Package ‘RapidPolygonLookup’

January 14, 2019

Type Package
Title POLYGON LOOKUP USING KD TREES
Version 0.1.1
Date 2019-01-13
Depends R(>= 2.10.0), sp, RANN, PBSmapping, RgoogleMaps
Author Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>
Maintainer Markus Loecher <markus.loecher@gmail.com>
Description Facilitates efficient polygon search using kd trees.
 Coordinate level spatial data can be aggregated to higher geographical identities like census blocks, ZIP codes or police district boundaries.
 This process requires mapping each point in the given data set to a particular identity of the desired geographical hierarchy. Unless efficient data structures are used, this can be a daunting task. The operation point.in.polygon() from the package sp is computationally expensive. Here, we exploit kd-trees as efficient nearest neighbor search algorithm to dramatically reduce the effective number of polygons being searched.
License GPL
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2019-01-14 10:30:11 UTC

R topics documented:

 RapidPolygonLookup-package .. 2
 AddRanges ... 2
 california.tract10 ... 3
 CropSpatialPolygonsDataFrame ... 4
 DiagnoseFailure ... 5
 FindPolygonInRanges ... 6
 RapidPolygonLookup ... 7
RapidPolygonLookup-package

Polygon lookup using kd trees

Description

This package facilitates efficient polygon search using kd trees. Coordinate level spatial data can be aggregated to higher geographical identities like census blocks, ZIP codes or police district boundaries. This process requires mapping each point in the given data set to a particular identity of the desired geographical hierarchy. Unless efficient data structures are used, this can be a daunting task. The operation `point.in.polygon()` from the package `sp` is computationally expensive. Here, we exploit kd-trees as efficient nearest neighbor search algorithm to dramatically reduce the effective number of polygons being searched.

Details

- **Package**: RapidPolygonLookup
- **Type**: Package
- **Title**: Polygon lookup using kd trees
- **Version**: 0.1
- **Date**: 2013-11-18
- ** Depends**: R(>= 2.10.0), sp, RANN, PBSmapping, RgoogleMaps
- **Author**: "Markus Loecher, Berlin School of Economics and Law (BSEL)" <markus.loecher@gmail.com>, Madhav Kumar <madhavkumar2005@gmail.com>
- **Maintainer**: "Markus Loecher" <markus.loecher@gmail.com>
- **License**: GPL
- **LazyLoad**: yes

Author(s)

Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>
Description

This function computes the bounding box for each polygon and adds this information to the list. The bounding boxes can be used in various applications. Our main motivation is for the massive PointsInPolygon search to exclude those polygons as candidates whose bounding box does not contain the current point.

Usage

AddRanges(poly.list)

Arguments

poly.list polygon list with three elements: data, polys, and poly.centers

Value

Returns augmented polygon list with additional element – "ranges"

Author(s)

Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>

Examples

```r
data(sf.polys, envir = environment())
sf.polys <- AddRanges(sf.polys)
str(sf.polys$ranges)
```

california.tract10
Census Tract spatial polygons for the state of California

Description

Object of class SpatialPolygonsDataFrame containing spatial polygons of Census tracts in California. The object has been originally created from the 2010 US Census tiger/line boundary files (http://www.census.gov/geo/www/tiger/) for Census Tracts. The polygons have been manually cropped to the area in and around San Francisco.

Usage

```r
data(california.tract10)
```
CropSpatialPolygonsDataFrame

Format

An object of class SpatialPolygonsDataFrame from the sp package

data data frame containing information for 457 variables (excluding ids) available from the summary file 1
polygons polygons of Census Tracts
plotOrder plotting order of polygons
bbox bounding box of spatial polygons
proj4string projection of polygons. All polygons are projected in CRS(" +proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs +towgs84=0,0,0")

Details

For details on the summary variables present in the data frame please refer

Source

http://cran.r-project.org/web/packages/UScensus2010/index.html

References

Examples

data(california.tract10, envir = environment())
plot(california.tract10)

CropSpatialPolygonsDataFrame

Crop polygons to bounding box and adds polygon centers

Description

This function serves three purposes: (i) changes the (complicated) data structure of a spatial polygon (from the sp package) to a format which is aligned with the (simpler) PBSmapping polygon format. (ii) clips/crops the polygons to a pre specified bounding box (iii) computes and adds the polygon centers for each polygon

Usage

CropSpatialPolygonsDataFrame(x, bb = NULL, verbose = 0)
DiagnoseFailure

Arguments

- x: object of class `SpatialPolygonsDataFrame`
- bb: bounding box to crop the polygons
- verbose: level of verbosity

Value

New list with separate entries for data, polys, and poly centers

Author(s)

Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>

Examples

```r
# San Francisco:
data(california.tract10, envir = environment())
sf.polys <- CropSpatialPolygonsDataFrame(x = california.tract10, 
                                         bb = data.frame(X=c(-122.5132, -122.37), 
                                                         Y = c(37.70760, 37.81849)))
```

| DiagnoseFailure | Visualize points that could not be mapped using `RapidPolygonLookup()` |

Description

This function plots the points that could not be mapped using `RapidPolygonLookup()` The points are overlayed on the polygons to contextualize their geographical location and understand the reason behind their exclusion.

Usage

```r
DiagnoseFailure(XY.polys, poly.list = NULL)
```

Arguments

- XY.polys: output from function `RapidPolygonLookup()`
- poly.list: polygon list with 3 or 4 elements: data, polys, poly.centers, and possibly ranges. Needs to be supplied if `RapidPolygonLookup()` was run with keep.data= FALSE

Author(s)

Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>
FindPolygonInRanges

Use range-search to map points to polygon.

