multivariate Gaussian, and BPSGaussian for multivariate Gaussian using
BPS.

Author(s)

Joris Bierkens

With thanks to Matt Moores, https://mattstats.wordpress.com/, for his help in getting from
C++ code to a CRAN-ready Rcpp based package.

https://arxiv.org/abs/1607.03188
https://mattstats.wordpress.com/

4 ZigZagGaussian

ZigZagGaussian ZigZagGaussian

Description

Applies the Zig-Zag Sampler to a Gaussian target distribution, as detailed in Bierkens, Fearnhead,
Roberts, The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data,
2016. Assume potential of the form

U(z) = (x —mu)TV(z — mu)/2,
i.e. a Gaussian with mean vector mu and covariance matrix inv (V)

Usage

ZigZagGaussian(V, mu, n_iterations, x@, finalTime = -1, n_samples = 0L,
n_batches = 0L, computeCovariance = FALSE)

Arguments
\ the inverse covariance matrix of the Gaussian target distribution
mu mean of the Gaussian target distribution

n_iterations Number of algorithm iterations; will result in the equivalent amount of skeleton
points in Gaussian case because no rejections are needed.

X0 starting point

finalTime If provided and nonnegative, run the sampler until a trajectory of continuous
time length finalTime is obtained (ignoring the value of n_iterations)

n_samples Number of discrete time samples to extract from the Zig-Zag skeleton.

n_batches If non-zero, estimate effective sample size through the batch means method,
with n_batches number of batches.

computeCovariance

Boolean indicating whether to estimate the covariance matrix.

Value

Returns a list with the following objects:
skeletonTimes: Vector of switching times

skeletonPoints: Matrix whose columns are locations of switches. The number of columns is
identical to the length of skeletonTimes. Be aware that the skeleton points themselves are NOT
samples from the target distribution.

skeletonDirections: Matrix whose columns are directions just after switches. The number of
columns is identical to the length of skeletonTimes.

samples: If n_samples > 0, this is a matrix whose n_samples columns are samples along the
Zig-Zag trajectory.

ZigZagl ogistic 5

mode: Not used for a Gaussian target.
batchMeans: If n_batches > 0, this is a matrix whose n_batches columns are the batch means

means: If n_batches > 0, this is a vector containing the means of each coordinate along the
Zig-Zag trajectory

covariance :If n_batches > 0 or computeCovariance = TRUE, this is a matrix containing the
sample covariance matrix along the trajectory

asVarEst: If n_batches > 0 this is an estimate of the asymptotic variance along each component

ESS: If n_batches > 0 this is an estimate of the effective sample size along each component

Examples

V <- matrix(c(3,1,1,3),nrow=2)

mu <- c(2,2)

X0 <- ¢(0,0)

result <- ZigZagGaussian(V, mu, 100, x@, n_samples = 10)
plot(result$skeletonPoints[1,], result$skeletonPoints[2,],type="1",6asp=1)
points(result$samples[1,], result$samples[2,], col='magenta')

ZigZaglogistic ZigZaglLogistic

Description

Applies the Zig-Zag Sampler to logistic regression, as detailed in Bierkens, Fearnhead, Roberts,
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data, 2016.

Usage

ZigZaglogistic(dataX, data¥Y, n_iterations, x@ = numeric(@), finalTime = -1,
subsampling = TRUE, controlvariates = TRUE, n_samples = 0L,
n_batches = @OL, computeCovariance = FALSE, upperbound = FALSE)

Arguments

dataX Matrix containing the independent variables x. The i-th column represents the
i-th observation with components x_1,i, ..., x_d,i.

dataY Vector of length n containing 0, 1-valued observations of the dependent variable
y.

n_iterations Integerindicating the number of iterations, i.e. the number of proposed switches.

X0 Optional argument indicating the starting point for the Zig-Zag sampler

finalTime If provided and nonnegative, run the sampler until a trajectory of continuous

time length finalTime is obtained (ignoring the value of n_iterations)

subsampling Boolean. Use Zig-Zag with subsampling if TRUE.

6 ZigZaglogistic

controlvariates
Boolean. Use Zig-Zag with subsampling combined with control variates if
TRUE (overriding any value of subsampling).

n_samples Number of discrete time samples to extract from the Zig-Zag skeleton.

n_batches If non-zero, estimate effective sample size through the batch means method,
with n_batches number of batches.

computeCovariance

Boolean indicating whether to estimate the covariance matrix.

upperbound Boolean. If TRUE, sample without subsampling and using a constant upper
bound instead of a linear Hessian dependent upper bound

Value

Returns a list with the following objects:
skeletonTimes: Vector of switching times

skeletonPoints: Matrix whose columns are locations of switches. The number of columns is
identical to the length of skeletonTimes. Be aware that the skeleton points themselves are NOT
samples from the target distribution.

skeletonDirections: Matrix whose columns are directions just after switches. The number of
columns is identical to the length of skeletonTimes.

samples: If n_samples > 0, this is a matrix whose n_samples columns are samples at fixed
intervals along the Zig-Zag trajectory.

mode: If controlvariates = TRUE, this is a vector containing the posterior mode obtained using
Newton’s method.

batchMeans: If n_batches > 0, this is a matrix whose n_batches columns are the batch means

means: If n_batches > 0, this is a vector containing the means of each coordinate along the
Zig-Zag trajectory

covariance: If n_batches > @ or computeCovariance = TRUE, this is a matrix containing the
sample covariance matrix along the trajectory

asVarEkst: If n_batches > 0 this is an estimate of the asymptotic variance along each component

ESS: If n_batches > 0 this is an estimate of the effective sample size along each component

Examples

require("RZigzZag")
generate.logistic.data <- function(beta, n.obs) {
dim <- length(beta)
dataX <- rbind(rep(1, n.obs), matrix(rnorm((dim -1) * n.obs), nrow = dim -1));
vals <- colSums(dataX * as.vector(beta))
generateY <- function(p) { rbinom(1, 1, p)}
dataY <- sapply(1/(1 + exp(-vals)), generateY)
return(list(dataX, dataY))
3

beta <- ¢(1,2)
data <- generate.logistic.data(beta, 1000)

ZigZagl ogistic

result <- ZigZaglogistic(data[[1]], data[[2]], 1000, n_samples = 100)
plot(result$skeletonPoints[1,], result$skeletonPoints[2,],type="1",6asp=1)
points(result$samples[1,], result$samples[2,], col='magenta')

Index

BPSGaussian, 2, 3

RZigZag, 3
RZigZag-package (RZigZag), 3

ZigZagGaussian, 3, 4
ZigZaglogistic, 3,5

	BPSGaussian
	RZigZag
	ZigZagGaussian
	ZigZagLogistic
	Index