Description
This function searches the lat-long ranges of polygons to come up with a shorter list of candidates on which point.in.polygon() from the sp package can be applied.

Usage
FindPolygonInRanges(poly.list, XY, poly.id = "fips", poly.id.colname = "census.block", verbose = 0)

Arguments
- poly.list: polygon list with 3 or 4 elements: data, polys, poly.centers, and possibly ranges
- XY: data frame containing X-Y columns
- poly.id: column name in 'poly.list$data' containing the polygon identifier
- poly.id.colname: desired column name in the output data frame containing the polygon identifier
- verbose: level of verbosity

Author(s)
Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>

Examples

```r
data(sf.crime.2012, envir = environment())
data(sf.polys, envir = environment())
cat(nrow(sf.crime.2012), "rows in SF crime \n")

XY.kdTree <- RapidPolygonLookup(sf.crime.2012[,c("X","Y")], poly.list= sf.polys,
 k= 10, N= 1000,
 poly.id = "fips", poly.id.colname = "census.block",
 keep.data= TRUE, verbose= TRUE)
DiagnoseFailure(XY.kdTree)
```

```
data(sf.polys, envir = environment())
sf.polys <- AddRanges(sf.polys)
XY <- FindPolygonInRanges(sf.polys, sf.crime.2012[1:1000], verbose=0)

which(is.na(XY[,"census.block"]))
table(XY$rank)
```
RapidPolygonLookup

Efficient spatial polygon search using kd-trees.

Description

Given spatial partitions such as census blocks, ZIP codes or police district boundaries, we are frequently faced with the need to spatially aggregate data. Unless efficient data structures are used, this can be a daunting task. The operation `point.in.polygon()` from the package sp is computationally expensive. Here, we exploit kd-trees as efficient nearest neighbor search algorithm to dramatically reduce the effective number of polygons being searched. Points that are left unmapped are put through a linear search to find the associated polygon.

Usage

```r
RapidPolygonLookup(XY, polygons, poly.list = NULL, k = 10, N = nrow(XY), poly.id = "fips", poly.id.colname = "census.block", keep.data = TRUE, verbose = 0)
```

Arguments

- `XY` data frame containing X-Y or (lon-lat, long-lat, longitude-latitude) columns
- `polygons` polygons to crop and add poly centres
- `poly.list` polygon list with three elements: data, polys, and poly.centers as output from function `CropSpatialPolygonsDataFrame()`
- `k` maximum number of near neighbours to compute. The default value is set to 10
- `N` number of rows of XY to search
- `poly.id` column name in 'poly.list$data' containing the polygon identifier
- `poly.id.colname` desired column name in the output data frame containing the polygon identifier
- `keep.data` retain polygon list and centers for future reference
- `verbose` level of verbosity

Value

The original points augmented with polygon ID are returned along with the poly centers and other call information

Author(s)

Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>
SearchForPolygon

Use kd-trees to search the nearest neighbour polygons for a given set of points

Description

This function uses the nn2() function from the RANN package to come up with a shorter list of candidates on which point.in.polygon() from the sp package can be applied.

Usage

SearchForPolygon(poly.list, XY, k, poly.id, poly.id.colname, verbose = 0)

Arguments

poly.list polygon list with 3-4 elements: poly.centers, data, polys and possibly ranges
XY data frame containing X-Y columns to assign polygons to
k maximum number of nearest neighbours to compute. The default value is set to 10.
poly.id column name in 'poly.list$data' containing the polygon identifier
poly.id.colname desired column name in the output data frame containing the polygon identifier
verbose level of verbosity

Value

Returns data frame with identified polygon and nearest neighbour rank

Author(s)

Markus Loecher <markus.loecher@gmail.com> and Madhav Kumar <madhavkumar2005@gmail.com>
Examples

```r
data(sf.crime.2012, envir = environment())
data(sf.polys, envir = environment())
XY.polys <- SearchForPolygon(poly.list = sf.polys, XY = sf.crime.2012[1:1000,], k = 10,
    poly.id = "fips", poly.id.colname = "census.block",
    verbose = TRUE)
```

sf.crime.2012
Sample data with lat/long information

Description

2012 crime incident data from the city of San Francisco

Usage

```r
data(sf.crime.2012)
```

Format

A data frame with 20,000 randomly selected observations with the following variables and their types:

- Date character
- X numeric
- Y numeric
- violent Factor

Details

There are no more details required

Source

https://data.sfgov.org/Public-Safety/SFPD-Reported-Incidents-2003-to-Present/dyj4-n68b

Examples

```r
data(sf.crime.2012, envir = environment())
```
Description

Cropped spatial polygons from California Census tracts bounded between San Francisco limits

Usage

data(sf.polys)

Format

A list object with the following elements:

data data frame retained from California tracts object of class SpatialPolygonsDataFrame
polys PolySet object from PBSmapping containing the spatial polygons
poly.centers PolyData object from PBSmapping containing the polygon centroids

Details

This object is created from a function of CropSpatialPolygonsDataFrame() from the RapidPolygonLookup package

Source

http://cran.r-project.org/web/packages/UScensus2010/index.html

References

Examples

data(sf.polys, envir = environment())
plotPolys(sf.polys$polys)
Index

*Topic datasets
 california.tract10, 3
 sf.crime.2012, 9
 sf.polys, 10
*Topic package
 RapidPolygonLookup-package, 2

AddRanges, 2

california.tract10, 3
CropSpatialPolygonsDataFrame, 4

DiagnoseFailure, 5

FindPolygonInRanges, 6

RapidPolygonLookup, 7
RapidPolygonLookup-package, 2

SearchForPolygon, 8
sf.crime.2012, 9
sf.polys, 10